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This paper presents a federated learning (FL) approach to train deep learning

models for classifying age-related macular degeneration (AMD) using optical

coherence tomography image data. We employ the use of residual network

and vision transformer encoders for the normal vs. AMD binary classification,

integrating four unique domain adaptation techniques to address domain

shift issues caused by heterogeneous data distribution in di�erent institutions.

Experimental results indicate that FL strategies can achieve competitive

performance similar to centralized models even though each local model has

access to a portion of the training data. Notably, the Adaptive Personalization FL

strategy stood out in our FL evaluations, consistently delivering high performance

across all tests due to its additional local model. Furthermore, the study provides

valuable insights into the e�cacy of simpler architectures in image classification

tasks, particularly in scenarios where data privacy and decentralization are critical

using both encoders. It suggests future exploration into deeper models and other

FL strategies for a more nuanced understanding of these models’ performance.

Data and code are available at https://github.com/QIAIUNCC/FL_UNCC_QIAI.
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1. Introduction

Age-related macular degeneration (AMD) is a common eye condition and a leading

cause of vision loss among people aged 50 and older (1). AMD causes damage to the macula,

the part of the eye that provides sharp, central vision, which is located near the retina’s center.

As a result, everyday activities such as reading and driving may be difficult to perform.

In order to prevent severe vision impairment and preserve vision, detection of AMD in

its early stages is crucial to implementing appropriate treatments, such as medications or

procedures. Artificial intelligence (AI) can play a pivotal role in the preliminary identification

and classification of AMD (2–8). Its proficiency in discerning the disparate stages of both wet

and dry AMD results in substantial enhancement of the prognosis of treatment outcomes.

Deep learning (DL)models significantly refine the precision and accuracy of AMDdiagnosis,

capable of detecting subtle ocular changes that might elude human scrutiny (3). The

remarkable capacity of AI for rapid analysis of imaging data facilitates more expeditious

and efficient diagnosis, a critical factor in timely disease management (9).
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The broad applications of AI include large-scale AMD

screening within populations, a critical feature, particularly in

areas where accessibility to ophthalmologists is restricted (10).

Beyond these clinical uses, AI’s potential to discern patterns

and correlations in expansive datasets could yield innovative

perspectives into the origins and evolution of AMD, potentially

influencing future research trajectories (11).

AI models employed in AMD diagnosis predominantly utilize

centralized learning. This traditional method accumulates data

from diverse sources, collating them in a centralized server or

location for the training of a machine learning (ML) model

(12). Adherence to data protection regulations such as the

Health Insurance Portability and Accountability Act (HIPAA) is

paramount in healthcare environments (13). Thus, this approach

encounters hurdles due to data privacy and security concerns in the

medical sphere.

The introduction of federated learning (FL) allows model

training without the dissemination of raw patient data, thereby

circumventing privacy issues as data remains local. The possibilities

proffered by FL involve enhancing diagnostic accuracy, prediction

capability, and personalized treatment within ophthalmology,

whilst harnessing large, diverse datasets from multiple institutions.

However, for successful FL integration, it is necessary to address

challenges linked with data heterogeneity, along with assuring the

reliability and security of the learning process.

FL has shown significant potential in healthcare for addressing

challenges related to data security and collaboration. Dayan et

al. (14) showcased the effectiveness of FL in predicting the

oxygen needs of COVID-19 patients across 20 global institutes,

underlining its potential for swift data science collaboration in

healthcare without the need for direct data sharing. In the

realm of ophthalmology, a study by Lu et al. (15) found that

57% of models trained on individual institutional data were

surpassed by FL models, emphasizing the advantage of FL

in multi-institutional learning, especially beneficial for smaller

institutions with limited resources. Sadilek et al. (16) highlighted

the advancements in FL that ensure robust privacy protections

while integrating differential privacy into clinical research. Another

study focused on retinopathy of prematurity (ROP), where a

DL model trained via FL with data from 5,245 patients across

seven institutions identified diagnostic disparities and suggested

standardization potential in clinical diagnoses (17). Furthermore,

Lu et al. (15) demonstrated that FL-trained models for ROP

diagnosis exhibited comparable performance to centralizedmodels.

Investigating diabetic retinopathy leveraged FL’s potential to

develop more generalized models by utilizing diverse datasets

without compromising data privacy (18). Lastly, a comprehensive

review by Nguyen et al. (19) emphasized the transformative

potential of DL in ocular imaging, with FL providing an effective

solution to data security concerns.

Inconsistencies in optical coherence tomography (OCT)

image acquisition parameters and scanning protocols can induce

variations in image quality (20). Clinical and technical hurdles

including differing standards and regulations among various

Institutional Review Boards (IRBs), and limited training datasets

for rare diseases can exacerbate the complexities of constructing

and implementing DL techniques (21). Such variations can impact

the competence and generalizability of DL models (22).

The domain shift problem also poses a significant challenge

in the context of FL (23, 24). Domain shift arises when there is

a substantial difference in data distributions across various local

devices or nodes, also termed as clients, within the FL system.

The non-identically distributed nature of decentralized data, a key

characteristic of FL, can potentially compromise model learning

performance (25). Rectifying this issue necessitates strategic and

robust methodologies.

In the research of Li et al. (25), domain adaptation (DA)

techniques are outlined for optimizing learning algorithms

irrespective of disparities in data distribution. Employing domain-

invariant features or transfer learning methodologies, these

techniques endeavor to lessen the impact of varied data

distributions. Additionally, data augmentation can be leveraged

to artificially enhance data representation, thereby diminishing

the effects of domain shift (26). Other methods can also be

utilized to counter this challenge, encompassing client selection

and sampling strategies, model aggregation procedures, proactive

domain exploration (27), and FL personalization (28). By effectively

tackling domain shifts, FL can bolster the model’s generalization

capacity and augment performance across disparate domains.

The purpose of this manuscript is to delineate the practicality

of employing DA FL in the diagnosis of AMD. There is potential

for domain shifts due to variations in protocols and OCTmachines

used for retinal imaging in the collaborative development of a

classification model across institutions. Using data from three

distinct datasets, this study examines various FL strategies to

address this issue for AMD retinal OCT binary classification,

utilizing an open-source FL Python library. The performance

of these FL strategies was compared with a baseline centralized

approach, emphasizing the potential benefits of employingmultiple

FL techniques to counteract the domain shift. However, this

research did not delve into the security aspects of the FL framework,

and all the involved entities, including the server and the FL

node, were reliable and did not distribute distorted data or behave

maliciously.

