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Non-invasive prenatal testing (NIPT) is a pioneering technique that has

consistently advanced the field of prenatal testing to detect genetic abnormalities

and conditions with the aim of decreasing the incidence and prevalence

of inherited conditions. NIPT remains a method of choice for common

autosomal aneuploidies, mostly trisomy 21, and several monogenic disorders.

The advancements in gene sequencing techniques have expanded the panel

of conditions where NIPT could be o�ered. However, basic research on the

impact of several genetic conditions lags behind the methods of detection of

these sequence aberrations, and the impact of the expansion of NIPT should

be carefully considered based on its utility. With interest from commercial

diagnostics and a lack of regulatory oversight, there remains a need for careful

validation of the predictive values of di�erent tests o�ered. NIPT comes with

many challenges, including ethical and economic issues. The scientific evidence,

technical feasibility, and clinical benefit of NIPT need to be carefully investigated

before new tests and developments are translated into clinical practice. Moreover,

the implementation of panel expansion of NIPT should accompany expert genetic

counseling pre- and post-testing.
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1. Introduction

Non-invasive prenatal testing (NIPT) has revolutionized prenatal diagnostics with the

aim of decreasing the incidence rates and prevalence levels of conditions that are inherited

at birth. The term was first coined by Dr. Dennis Lo, who was the first to demonstrate

the presence of cell-free fetal DNA (cffDNA) in maternal plasma and serum (1). Currently,

NIPT remains a leading screening method for common viable autosomal aneuploidies, most

of which are trisomy 21. In recent years, emerging technologies using genomic methods

centered on next-generation sequencing have resulted in the expansion of prenatal analyses

to the level that sub-chromosomal aneuploidies can also be detected, with NGS expansion

enabling the detection of many single gene disorders. As the technology is still in its

nascent phase, investigations on the validation and usefulness of varying methodologies

used in already established NIPT tests are required to maximize its full potential.
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NIPT has several advantages without the risks associated

with invasive testing methodologies. These advancements

have transformed the field of prenatal testing, and

therefore, scientific societies across the globe have published

recommendations on the ethical and justified application of

the screening of cffDNA during pregnancy. In this review,

we address the advancements in the field of NIPT and

also touch upon the ethical questions and concerns that

are an integral part of the discussion of advancements in

technology (1).

2. Methodologies used in NIPT

This section discusses the state-of-the-art methodologies

used for the determination of various abnormalities via

NIPT. Table 1 summarizes the methods used in the analysis

and detection of different gene/chromosomal abnormalities

using NIPT.

2.1. Massively parallel shotgun sequencing
and chromosome selective sequencing

The techniques used to analyze complete genomic sequences

are also applicable to the analysis of chromosomal abnormalities,

copy-number variants (CNVs), and microdeletions used for

NIPT (21). Most clinical trials have performed massively parallel

shotgun sequencing (MPSS) and chromosome selective sequencing

(CSS) (2). MPSS relies on the analysis of the complete genome

and sequences of fetal and maternal cfDNA fragments, where

fragments are quantified after being assigned to a chromosome.

Therefore, a trisomic fetus will have a higher number of

cfDNA fragments than the cfDNA expected in a euploid

fetus (2).

Costs for MPSS are limited by restricting the sequencing to

regions known to be involved in genetic abnormalities. These

include regions on chromosomes 21, 18, 13, X, and Y. However,

an analysis of 12 studies on MPSS and 6 on CSS by Yuval Yaron has

shown that CSS has higher average failure rates of 3.56% vs. MPSS

(22) with average failure rates of 1.58% (23).

SNP analysis differentiates between single nucleotide bases.

SNP analysis through multiplex PCR can differentiate maternal

DNA fragments from fetal fragments, which can be used to quantify

the fetal fraction in CSS. SNP analysis has similar performance to

MPSS and CSS but has a higher failure rate (24).

