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Purpose: The current study designed a unique type of corneal topography

evaluation method based on deep learning and traditional image processing

algorithms. The type of corneal topography of patients was evaluated through the

segmentation of important medical zones and the calculation of relevant medical

indicators of orthokeratology (OK) lenses.

Methods: The clinical data of 1,302myopic subjects was collected retrospectively.

A series of neural network-based U-Net was used to segment the pupil and

the treatment zone in the corneal topography, and the decentration, e�ective

defocusing contact range, and other indicators were calculated according to

the image processing algorithm. The type of corneal topography was evaluated

according to the evaluation criteria given by the optometrist. Finally, the method

described in this article was used to evaluate the type of corneal topography and

compare it with the type classified by the optometrist.

Results: When the important medical zones in the corneal topography were

segmented, the precision and recall of the treatment zone reached 0.9587 and

0.9459, respectively, and the precision and recall of the pupil reached 0.9771 and

0.9712. Finally, the method described in this article was used to evaluate the type

of corneal topography. When the reviewed findings based on deep learning and

image processing algorithms were compared to the type of corneal topography

marked by the professional optometrist, they demonstrated high accuracy with

more than 98%.

Conclusion: The current study provided an e�ective and accurate deep learning

algorithm to evaluate the type of corneal topography. The deep learning algorithm

played an auxiliary role in the OK lens fitting, which could help optometrists select

the parameters of OK lenses e�ectively.

KEYWORDS

deep learning, image processing, corneal topography, orthokeratology lens, treatment

zone

1 Introduction

In recent decades, the prevalence of myopia has increased dramatically worldwide, with

a trend toward affecting younger ages (1, 2). It has been documented that the prevalence

of myopia in children and adolescents in China will be 84% in 2050 (3). Myopia has been

suggested to be a great burden on society in both the economic and public health systems (4).
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Many optical interventions have been studied to retard myopia

progression, such as multifocal contact lenses (5), multifocal

spectacle lenses, and orthokeratology (OK) lenses (6–8). OK lenses

have shown one of the greatest myopia control effects among these

optical methods, with the slowing axial elongation ranging from

32% to 63% (9).

Corneal topography is an indispensable measurement in pre-

treatment screening (10) and evaluating lens performance (11–14).

The color of the topography interprets the morphological patterns

(15), with different colors reflecting the variety of corneal diopter

power. In the previous studies, usually, the basic information of

corneal topography, such as flat K, steep K, and E value, were

studied (16, 17), while few of them investigated the decentration,

treatment zone, and pupil (18). For example, it has been reported

that decentration is negatively correlated with axial elongation in

myopic children (19, 20). Currently, two methods are used in

corneal topography classification in clinics. One is based on the

modeled force acting on corneal shape changes, such as bull’s-eye,

smiley-face, central islands, and corneal astigmatism. The other

way is based on the decentration distance, which is classified as

mild decentration (<0.5mm), medium decentration (0.5–1mm),

and severe decentration (>1.0mm) (21). However, the methods

mentioned above were proposed according to the changes in

corneal shape. They were not connected with the defocus power

of the OK lens, which may not predict the myopia control effects.

Therefore, we proposed a new classification for corneal topography

according to the effective defocusing contact range.

Deep learning plays a powerful role in the analysis of corneal

topography, (22, 23) and it can learn various semantic information

in images by building deep neural networks (24). Deep learning

has been used to classify corneal topography between keratoconus

and normal corneas because of the significant difference in corneal

shape between them, and neural networks could easily extract

image features (22, 25). However, it is difficult to accurately

distinguish the corneal topographical characteristics among normal

corneas using deep neural networks due to the insignificant

difference in corneal shapes among them. In the past, semantic

segmentation was used to identify the content and location of

objects in the image (26, 27). In the current study, we aimed to

use semantic segmentation to identify the important medical zones

in corneal topography. In this study, semantic segmentation of the

pupil and treatment zone is performed based on deep learning

(28). We then calculate the medical indicators of decentration and

effective defocusing contact range and finally evaluate the type

of corneal terrain according to the evaluation criteria given by

the optometrists.