2. Methods

2.1. Data

We leveraged OCT data derived from three distinct research

datasets for our study: Kermany et al. (29), Srinivasan et al. (30),

Li et al. (31), hereinafter referred to as DS1, DS2, and DS3. The

utilization of these distinct datasets facilitated the simulation of

three disparate institutions (FL nodes) intent on training a DL

model for binary image classification (Normal vs. AMD). Hence,

each node is allocated its own training, validation, and testing set.

DS1 encompasses a total of 84,484 OCT retinal (Spectralis OCT,

Heidelberg Engineering, Germany) images from 3,919 patients

which are classified into four categories: Normal, Choroidal

Neovascularization, Diabetic Macular Edema (DME), and Drusen.

These images are compartmentalized into three separate folders:

training, validation, and testing. However, it was observed that

some images were duplicated across the validation and testing

folders as well as the training folder. To eliminate redundancy, we

amalgamated the validation and testing folders and compared each
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image with those in the training set using the mean square error

(MSE) technique. An MSE score of zero signified the presence of

identical images, leading to the identification of 8,520 duplicates

within the dataset. These issues originated from 34 images that were

marked as both normal and diseased retina. We discarded these

images and exclusively used Normal and Drusen (ADM) retinal

images for this binary classification task. In the end, around 3% of

the patient samples were chosen as the test set, which contained

varying numbers of scans per patient.

DS2 contains retinal images from 45 subjects, which includes 15

individuals each from the categories of Normal retinas, AMD, and

DME. For training purposes, we used data from the first 11 Normal

and AMD patients. Data from the 12th subjects with Normal and

AMD retinas were designated for validation, while the remaining

data served to test the model. All the OCT volumes were acquired

in IRB-approved protocols using Heidelberg Engineering Spectralis

SD-OCT (30).

DS3 encompasses OCT images from 500 subjects, captured

under two distinct fields of view: 3 and 6-mm. A single 3-mm

file consists of 304 scans from an individual patient, whereas a

6-mm file holds 400 scans. Subsequently, we isolated the images

of Normal and AMD retinas. Recognizing the limited significance

of peripheral retinal sections in classification, our attention was

centered on the fovea images, specifically image numbers 100–180

for the 3-mm scans and 160–240 for the 6-mm scans. All OCT

images were captured using a spectral-domain OCT system with

a center wavelength of 840 nm (RTVue-XR, Optovue, CA) (31).

The distribution of the data across the three datasets is

visually represented in Figure 1 and tabulated in Table 1. The

size of DS2 is relatively smaller compared to other datasets. This

mirrors the common real-world scenario where certain participants

contributing to training have limited data. The datasets for training,

validation, and testing have been resized to a resolution of 128×128.

To enhance the strength and ability to handle variations in different

datasets, our DL networks have incorporated data augmentation

techniques (32, 33). These techniques involve random horizontal

flipping, elastic transformations, and affine transformations.

To gain insights into the distribution of our datasets, which

in turn would aid in evaluating the performance of our models

across the test sets, we calculated the average histogram of all

OCT images in each dataset. These histograms are visualized

in Figure 2, providing a clear picture of the individual dataset

distributions. Upon observation, it is evident that the distributions

of DS1 and DS2 are quite similar due to the fact that they

both used the same device Heidelberg Engineering Spectralis

OCT. In contrast, DS3 displays a wholly distinct distribution,

likely stemming from the unique imaging protocols utilized in its

creation.

2.2. Centralized and local models

Having three datasets, each containing training and

test sets, enabled us to train three separate models

referred to as local models (Figure 3A). Concurrently, to

establish a baseline comparison for the FL approach, we

pooled all the data on the server and trained a model

using the entire dataset, known as the centralized model

(Figure 3B).

Our hypothesis was that an FL model could be trained to

deliver performance on par with a centralized model and it would

surpass the performance of local models trained solely on locally

available data. Then local and centralized models were subjected

to performance assessment using all three test sets. This rigorous

testing methodology provided us with a robust comparative

analysis of the performance metrics of these models. The structure

of each model is designed with two main components: an encoder

and a classification head (Figure 4). After evaluating various

options such as residual network (ResNet), vision transformers

(ViT), VGG16, InceptionV3, and EfficientNet, we settled on

ResNet18 with 11.2 million and ViT with 4.8 million parameters

as the encoding mechanisms for our models, conducting thorough

comparisons of their performances across diverse benchmarks. The

ViT encoders consist of six transformer blocks and eight heads in

the multi-head attention layer.

We utilized the Area Under the Receiver Operating

Characteristics (ROC) Curve (AUC) as our metric for evaluation.

Initial findings indicated that the Adaptive Momentum Estimation

with Weight Decay (AdamW) surpassed the Stochastic Gradient

Descent (SGD) in terms of performance at both the local and

centralized levels, after hyperparameter optimization through grid

search. The optimal hyperparameter combination was determined

through the maximization of the AUC on the validation set, taking

care to prevent data leakage from the test set. To examine the

impact of the number of epochs (E) on the models, we trained the

models with E = 10 and E = 100, implementing early stopping

based on the AUC of the validation set and patience of ten epochs

when E = 100. DS1 was processed using a computer (referred to as

“node 1”) that was equipped with two Nvidia RTX A6000 graphics

cards. DS2 was handled by a different computer (referred to as

“node 2”). This machine was equipped with two Nvidia Titan V

graphics cards. DS3 was processed on yet another computer setup

(referred to as “node 3”). This particular machine had eight Nvidia

GTX1080Ti graphics cards, which would be responsible for the

computational demands of DS3. The summarized results can be

found in Table 2.

2.3. FL framework

Traditional FL algorithms involve a central server that oversees

model updates and circulates the global model to all participating

nodes. Local models are trained on the respective data and

subsequently transmitted back to the server, where they are

integrated into the global model (25). The primary FL algorithms

used are FedAvg (23) and Federated Stochastic Gradient Descent

(24), as well as their variations.

However, the decentralized character of FL introduces

substantial challenges, especially in terms of data heterogeneity and

distribution shifts. For instance, in ophthalmology, considerable

variations in retinal images across different institutions can be

attributable to factors such as the use of distinct imaging devices

(34), heterogeneous patient populations (35), and inconsistencies

in image acquisition protocols (36).
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FIGURE 1

(A–C) Normal and (D–F) AMD sample OCTs from the three datasets. (G–I) Illustrate how DS1, DS2, and DS3 are distributed.

TABLE 1 The data distribution of the three datasets for the training and test sets, including the number of normal and ADM retinas for each set.

Dataset

Train Test Total

Normal AMD Normal AMD Normal AMD

DS1 23,794 7,214 1,237 434 25,031 7,648

DS2 1,006 530 291 147 1,297 677

DS3 17,320 3,480 2,268 243 19,588 3,723

Addressing these challenges necessitates domain alignment,

also referred to as DA. This essential process modifies anMLmodel

trained on one domain to perform proficiently on a related domain.

Numerous techniques have been proposed to mitigate the domain

shift problem, making it crucial to implement these methods for

successful DA. In our FL framework, we have compared four DA

strategies alongside FedAvg: FedProx, FedSR, FedMRI, and APFL.

2.3.1. FedProx
FedProx (37), is specifically designed to counter the data

heterogeneity challenge in FL. It utilizes proximal regularization

to incorporate a penalty term into the loss function and avoid

overfitting. By maintaining local updates close to the initial global

model parameters, FedProx is particularly useful when dealing with

not non-independent and identically distributed data. This ensures

each local model does not veer too far from the global model during

training, yielding a more resilient global model that performs well

across a broader spectrum of data distributions.

2.3.2. FedSR
FedSR (38) simplifies the model’s representation and

encourages it to extract only essential information. This method

employs two regularizers: an L-2 norm regularizer on the

representation and conditional mutual information between the

data and the representation given by the label. These regularizers

limit the quantity of information the representation can contain.
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FIGURE 2

This figure displays the average normalized histograms for each dataset.

FIGURE 3

(A) Presents an overview of training local models, where each model is trained using data available at its respective location, and there is no

communication between the nodes. In (B), the server pools the data from all the nodes and then trains a single model using the combined dataset.

By enforcing these regularizers, FedSR facilitates learning data

representations that generalize well across diverse domains,

all while maintaining data privacy between nodes—a crucial

advantage in an FL context.

2.3.3. FedMRI
FedMRI (39) addresses the issue of domain shift that might

surface during local node optimization. It does so through the

implementation of a weighted contrastive regularization, which

helps guide the update direction of the network parameters,

thus directly rectifying any discrepancies between the local nodes

and the server during optimization. This approach contrasts

with traditional contrastive learning, which relies on identifying

positive and negative pairs from data. In experiments involving

multi-institutional data, FedMRI has demonstrated superior

performance in image reconstruction tasks compared to state-

of-the-art FL methods. As our task resided within the realm

of binary image classification, we customized the FedMRI

approach. Specifically, we excluded the decoder component and

employed the weighted contrastive loss as an auxiliary loss

exclusively.
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FIGURE 4

The architecture of our DL model.

TABLE 2 The AUC of the centralized and local models using E = 10 and E

= 100 with early stopping on the validation AUC.

Method

Test set

DS1 DS2 DS3

E = 10

Centralized (ResNet18) 92.78± 1.31 98.9 ± 0.64 97.72± 1.5

Centralized (ViT) 85.64± 1.34 98.19± 0.59 99.22 ± 0.38

Local DS1 (ResNet18) 93.7 ± 0.94 98.83± 0.63 54.14± 2.68

Local DS1 (ViT) 85.23± 0.87 96.76± 0.66 88.08± 2.27

Local DS2 (ResNet18) 55.6± 1.86 80.4± 7.21 50± 0.0

Local DS2 (ViT) 51.07± 0.78 75.03± 3.96 53.63± 1.95

Local DS3 (ResNet18) 49.84± 0.56 54.65± 4.52 94.5± 2.67

Local DS3 (ViT) 48.39± 1.62 56.73± 6.53 86.3± 5.18

E = 100

Centralized (ResNet18) 94.58 ± 0.62 99.05± 0.4 98.91± 0.67

Centralized (ViT) 87.85± 1.2 99.18 ± 0.55 99.11 ± 0.39

Local DS1 (ResNet18) 93.97± 0.69 98.26± 0.87 51.74± 0.66

Local DS1 (ViT) 88.31± 1.5 97.7± 0.59 88.8± 2.74

Local DS2 (ResNet18) 57.03± 2.42 84.47± 8.1 50± 0

Local DS2 (ViT) 52.61± 1.39 83.16± 2.84 56.6± 3.18

Local DS3 (ResNet18) 49.99± 0.01 50± 0.0 91.98± 4.02

Local DS3 (ViT) 48.45± 2.83 55.49± 7.54 84.59± 4.19

Each dataset’s best AUC value achieved by its corresponding model is highlighted in bold.

2.3.4. APFL
The goal of APFL (40) is to improve the overall performance of

a model in an FL setup by considering the distinct data distribution

of each participating node. This approach ensures data privacy

and model customization. APFL achieves this by adding a level of

personalization to the learning process. It involves learning a global

model that every node shares, as well as a personalized model that

caters to each node’s unique data distribution. The global model

identifies common patterns across all nodes, and the personalized

model learns from node-specific patterns.

Our FL structure integrated three FL nodes with a central

server, and it was developed based on the Flower framework

(41). Before running the local training on these nodes, the

server needed to be operational, necessitating the selection of a

particular FL strategy, FL settings, and training configuration. The

strategy oversaw several elements of the training and evaluation

protocol, such as weight initialization and aggregation. FL settings

outlined necessary parameters for FL training, encompassing the

minimum number of FL nodes needed for training and subsequent

evaluation. Further, the training configuration encapsulated

requisite parameters for DL model training, including the number

of epochs, learning rate, and weight decay.