2 Materials and methods

2.1 Data collection method

This study was approved by the Ethics Committee of the

Tianjin Eye Hospital Optometric Center (ID 2023003) and adhered

to the tenets of the Declaration of Helsinki. All participants

provided informed consent. A Tomey corneal topographer

(Takaratomy, Japan) was used to measure the corneal topography

(29). The data of 1,302 myopic children and adolescents, aged 6–

18 years, in the Tianjin Eye Hospital Optometry Center from 2013

to 2021 were collected retrospectively (2,604 eyes in total). Among

them, data from 500 eyes that completed corneal topography were

used for statistical and artificial intelligence analysis. The corneal

topographic data were collected at baseline and after 1 month of

OK lens wear. The specific operations were as follows. The collected

images were exported in the form of tangent images through the

automated scripts and corneal topography software (TMS-4A SW).

Patients with previous experience with OK lens wear, poor fitting

performance, and corneal diseases were excluded (30).

2.2 Materials

The corneal topography was measured after 1 month of lens

wear, which reflected the corneal characteristics (Figure 1). We

determined the different zones of corneal topography and pupil as

follows for analyzing the OK lens performance.

Treatment zone: the zone of the corneal surface that provides

functional vision. It is the zone with the smallest central corneal

aberration and the best visual quality.

Pupil: the hole in the middle of the iris, which refers to the circle

of black pixels in the middle of the corneal topography.

Decentration: the distance between the pupil and the center of

the treatment zone.

Effective defocusing contact range: the intersection of the

defocusing zone boundary and the pupil boundary is the effective

contact value, and the proportion of the effective contact value in

the pupil boundary is the effective defocusing contact range.

2.3 Research framework

In the current study, a unique type of corneal topography

evaluation method based on deep learning and traditional image

processing algorithms (Figure 2) was proposed. The treatment

zone and pupil in corneal topography were segmented by the U-

Net series of neural networks (31, 32). Decentration and effective

defocusing contact range in the corneal topography was defined

by an experienced optometrist, and a variety of image processing

algorithms were used for calculation. Finally, the types of corneal

topography were evaluated by combining the evaluation criteria

provided by the optometrist with the results of various medical

indicators (decentration and effective defocusing contact range).

2.4 Important medical zones

2.4.1 Segmentation method
The location information of the pupil and the treatment

zone in the corneal topography were segmented by semantic

segmentation. The semantic segmentation was usually interpreted

as the classification of pixels in an image, so a U-Net series of

neural networks was proposed to solve the problem (semantic

segmentation of important medical zones). The jump connection

in U-Net helps the convergence of the deep network and prevents
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FIGURE 1

Corneal topography after 1 month of OK lens wear. Treatment zone, pupil, decentration, and e�ective defocusing contact range are marked in

the figure.

FIGURE 2

Research framework process.

the gradient from disappearing in the training process. The U-

Net network structure is shown in Figure 3, including 19 3∗3

convolution layers (blue rectangle), four maximum pooling layers

(green rectangle), 4 upper sampling layers (yellow rectangle), and

1 1∗1 convolution layer (purple rectangle). U-Net++ introduces

deep supervision and multi-scale skip connections to improve

network structure. It is worth noting that U-Net++ integrates

feature maps from specific decoder and encoder layers, achieving

a more robust semantic segmentation process through feature

superposition. On this basis, U-Net3+ incorporates full-scale skip

links, allowing for the fusion of feature maps across every decoder

and encoder layer. This comprehensive integration facilitates a
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more holistic understanding of the input data. Additionally, U-

Net3+ introduces a classification-guided module, which plays a

vital role in ensuring precise segmentation. Therefore, 809 corneal

topographies with good quality (the image acquisition is complete

and the corresponding patient has no eye disease) were selected,

and the specific zones of the pupil and treatment zone were

manually marked with labeling software under the guidance of

the optometrist (33) to facilitate semantic segmentation in the

subsequent use of the U-Net neural network. To ensure the

accuracy of the label, we asked two ophthalmic optical directors to

recheck the label results during the labeling of the original data.

In the design of the loss function, the cross-entropy loss

function was used (33). Suppose there are N pixels in total; the

true annotation is expressed as rn, and the predicted probability is

expressed as pn, so the cross entropy (CE) is described by Eq. 1:

CE = −
1

N

N
∑

n=1

rn log pn + (1− rn)log(1− pn) (1)

Precision, recall, f1 score, and Intersection over Union (IoU)

in the segmentation model were selected to evaluate segmentation

performance (Eq. 2–5):

Precision =
Truth Positive

Truth Positive+ False Positive
(2)

Recall =
Truth Positive

Truth Positive+ False Negative
(3)

F1 = 2
PrecisionRecall

Precision+ Recall
(4)

IOU =
Ground Truth ∩ Detection Box

Ground Truth ∪ Detection Box
(5)

2.4.2 Training strategy
The original images and their corresponding labels were input

into the neural network together. They randomly selected 80% as

the training set to train the semantic segmentation model and the

other 20% as the test set to test the performance of the model.

To achieve faster convergence in the training phase, the Adam

optimizer was used for gradient descent (34). In terms of setting

experimental parameters, the selection of learning rate and batch

size is a key factor in model performance and training stability.

The learning rate refers to the step size of each parameter update.

An excessive learning rate may lead to unstable training, and the

model cannot achieve minimum loss. A low learning rate can lead

to slow convergence speed and may fall into local minima. Batch

size refers to the size of the data batches used in each training

session. An excessive batch size may lead to underfitting of the

model, while an excessively low batch size may prolong training

time and may not perform as well as models with larger batch

sizes. In the experiment, our initial learning rate was selected

as 10−3, 10−4, and 10−5, while the batch size was selected as

16, 32, and 64. We trained using the grid search method and

ultimately set the initial learning rate to 10−4 and the batch size

to 32. At the same time, all input images were resized to 224

× 224 and trained for 100 epochs to obtain the optimal results.

Based on the loaded pre-trainingmodel, the semantic segmentation

task was realized through transfer learning. In the test stage, the

corneal topography was enhanced by rotation, clipping, and adding

noise, which is used as the input of the model, and the pupillary

and treatment zone segmentation effect images were obtained.

The whole program was implemented based on the Pytorch deep

learning framework.

2.5 Calculation method of the medical
indicators

Treatment zone, pupil, decentration, and effective defocusing

contact range were calculated based on the OpenCV library (35).

The decentration was calculated as the Euclidean distance

between the pupil and treatment zone after obtaining the position

information of the pupil and the treatment zone. The formula

is shown in Eq. 6, where x and y are the coordinates of the

corresponding center point zone, respectively.

Decentration =

√

(x12 − x22)
2
+ (y12 − y22)

2
(6)

Decentration represented the distance between the center point

of the pupil and the treatment zone. To obtain this indicator, the

following operations should be carried out: (1) The pupil and the

treatment zone were segmented using the above-trained U-Net3+

model. (2) The contour of the segmented zone was detected, and the

coordinates of the center point were located by its circumscribed

rectangle. (3) The distance between the pupil and the center point

of the treatment zone is calculated, and the unit is converted into

millimeters according to the ratio of 1:50 (1mm= 50 px).

The effective defocusing contact range reflects the situation,

in which the pupil encloses the treatment zone. Specifically,

the location of the defocusing zone was calculated at first. The

intersection of the pupil and the treatment zone was subtracted

from the pupil. Then, the image was binarized (the function of

binarization is to keep the foreground part of the segmented

image unique in pixel values) and the boundary range between the

defocused zone and the pupil boundary was calculated using the

four-neighborhood algorithm, which is the effective contact value.

The proportion of the effective contact value in the whole pupil

boundary was calculated using the formula shown in Eq. 7, where

EDCR is the effective defocusing contact range, ECV is the effective

contact value, and C is the length of the pupil boundary.

EDCR =
ECV

C
(7)

2.6 Evaluation criteria for corneal
topography type

After calculating the decentration and effective defocusing

contact range mentioned earlier, we incorporated them into the

evaluation criteria provided by the optometrist to evaluate the

corneal topography. The evaluation criteria are as follows:

Class I: 0mm ≤ decentration ≤ 1mm, effective defocusing

contact range > 3/4.

Class II: 0mm ≤ decentration ≤ 1mm, effective defocusing

contact range is 1/4–3/4.
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FIGURE 3

U-Net network structure.

Class III: decentration > 1 mm.

Class IV: decentration ≤ 0.5mm, effective defocusing contact

range < 1/4.