The procedure to train the FL model generally follows these

steps (demonstrated in Figure 5): Initially, the FL strategy (options

include FedAvg, FedSR, FedProx, FedMRI, and APFL) will be

designated, as well as the FL settings such as the minimum number

of FL nodes to start the training and evaluation, and training

configurations (e.g., the number of epochs, learning rate, batch

size, and weight decay). Subsequently, the server waits for the

necessary minimum number of FL nodes to establish a connection.

In our scenario, it needs exactly three nodes connected. Then the

server dispatches the training configuration and the initial weights

(based on the selected FL strategy) to each node. After receiving

the weights from the server, each node updates its local model and

starts the training process using the training configuration provided

by the server. The training procedure primarily involves processing

the local data through the model. The model’s architecture can be

viewed in Figure 4. Upon completion of the training, each node

transmits its local model’s weights back to the server. Finally, the

server aggregates these weights using the designated strategy (such

as FedAvg) and reciprocates by sending the updated weights back

to each client, marking the conclusion of one round (R).

In this framework, there is an optional step called evaluation,

where each local node assesses its performance after receiving
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FIGURE 5

The FL framework operates in the following manner: The server initially distributes the primary weights to each participating node. These nodes then

update their local models using the provided weights and initiate their training processes. Once training is concluded, the nodes relay their local

weight updates (or local weights) back to the server. The server, in turn, computes the average of all submitted weights and circulates this

consolidated update to all nodes as aggregated updates.

the global FL model and evaluation configuration over local

test sets. The evaluation configuration is similar to the training

configuration and may contain various hyperparameters for model

evaluation, such as batch size. After evaluation, the performance

of each node is sent to the server to demonstrate the FL model’s

overall performance across all node test sets. Data heterogeneity

can be handled by varying the number of local training epochs.

This way, each round of training can be more productive, reducing

convergence time and communication costs (42). To assess the

training productivity of each strategy, we examined its AUC with

three different allotted local training epochs per round in Table 3.

During each benchmarking session, one of the nodes played a

dual role by serving as both a server and an FL node. The other two

resources solely functioned as FL nodes and communicated with

the server. Whenever E = 10, node 1 assumed the role of both

server and FL node. When E = 5, node 2 became the server, and

when E = 1, node 3 took on the role of server. The DL models at

each local node were trained using the hyperparameters detailed in

the preceding section. Note that, the value ofR in all FL benchmarks

is 10. The hyperparameters, input size, and image transformation

have been applied as previously mentioned.

3. Results

The summary of outcomes from training a variety of local and

centralized models is given in Table 2. These models are evaluated

against three distinct test sets at the end of the training phase.

The training process employed both ResNet18 and ViT encoders,

and the table presents the corresponding performance metrics for

each. In the latter part of Table 2, outcomes from training models

at E = 100 are particularly highlighted. At E = 10, the local

DS1 ResNet18 achieved superior performance on its native test set,

while the centralized ResNet18 and ViT excelled on DS2 and DS3

test sets, respectively. With E = 100, centralized models topped

the performance charts, with the ResNet18 encoder recording the

highest accuracy rates of 94.58%±0.62 onDS1, and the ViT encoder

reaching 98.18%±0.55 and 99.11%±0.39 on DS2 and DS3 test sets,

respectively.

Moreover, FL strategies such as FedAvg, FedProx, FedSR,

FedMRI, and APFL have been meticulously detailed in Table 3.

These strategies have been examined in tandem with the

employment of ResNet18 and ViT encoders, with the models

being trained at E = 1, E = 5, and E = 10. To facilitate

easier comprehension, the table specifically highlights in bold the

highest AUC for each E value. Remarkably, a pattern emerges in

the performance of the models on different test sets. The APFL

ResNet18 performed the best for DS1. The FedSR ResNet18 showed

superior performance for DS2. As for DS3, the APFL ViT, APFL

ResNet18, and FedSR ViT performed the best at E = 1, E = 5,

and E = 10 respectively. However, it is crucial to bear in mind

that the optimal model should maintain a balanced performance

across all test sets, and not merely excel in a single one. To ensure

consistency, the parameter R has been maintained at a constant

value of 10 throughout all the testing scenarios.

Figure 6 provides essential information on the performance of

the centralized ResNet18 and ViT models across the three test sets

at E = 100, with the patient parameter set to ten. It also features the

exceptional performance of the APFL strategy, denoting it as the

leading FL method in this problem.
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TABLE 3 The AUCs of the di�erent FL methods on the three test sets with

E = 1, E = 5, E = 10, and R = 10.