There is no absolute difference between “good” and “bad”

topography. For example, for most younger myopic children,

optometrists prefer the corneal topography to be class I after fitting

the OK lens. The small decentration of this type of topography

could control axial elongation and correct refractive errors. While

for older adolescents, the myopia progression reaches a stable state,

the class IV of corneal topography is more appropriate. Therefore,

the corneal topography type evaluation method described in this

article can effectively analyze the corneal topography of various

patients to facilitate optometrists’ development of personalized

laboratory fitting programs for patients.

3 Data analysis

Data analysis was performed using third-party libraries

Matplotlib 2.2.3 and scikit-learn 0.6.1. For semantic segmentation

of important medical zones, the scikit-learn library was used

to calculate the precision, recall, F1-score, and IoU. Finally,

we compared the number and accuracy of various types of

corneal topographies with the labels given by the optometrist

and counted the relationship between them and the 1-year

axial elongation.

4 Results and analysis

4.1 Results of the treatment zone and pupil
segmentation

In the past, when optometrists identified the treatment zone

of the corneal topography, some errors might have occurred

due to human subjectivity or long-term work. Table 1 shows

the segmentation accuracy of the deep learning model through

a number of evaluation indicators. It could be seen that the

results of the model are very close to the human annotation

results, and the performance of U-Net, U-Net++, and U-

Net3+ is fairly comparable. However, U-Net exhibits a lower

model complexity, implying that we could expedite the training

and prediction processes. Furthermore, U-Net++ and U-Net3+,

owing to their increased model complexity, were more prone

to overfitting. In addition, considering model deployment, the

lightweight and simplicity of U-Net make it more amenable to

practical applications. Our research has already been applied at the

Tianjin Eye Hospital Optometry Center, so selecting U-Net has

facilitated the simplification of the deployment and maintenance

processes. In summary, the U-Net model, due to its shorter training

times, reduced susceptibility to overfitting, and ease of deployment,

emerged as our preferred choice. Both spatial attention and

channel attention were also attempted in our study in an effort

to optimize the performance of the model. However, there was

no observed improvement in the segmentation results. The U-Net

model trained by CE loss was chosen (36) and evaluated from the

aspects of precision, recall, F1-score, and IoU. To obtain optimal

segmentation results, U-Net++ and U-Net3+ were used to carry

out experiments. The results showed that U-Net3+ has the best

segmentation performance. We thought it was mainly because U-

Net3+ usesmultiple short connections instead of long connections,

which maximizes the semantic information of the original image.

In addition, the deep learning model only took 0.06 s to segment

the pupil and the treatment zone in the corneal topography. In

conclusion, the deep learning model had faster processing speed

and higher accuracy in the semantic segmentation of important

medical zones.

To further demonstrate the stability of the model, a K-fold

cross-validationmethod was used to divide the dataset into 10 parts

to train the model (k = 10). The method of dividing the dataset

into 10 parts to train the model is to randomly divide the dataset

into nine parts for each experiment as the training set and the other
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TABLE 1 Segmentation results of the U-net, U-Net++, and U-Net3+ models.

Network structure Medical zone Precision Recall F1-score IoU

U-Net Pupil 0.9688 0.9723 0.9689 0.9412

Treatment zone 0.9499 0.9308 0.9396 0.8802

U-Net++ Pupil 0.9687 0.9728 0.9699 0.9429

Treatment zone 0.9512 0.9401 0.9423 0.8826

U-Net3+ Pupil 0.9771 0.9744 0.9712 0.9481

Treatment zone 0.9587 0.9378 0.9459 0.8901

part as the validation set. The validation set for each experiment

is different, and the entire experiment is repeated 10 times to

ensure the robust of the model. As shown in Table 2, the results

of the 10 experiments showed slight differences due to different

datasets, but the overall performance was good. The F1-scores

of the pupil and treatment zone were the highest at 0.9707 and

0.9409, respectively.

4.2 Calculation results of the medical
indicators

4.2.1 Decentration calculation results
The results are shown in Supplementary Figure S1f, where dark

gray is the contour of the treatment zone, light gray is the contour

of the pupil, and the black straight line is the decentration. At

the same time, special circumstances need to be considered (the

results are shown in Supplementary Figure S2). There may be

noise after the deep learning segmentation model segments the

medical zone. It was necessary to calculate the maximum value

of the zone under each contour in the segmentation image as

the desired medical zone and understand other zones as noise

for removal.