Method

Test set, R = 10

DS1 DS2 DS3

E = 1

FedAvg (ResNet18) 90.47± 1.11 99.01± 0.27 54.26± 1.4

FedAvg (ViT) 82.4± 0.33 97.25± 0.19 93.95± 0.43

FedProx (ResNet18) 85.46± 2.11 91.75± 3.64 53.67± 3.02

FedProx (ViT) 82.4± 0.38 97.33± 0.23 94.03± 0.47

FedSR (ResNet18) 89.29± 1.27 99.45 ± 0.32 59.12± 2.42

FedSR (ViT) 81.5± 0.24 95.01± 0.08 95.59± 0.58

FedMRI (ResNet18) 89.17± 0.99 95.46± 0.75 98.32± 0.33

FedMRI (ViT) 50± 0.0 50.2± 0.22 50± 0.0

APFL (ResNet18) 90.94 ± 2.23 98.25± 0.52 97.91± 0.87

APFL (ViT) 83.35± 0.48 83.4± 2.8 98.32 ± 0.01

E = 5

FedAvg (ResNet18) 92.48± 0.74 99.42± 0.32 55.87± 4.28

FedAvg (ViT) 81.61± 9.39 98.47± 0.34 92.16± 9.4

FedProx (ResNet18) 92.11± 1.08 97.22± 1.1 65.1± 3.7

FedProx (ViT) 88.16± 0.36 98.32± 0.32 96.53± 0.45

FedSR (ResNet18) 92.99± 0.49 99.79 ± 0.16 56.91± 3.6

FedSR (ViT) 85.58± 0.55 98.22± 0.38 97.44± 0.46

FedMRI (ResNet18) 91.9± 1.01 93.95± 3.57 98.01± 0.38

FedMRI (ViT) 73.09± 0.12 92.62± 0.11 86.31± 0.52

APFL (ResNet18) 94.29 ± 0.53 99.59± 0.29 98.96 ± 0.43

APFL (ViT) 86.95± 0.38 95.8± 0.69 97.55± 0.32

E = 10

FedAvg (ResNet18) 89.88± 0.66 99.62± 0.13 54.54± 0.84

FedAvg (ViT) 88.55± 0.42 99.18± 0.26 98.07± 0.21

FedProx (ResNet18) 92.89± 0.63 99.54± 0.18 58.57± 4.27

FedProx (ViT) 88.86± 0.34 99.02± 0.23 98.17± 0.26

FedSR (ResNet18) 90.87± 0.68 99.74 ± 0.22 54.07± 2.01

FedSR (ViT) 88.61± 0.45 99.12± 0.19 98.23 ± 0.3

FedMRI (ResNet18) 93.16± 0.93 97.19± 0.96 97.48± 1.13

FedMRI (ViT) 81.84± 0.27 94.73± 0.43 94.09± 0.18

APFL (ResNet18) 93.39 ± 1.1 99.23± 0.18 96.57± 1.94

APFL (ViT) 90.25± 0.47 93.91± 5.41 97.95± 0.2

The best AUC value achieved by each model for its respective dataset is highlighted in bold.

Figure 7 depicts the training duration for each model, with

a noticeable pattern of longer training times for ViT models in

comparison to the ResNet18 equivalents. This trend is consistently

apparent across local, centralized, and FL models, even persisting

through FL training iterations at E = 5 and E = 10. The time

difference is minimal when training the local model using DS2—

ResNet18 takes about 4–6 s, while ViT requires around 5–7 s.

However, this difference grows when it comes to centralized and

FL models, extending up to ∼40 s for training one epoch. Keep

in mind that the duration to train an FL model for one epoch is

timed from the instant the server dispatches the initial weights to

all nodes until it receives and aggregates all the parameters (FL

training time). This calculation does not include the time spent on

initializing the server, starting the nodes, connecting them to the

server, and the evaluation stages. Due to this reason, FL strategies,

with the exception of FedSR, tend to take less time to train than

centralized models at E = 1. Notably, FedSR stands out as having

the lengthiest training time among all the benchmarks.

4. Discussion

This study presented a comprehensive series of experiments

exploring the comparative effectiveness of deploying DL models

using local, centralized, and FL methodologies across three distinct

datasets. The primary focus was the classification of OCT images

into Normal and AMD binary categories, for which we utilized

ResNet18 and ViT encoders. We also integrated four unique DA

methods into our FL strategy to tackle the prevalent issue of

domain shift. As our results show, DA FL strategies demonstrated

impressive proficiency in training a global model well-suited to this

specific problem, achieving competitive performance metrics in

comparison to centralized ResNet18 and ViT models despite a lack

of access to the entire dataset. These findings underscore the critical

role of FL in healthcare settings, where data accessibility is often

compromised due to feasibility issues and privacy concerns. By

assuring patient confidentiality and facilitating significant insights

from distributed learning, FL reinforces its importance in the future

of healthcare analytics.

We opted for ResNet architectures given their documented

proficiency in medical image classification tasks (43, 44). Their

architectural depth facilitates intricate data pattern learning,

and the availability of pre-trained models adds to their appeal

(45). ViT was selected for its capacity to integrate global

image context, a crucial attribute for enhancing medical image

classification (46–48). Its architecture negates the need for task-

specific designs, allowing intricate pattern recognition without

specialized configurations.

Our experimental procedure for local and centralized DL

models encompassed two distinct training scenarios: short-

duration training over 10 epochs and extended training over 100

epochs. Our aim was to identify the model that, when trained

over 100 epochs with equivalent training data, exhibited optimal

performance, using validation AUC as the stopping criterion. We

also examined the impact of varying the number of local epochs on

the training efficiency of FL strategies, setting E-values at 1, 5, and

10.

Our research confirmed the expected superiority of centralized

models over local ones, attributed to their unrestricted data

access during training, especially when E is maximized at 100. A

notable observation was the inconsistent performance of the local

DS1 ResNet18 model across different test sets. While this model

demonstrated commendable efficacy on its native and DS2 test

sets, it faltered with DS3. This challenge arose from the brightness

distribution disparity among DS1, DS2, and DS3, as visualized in
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FIGURE 6

The AUC of centralized models across three datasets, as depicted by ResNet18 and ViT encoders, are illustrated in (A, B), respectively. The same

performance measurements, but this time using the APFL strategy with E = 5 and E = 10, are showcased in (C, D) correspondingly.

Figure 2. Further analysis of the counterpart model, local DS1 ViT,

emphasized the inherent strength of the ViT architecture’s global

feature focus, contributing to its notable performance (88.08% ±

3.17). However, the local DS3 and DS2 models displayed challenges

in delivering high-quality results on tests outside their training

environments. Factors like limited model generalization (for DS3)

and inadequate training data (for DS2) might be responsible.

Interestingly, local ResNet18 models outperformed their ViT

counterparts on corresponding test sets. This likely results from the

depth and parameter richness of the ResNet18 architecture, giving

it an advantage over ViT models, since the capability of ViTs to

decode intricate patterns amplifies with increased data volume (49).

Regarding FL training duration, one would theoretically expect

parallel training (intrinsic to FL models) to be swifter than

sequential training. Although we noted a minor reduction in

training time for a single FL model epoch, the disparate dataset

sizes (with DS1 being larger) hindered significant time gains

over centralized models. Training disparities between nodes also

introduced bottlenecks, with nodes 2 and 3 awaiting node 1’s

completion. This issue intensified as the E-value rose, leading to

prolonged idle times for faster nodes. This phenomenon is exclusive

to the training phase; during inference, all nodes utilize the same

model, ensuring uniform inference times.

In the FL context, the performance of FedAvg, FedProx, and

FedSR models, all utilizing a ResNet18 encoder, was found lacking

on DS3’s test set. This was unexpected, especially since FedProx and

FedSR were crafted to counter domain shifts. This performance

gap is rooted in data heterogeneity, which induces a drift in the

learning trajectory. This drift, primarily aligned with DS1 and DS2,

results in suboptimal outcomes when the aggregated FL model is

tested on DS3. Interestingly, despite its modest performance on

DS3, the FedSR ResNet18 model excelled across all E-values on

DS2’s test set. In contrast, the three strategies (FedAvg, FedProx,

and FedSR) employing the ViT encoder, consistently achieved

above 81% performance across all test sets. Given their inherent

global feature focus, this comparison accentuates the potential
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FIGURE 7

A comparison of the time taken to train an epoch for (A) local and centralized models, and (B) di�erent FL strategies when local E = 1.

advantages of using ViTs over ResNet18. The FedMRI strategy

introduces a different dimension. FedMRI ResNet18 showcased

promising results across all test sets, whereas its ViT counterpart

struggled at E = 1 and was mediocre at E = 5. This underscores

the necessity for refined hyperparameter tuning to determine the

optimal weighting for FedMRI’s contrastive loss when using ViT

as an encoder. Lastly, the APFL strategy emerged as a standout FL

approach, consistently delivering an AUC performance exceeding

83% across all tests, regardless of the encoder. Notably, the APFL

ResNet18 model produced stellar results, often matching or even

surpassing the performance of centralized models. For instance, on

DS1’s test set, the APFL ResNet18 model achieved an AUC score of

94.29%±0.53 at E = 5, closely following the 94.58%±0.62 achieved

by the centralized ResNet18 model at E = 100. On DS2, the model

reached a score of 99.59% ± 0.29, outperforming the centralized

ViT’s 99.18% ± 0.55 at E = 10. Similarly, on DS3’s test set, this

model showcased a competitive performance of 98.96% ± 0.43,

slightly behind the centralized ViT model’s score of 99.22% ± 0.38

at E = 10.

The success of the APFL approach can be attributed to its

personalized layer, which tailors learning to node-specific data

distributions, ensuring consistent and robust performance. This

highlights the potential of FL models to compete with, and

occasionally surpass, their centralized counterparts. As noted,

the data was sourced from two distinct machines: Heidelberg

Engineering Spectralist and RTVue-XR Optovue. Differences in

imaging acquisition protocols led to variations in image brightness

and texture, evident in image samples (Figure 1). Yet, APFL’s

personalization layer effectively addresses this by capturing and

preserving the unique characteristics of each local node domain.

Furthermore, APFL consistently outperforms prominent local

models. In summary, our research contrasted the conventional FL

strategy, FedAvG, with four domain adaptation strategies, utilizing

two prevalent encoders: ResNet and ViT. It underscores the

promise of FL strategies, particularly those incorporating adaptive

personalization, in crafting robust models that yield consistent

results across diverse datasets. This is particularly relevant in

FL contexts where institutional data, like in DS2, is limited or

where datasets, such as DS3, experience domain shifts. These

strategies herald the development of top-tier models with enhanced

generalization, vital for future projects emphasizing data privacy

and decentralization.

However, our study is not without limitations. During the

training phase, we opted for a relatively straightforward DL

architecture and an aggregation policy rooted solely in a weighted

average. Future endeavors will explore more intricate aggregation

policies. Despite these constraints, our results provide invaluable

insights into the comparative efficacy of simpler architectures for

image classification tasks and enrich our understanding of FL

strategies. We anticipate that delving into other FL strategies in

subsequent research will further illuminate the nuances of these

models’ performance. The separate classification head also emerges

as a potential area of focus, with intelligent weight aggregation

policy and amplitude normalization potentially amplifying FL

network efficiency (50). Lastly, investigating deeper models such as

ResNet50, ResNet101, or ViTs with additional transformer blocks

and more profound multi-layer perceptron architectures might

shift performance dynamics and yield fresh insights.

Data availability statement

Data and code are available at https://github.com/QIAIUNCC/

FL_UNCC_QIAI. The original contributions presented in the

study are included in the article, further inquiries can be directed

to the corresponding author.

Author contributions

SG: Conceptualization, Data curation, Formal analysis,

Methodology, Software, Validation, Writing—original draft,

Writing—review and editing, Investigation, Funding acquisition,

Project administration, Resources, Visualization. JL: Writing—

review and editing, Conceptualization, Formal analysis,

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2023.1259017
https://github.com/QIAIUNCC/FL_UNCC_QIAI
https://github.com/QIAIUNCC/FL_UNCC_QIAI
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gholami et al. 10.3389/fmed.2023.1259017

Investigation. TL:Writing—review and editing, Conceptualization,

Formal analysis, Investigation. SO: Writing—review and

editing, Conceptualization, Formal analysis, Investigation.

AT: Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing—original draft, Writing—review and editing. MA:

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing—original draft, Writing—review and editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article. We

acknowledge funding support from the University of North

Carolina at Charlotte Faculty Research Grant (FRG).

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict of

interest.

The reviewer SN was currently organizing a Research Topic

with the author(s) TL.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng CY, et al. Global prevalence
of age-related macular degeneration and disease burden projection for 2020 and
2040: a systematic review and meta-analysis. Lancet Glob Health. (2014) 2:e106.
doi: 10.1016/S2214-109X(13)70145-1

2. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et
al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat
Med. (2018) 24:1342–50. doi: 10.1038/s41591-018-0107-6

3. Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM.
Automated grading of age-related macular degeneration from color fundus images
using deep convolutional neural networks. JAMA Ophthalmol. (2017) 135:1170–6.
doi: 10.1001/jamaophthalmol.2017.3782

4. Kaymak S, Serener A. Automated age-related macular degeneration and diabetic
macular edema detection on OCT images using deep learning. In: 2018 IEEE 14th
International Conference on Intelligent Computer Communication and Processing
(ICCP). (2018). p. 265–9. doi: 10.1109/ICCP.2018.8516635

5. Russakoff DB, Lamin A, Oakley JD, Dubis AM, Sivaprasad S. Deep learning
for prediction of AMD progression: a pilot study. Invest Ophthalmol Vis Sci. (2019)
60:712–22. doi: 10.1167/iovs.18-25325

6. Lee CS, Baughman DM, Lee AY. Deep learning is effective for classifying normal
versus age-related macular degeneration OCT images.Ophthalmol Ret. (2017) 1:322–7.
doi: 10.1016/j.oret.2016.12.009

7. Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, et al. Predicting
conversion to wet age-related macular degeneration using deep learning. Nat Med.
(2020) 26:892–9. doi: 10.1038/s41591-020-0867-7