4.2.2 Calculation results of e�ective defocusing
contact range

The effective defocusing contact range indicated how much

the treatment zone is inside the pupil. The results of each step

were as follows. (1) The original figure (Supplementary Figure S3a)

was transferred into the trained U-Net3+ model to segment

the pupil (Supplementary Figure S3b) and the treatment zone

(Supplementary Figure S3c). (2) The pupil was used to intersect

with the treatment zone (Supplementary Figure S3d). (3) The

defocused zone was obtained by subtracting this intersection

from the pupil (Supplementary Figure S3e). (4) The pupil and

the defocusing zone were binarized (Supplementary Figure S3g).

(5) The four-neighborhood algorithm was used to detect

the boundary points of the pupil and the defocusing

zone. The proportion of their coincident boundary points

(purple line) to the total circumference of the pupil was

calculated, which was the effective defocusing contact range

(Supplementary Figure S3h).

4.3 Research on the results of corneal
topography type assessment and axial
elongation

Following the calculation of the decentration and effective

defocusing contact range, the corneal topography was evaluated

according to the recommendation suggested by the Tianjin Eye

Hospital Optometry Center. The relationship between corneal

topography and axial elongation was analyzed to verify the

suitability of different corneal topographies for patients of different

ages. As the rate of axial elongation in older adolescents is slower,

optometrists need to mainly consider visual quality when fitting

OK lenses. The treatment zone of the class IV corneal topography

in Table 3 was relatively large, and the decentration was relatively

small, resulting in better visual quality in patients. As for younger

children, they were in a period of rapid myopia development, and

more attention should be paid to controlling the growth rate of the

axial length during the fitting of the OK lens. However, excessive

decentration might impact the effects of the corneal reshaping of

the OK lens. In general, class I or class II of corneal topography

might be more suitable for younger children.

4.4 E�ciency of machine learning

This experiment was developed under the Linux system, and

the video card was Nvidia 2080Ti. The statistical analysis of 10

program runs showed that the average running time of the method

described in this article is 2.2 s [Intel Core (TM) i7-9700K CPU

@ 3.6 GHz]. It saved manpower and time compared with the

optometrist, who spends more than half a minute to analyze

the results.

5 Discussion

5.1 The need for models

Usually, traditional curvature information from corneal

topography is used to determine the parameters of OK lenses (37).

After a series of fluorescence evaluations and several trials of lenses,

we can obtain lenses that are suitable for patients. This process

depends on the experience of the optometrist and is very time-

consuming. It was worth noting that the risk of corneal damage and

cross-infection may be increased during the fitting process of an
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TABLE 2 K-fold cross-validation (K = 10).

Precision Recall F1-score IoU

Pupil Treatment
zone

Pupil Treatment
zone

Pupil Treatment
zone

Pupil Treatment
zone

1 0.9694 0.9487 0.9694 0.9308 0.9687 0.9396 0.9409 0.8808

2 0.9699 0.9505 0.9699 0.9312 0.9677 0.9409 0.9401 0.8812

3 0.9678 0.9501 0.9716 0.9277 0.9697 0.9389 0.9397 0.8804

4 0.9681 0.9497 0.9669 0.9287 0.9675 0.9392 0.9412 0.8809

5 0.9687 0.9485 0.9727 0.9274 0.9707 0.9379 0.9417 0.8797

6 0.9701 0.9479 0.9661 0.9273 0.9681 0.9376 0.9411 0.8795

7 0.9669 0.9497 0.9651 0.9301 0.9660 0.9399 0.9414 0.8819

8 0.9677 0.9499 0.9725 0.9305 0.9701 0.9402 0.9415 0.8821

9 0.9692 0.9489 0.9630 0.9275 0.9661 0.9381 0.9406 0.8801

10 0.9685 0.9490 0.9719 0.9310 0.9702 0.9400 0.9415 0.8821

OK lens (38, 39). Therefore, clinicians hope to reduce the number

of trial lenses as much as possible.

In this study, an effective method for corneal topography type

evaluation was proposed, which can accurately calculate various

medical indicators. Optometrists could set the best values for

important medical indicators for different patients. At this time,

the system would classify the corneal topography type, calculate

the decentration, select effective defocusing contact range, etc.

The optometrists then could quickly select the optimal OK lens

for the patients and reduce the number of tests required, which

plays an important role in preventing and controlling the risk

of cross-infection.