8. Treder M, Lauermann JL, Eter N. Automated detection of exudative age-
related macular degeneration in spectral domain optical coherence tomography
using deep learning. Graefe’s Arch Clin Exp Ophthalmol. (2018) 256:259–65.
doi: 10.1007/s00417-017-3850-3

9. Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RP, et
al. Automated diagnosis of plus disease in retinopathy of prematurity using
deep convolutional neural networks. JAMA Ophthalmol. (2018) 136:803–10.
doi: 10.1001/jamaophthalmol.2018.1934

10. Rajalakshmi R, Subashini R, Anjana RM, Mohan V. Automated diabetic
retinopathy detection in smartphone-based fundus photography using artificial
intelligence. Eye. (2018) 32:1138–44. doi: 10.1038/s41433-018-0064-9

11. Balyen L, Peto T. Promising artificial intelligence-machine learning-deep
learning algorithms in ophthalmology. Asia Pac J Ophthalmol. (2019) 8:264–72.
doi: 10.1097/01.APO.0000586388.81551.d0

12. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. Federated
learning for healthcare informatics. J Healthc Inform Res. (2021) 5:1–19.
doi: 10.1007/s41666-020-00082-4

13. Tom E, Keane PA, Blazes M, Pasquale LR, Chiang MF, Lee AY, et al. Protecting
data privacy in the age of ai-enabled ophthalmology. Transl Vis Sci Technol. (2020) 9:36.
doi: 10.1167/tvst.9.2.36

14. Dayan I, Roth HR, Zhong A, Harouni A, Gentili A, Abidin AZ, et al. Federated
learning for predicting clinical outcomes in patients with COVID-19. Nat Med. (2021)
27:1735–43. doi: 10.1038/s41591-021-01506-3

15. Lu C, Hanif A, Singh P, Chang K, Coyner AS, Brown JM, et al. Federated
learning for multicenter collaboration in ophthalmology: improving classification
performance in retinopathy of prematurity. Ophthalmol Ret. (2022) 6:657–63.
doi: 10.1016/j.oret.2022.02.015

16. Sadilek A, Liu L, Nguyen D, Kamruzzaman M, Serghiou S, Rader B, et al.
Privacy-first health research with federated learning. NPJ Digit Med. (2020) 4:132.
doi: 10.1038/s41746-021-00489-2

17. Hanif A, Lu C, Chang K, Singh P, Coyner AS, Brown JM, et al. Federated learning
for multicenter collaboration in ophthalmology: implications for clinical diagnosis and
disease epidemiology. Ophthalmol Ret. (2022) 6:650–6. doi: 10.1016/j.oret.2022.03.005

18. Lo J, Yu TT, Ma D, Zang P, Owen J, Zhang Q, et al. Federated learning for
microvasculature segmentation and diabetic retinopathy classification of OCT data.
Ophthalmol Sci. (2021) 1:100069. doi: 10.1016/j.xops.2021.100069

19. Nguyen TX, Ran AR, Hu X, Yang D, Jiang M, Dou Q, et al. Federated learning
in ocular imaging: current progress and future direction. Diagnostics. (2022) 12:2835.
doi: 10.3390/diagnostics12112835

20. De Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical
coherence tomography angiography (OCTA). Int J Ret Vitreous. (2015) 1:1–15.
doi: 10.1186/s40942-015-0005-8

21. Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial
intelligence and deep learning in ophthalmology. Br J Ophthalmol. (2019) 103:167–75.
doi: 10.1136/bjophthalmol-2018-313173

22. Coyner AS, Swan R, Brown JM, Kalpathy-Cramer J, Kim SJ, Campbell JP,
et al. Deep learning for image quality assessment of fundus images in retinopathy of
prematurity. AMIA Annu Symp Proc. (2018) 2018:122432.

23. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA. Communication-
efficient learning of deep networks from decentralized data. In: Proceedings of the
20th International Conference on Artificial Intelligence and Statistics. PMLR (2017). p.
1273–82.

24. Smith V, Chiang CK, Sanjabi M, Talwalkar AS. Federated multi-task learning. In:
Guyon I, Von Luxburg U, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett
R, editors. Advances in Neural Information Processing Systems. Curran Associates, Inc.
(2017). p. 30.

25. Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges,
methods, and future directions. IEEE Signal Process Mag. (2020) 37:50–60.
doi: 10.1109/MSP.2020.2975749

26. Perez L, Wang J. The effectiveness of data augmentation in image
classification using deep learning. arXiv preprint arXiv:171204621. (2017).
doi: 10.48550/arXiv.1712.04621

27. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and
applications. ACM Trans Intell Syst Technol. (2019) 10:1–19. doi: 10.1145/3298981

Frontiers inMedicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2023.1259017
https://doi.org/10.1016/S2214-109X(13)70145-1
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1001/jamaophthalmol.2017.3782
https://doi.org/10.1109/ICCP.2018.8516635
https://doi.org/10.1167/iovs.18-25325
https://doi.org/10.1016/j.oret.2016.12.009
https://doi.org/10.1038/s41591-020-0867-7
https://doi.org/10.1007/s00417-017-3850-3
https://doi.org/10.1001/jamaophthalmol.2018.1934
https://doi.org/10.1038/s41433-018-0064-9
https://doi.org/10.1097/01.APO.0000586388.81551.d0
https://doi.org/10.1007/s41666-020-00082-4
https://doi.org/10.1167/tvst.9.2.36
https://doi.org/10.1038/s41591-021-01506-3
https://doi.org/10.1016/j.oret.2022.02.015
https://doi.org/10.1038/s41746-021-00489-2
https://doi.org/10.1016/j.oret.2022.03.005
https://doi.org/10.1016/j.xops.2021.100069
https://doi.org/10.3390/diagnostics12112835
https://doi.org/10.1186/s40942-015-0005-8
https://doi.org/10.1136/bjophthalmol-2018-313173
https://doi.org/10.1109/MSP.2020.2975749
https://doi.org/10.48550/arXiv.1712.04621
https://doi.org/10.1145/3298981
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Gholami et al. 10.3389/fmed.2023.1259017

28. Wang K, Mathews R, Kiddon C, Eichner H, Beaufays F, Ramage D. Federated
evaluation of on-device personalization.CoRR abs/1910.10252. (2019). Available online
at: http://arxiv.org/abs/1910.10252

29. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, et al.
Identifying medical diagnoses and treatable diseases by image-based deep learning.
Cell. (2018) 172:1122–31. doi: 10.1016/j.cell.2018.02.010

30. Srinivasan PP, Kim LA, Mettu PS, Cousins SW, Comer GM, Izatt JA, et al.
Fully automated detection of diabetic macular edema and dry age-related macular
degeneration from optical coherence tomography images. Biomed Opt Exp. (2014)
5:3568–77. doi: 10.1364/BOE.5.003568

31. Li M, Huang K, Xu Q, Yang J, Zhang Y, Ji Z, et al. OCTA-500: a retinal
dataset for optical coherence tomography angiography study. (IEEE Dataport) (2019).
doi: 10.1109/TMI.2020.2992244

32. Perez L, Wang J. The effectiveness of data augmentation in image classification
using deep learning. CoRRabs/1712.04621. (2017). Available online at: http://arxiv.org/
abs/1712.04621

33. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep
learning. J Big Data. (2019) 6:1–48. doi: 10.1186/s40537-019-0197-0

34. Chen X, Niemeijer M, Zhang L, Lee K, Abramoff MD, Sonka M. Three-
dimensional segmentation of fluid-associated abnormalities in retinal OCT: probability
constrained graph-search-graph-cut. IEEE Trans Med Imaging. (2012) 31:1521–31.
doi: 10.1109/TMI.2012.2191302

35. Vickers NJ. Animal communication: when i’m calling you, will you answer too?
Curr Biol. (2017) 27:R713–15. doi: 10.1016/j.cub.2017.05.064

36. Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with
spectral domain optical coherence tomography in age-related macular degeneration.
Ophthalmology. (2008) 115:1883–90. doi: 10.1016/j.ophtha.2008.04.041

37. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated
optimization in heterogeneous networks. arXiv preprint arXiv: 1812.06127. (2020).
doi: 10.48550/arXiv.1812.06127

38. Nguyen AT, Torr P, Lim SN. FedSR: a simple and effective domain generalization
method for federated learning. Adv Neural Inform Process Syst. (2022) 35:38831–43.

39. Feng C-M, Yan Y, Wang S, Xu Y, Shao L, Fu H. Specificity-preserving federated
learning for MR image reconstruction. IEEE Trans Med Imaging. (2023) 42:2010–21.
doi: 10.1109/TMI.2022.3202106

40. Deng Y, Kamani MM, Mahdavi M. Adaptive personalized federated learning.
arXiv abs/2003.13461. (2020).

41. Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y, et al. Flower:
a friendly federated learning research framework. arXiv preprint arXiv:200714390.
(2020). doi: 10.48550/arXiv.2007.14390

42. Mendieta M, Yang T, Wang P, Lee M, Ding Z, Chen C. Local learning
matters: rethinking data heterogeneity in federated learning. In: 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). (2022). p. 8387–396.
doi: 10.1109/CVPR52688.2022.00821

43. Oliveira GC, Rosa GH, Pedronette DCG, Papa JP, Kumar H, Passos
LA, et al. Which generative adversarial network yields high-quality synthetic
medical images: investigation using AMD image datasets. arXiv:2203.13856. (2022)
doi: 10.48550/arXiv.2203.13856

44. Vijayaraghavan S, HaddadD, Huang S, Choi S. A deep learning technique using a
sequence of follow up X-rays for disease classification. arXiv preprint arXiv:2203.15060.
(2022). doi: 10.48550/arXiv.2203.15060

45. Ebrahimi M, Abadi H. Study of residual networks for image recognition, 754–63
(2022). doi: 10.1007/978-3-030-80126-7_53

46. Regmi S, Subedi A, Bagci U, Jha D. Vision transformer for efficient chest X-
ray and gastrointestinal image classification. arXiv preprint arXiv:2304.11529. (2023).
doi: 10.48550/arXiv.2304.11529

47. Gheflati B, Rivaz H. Vision transformer for classification of breast
ultrasound images. arXiv:2110.14731. (2022). doi: 10.1109/EMBC48229.2022.98
71809

48. Matsoukas C, Haslum JF, Söderberg M, Smith K. Pretrained ViTs yield
versatile representations for medical images. arXiv preprint arXiv:2303.07034. (2023).
doi: 10.48550/arXiv.2303.07034

49. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner
T, et al. An image is worth 16x16 words: transformers for image recognition
at scale. arXiv preprint arXiv:201011929. (2020). doi: 10.48550/arXiv.2010.
11929

50. Jiang M, Wang Z, Dou Q. HarmoFL: Harmonizing local and global drifts
in federated learning on heterogeneous medical images. In: Proceedings of the
AAAI Conference on Artificial Intelligence. (2022). p. 108795. doi: 10.1609/aaai.v36i1.
19993

Frontiers inMedicine 12 frontiersin.org

https://doi.org/10.3389/fmed.2023.1259017
http://arxiv.org/abs/1910.10252
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1364/BOE.5.003568
https://doi.org/10.1109/TMI.2020.2992244
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1712.04621
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/TMI.2012.2191302
https://doi.org/10.1016/j.cub.2017.05.064
https://doi.org/10.1016/j.ophtha.2008.04.041
https://doi.org/10.48550/arXiv.1812.06127
https://doi.org/10.1109/TMI.2022.3202106
https://doi.org/10.48550/arXiv.2007.14390
https://doi.org/10.1109/CVPR52688.2022.00821
https://doi.org/10.48550/arXiv.2203.13856
https://doi.org/10.48550/arXiv.2203.15060
https://doi.org/10.1007/978-3-030-80126-7_53
https://doi.org/10.48550/arXiv.2304.11529
https://doi.org/10.1109/EMBC48229.2022.9871809
https://doi.org/10.48550/arXiv.2303.07034
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1609/aaai.v36i1.19993
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	Federated learning for diagnosis of age-related macular degeneration
	1. Introduction
	2. Methods
	2.1. Data
	2.2. Centralized and local models
	2.3. FL framework
	2.3.1. FedProx
	2.3.2. FedSR
	2.3.3. FedMRI
	2.3.4. APFL


	3. Results
	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