5.2 The advantage of the model

A deep learning model could more easily solve problems that

are difficult to describe with objective criteria, especially for the

segmentation of treatment zones. The treatment zone is originally

referred to as the zone in the corneal topography where the

diopter of the anterior surface of the cornea changes <0.50 D

compared with that at the apex of the cornea (40). However, due

to the uncertainty of the corneal state during the fitting of the

OK lens, the treatment zone of some patients was not a relatively

complete closed zone, but the optometrist hoped to get a complete

zone for further analysis. Therefore, it is difficult to identify the

treatment zone of all people with a fixed diopter value. At this time,

the semantic segmentation model based on deep learning could

better solve this problem. After extracting features from many

corneal topographies, the model could understand which part of

the treatment zone corresponds to it and segment it.

Previous studies only identified the treatment zone (41). As

far as we know, there was no objective evaluation method to

classify the corneal topography type according to the decentration

and effective defocusing contact range. These indicators were

usually calculated through professional medical guidance. The

current method proposed by us could help optometrists carry out

customized fittings according to the different ages of patients so that

TABLE 3 Statistics of corneal topography and axial elongation.

Class 1 Class 2 Class 3 Class 4

Number of

samples

933 1,167 375 129

Accuracy 99% 98% 99% 99%

1-year axial

elongation

0.2 0.13 0.12 0.28

Standard

deviation of

axial length

0.21 0.17 0.07 0.11

they could finally present the most favorable corneal topography

type for them. The OK lens could be replaced immediately to

avoid a decrease in visual quality if the type of corneal topography

was mismatched with age or the value of medical indicators was

abnormal during each review. It eliminated the risks that human

subjectivity may bring to patients and enhanced the reliability

of diagnosis.

In addition, it takes 1–2min for the optometrist to evaluate

the corneal topography results in the usual way and input them

into the computer, and there is a chance of interference due

to external factors in the process. However, the error caused by

subjectivity can be avoided based on the method described in this

article, and the data calculation and acquisition efficiency could be

effectively improved.

5.3 Model performance

It could be seen that the results of the model are very close

to the human annotation results, and the performance of U-

Net, U-Net++, and U-Net3+ is fairly comparable. However, U-

Net exhibits a lower model complexity, implying that we could

expedite the training and prediction processes. Furthermore, U-

Net++ and U-Net3+, owing to their increased model complexity,

were more prone to overfitting. In addition, considering model
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deployment, the lightweight and simplicity of U-Net make it more

amenable to practical applications. Our research has already been

applied at the Tianjin Eye Hospital Optometry Center, so selecting

U-Net has facilitated the simplification of the deployment and

maintenance processes. In summary, the U-Net model, due to its

shorter training times, reduced susceptibility to overfitting, and

ease of deployment, emerged as our preferred choice. In our study,

spatial attention and channel attention were also attempted in an

effort to optimize the performance of the model. However, there

was no observed improvement in the segmentation results. The

U-Net model trained by CE loss was chosen, and the model was

evaluated from the aspects of precision, recall, F1-score, and IoU.

In addition, the deep learning model only took 0.06 s to segment

the pupil and the treatment zone in the corneal topography. In

conclusion, the deep learning model had faster processing speed

and higher accuracy in the semantic segmentation of important

medical zones.

5.4 Limitations

A larger sample size could optimize the deep learning

model to avoid overfitting. This method can effectively improve

the segmentation accuracy of the pupil and treatment zone,

calculate medical evaluation indicators more accurately, and

analyze and evaluate the type of corneal topography more

reasonably, which can effectively improve the efficiency of lens

fitting. In addition, this study is based on the images collected

by Tomey corneal topography. Images generated by other brands

of corneal topographers can also use the method described in

this article to grade the treatment effect of corneal topographers.

However, it is necessary to retrain the segmentation model of

the treatment zone and pupil and fine-tune the subsequent image

processing algorithm.

6 Conclusion

This study proposed a novel method to evaluate corneal

topography based on deep learning. This process formulated

corresponding medical indicators and accurately calculated them

according to the analysis of images. At the same time, it reduced

the pressure of time and manpower on optometrists and assisted

optometrists in follow-up treatment. This method provided a

new idea for the analysis of corneal topography, and the corneal

topography of other brands could be analyzed through simple

changes, thus guiding the intelligent fitting of OK lenses.
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