Abbreviations: NIPT, Non-invasive prenatal testing; NIPS, Non-invasive

prenatal sampling; NGS, Next-generation sequencing; c�DNA, Cell-

free fetal DNA; CNVs, Copy-number variants; MPSS, Massively parallel

shotgun sequencing; CSS, Chromosome selective sequencing; UMI, Unique

molecular indexes; SNV, Single nucleotide variant; ACMG, American College

of Medical Genetics; AMP, Association for Molecular Pathology; CAP,

College of American Pathologists; CVS, Chorionic villus sampling; RAT, Rare

autosomal trisomies.

2.2. Microarray and digital PCR-based
quantification

DNA microarray technology uses thousands of short nucleic

acid sequences bound to a surface, which are used to quantify

target nucleic acid sequences in a mixture via hybridization and

subsequent detection of the hybridization events. As an alternative

approach to CSS, microarray quantification has been proposed

as a cost-effective and faster method that eliminates the risk of

contamination, which is often observed in PCR. Additionally, it

decreases the assay variability.

The digital PCR methodology is based on a single-molecule

counting strategy to detect cfDNA. As digital PCR uses a single

sample set, this procedure is not useful for large-scale analysis.

Digital PCR has also been validated on T21 and is considered

rapid and cost-effective in comparison to NGS. However, digital

PCR requires adequate levels of cffDNA and would be useful after

sufficient enrichment of the cffDNA (25). One of the limitations of

digital PCR is that it cannot be used to detect low-grade mosaicism

or other structural abnormalities in the chromosomes.

Recent data demonstrate the feasibility of digital PCR in

analyzing DNA duplications and micro-deletions at resolutions

comparable to microarray analysis (26). With respect to

microdeletions, data are available for syndromes such as DiGeorge

syndrome, Prader-Willi/Angelman, Cri-du-chat, and del1p36,

excluding microdeletions shorter than 3Mb (27). However, routine

testing with digital PCR is not possible as deep sequencing analysis

is highly cost-intensive.

2.3. Next-generation sequencing NIPT
methodology

Next-generation sequencing (NGS) is a massively parallel

sequencing technology that is used to determine the order of

nucleotides in entire or targeted regions of DNA. It offers ultra-

high throughput, scalability, and speed. Unique molecular indexes

(UMI) are used to label cell-free DNA after plasma cfDNA is

extracted from maternal blood. This process is performed prior to

PCR amplification and sequencing to aid in identifying true DNA

changes from artifacts introduced during the amplification process.

Following library construction, target gene enrichment, and NGS,

the data are then analyzed using the distribution of UMIs to predict

the variants representative of the cf DNAmaterial used for analysis.

The analytical sensitivity for a single nucleotide variant (SNV) is

>99%, with test specificity at >99%. Small indels may be detected

at a lower sensitivity.

With the developments in NGS, clinical laboratories now

provide a plethora of genetic testing for genetic disorders.

These include genotyping, single gene analysis, analysis of

gene panels, exomes, whole genomes, transcriptome analysis,

and analysis of epigenetic changes. This has created novel

challenges in the interpretation of the enormous amounts of NGS-

generated sequencing data. In this context, the working group

of the American College of Medical Genetics (ACMG) along

with the Association for Molecular Pathology (AMP) and the

College of American Pathologists (CAP) revisited and revised
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TABLE 1 Methods used for the analysis of gene/chromosomal abnormalities using NIPT.

Inheritance Methodology used Gene/chromosome Disease/condition

Autosomal dominant/de novo

conditions

PCR-RED, dPCR,
aAmplicon NGS
aBespoke testing for individual family

aFGFR3
aFGFR2

Achondroplasia (2)

Thanatophoric dysplasia (3)

Apert syndrome (4)

PCR DMPK Myotonic dystrophy (5)

Semi-qPCR; PCR and automated

fragment analysis

HTT Huntington (6)

Autosomal recessive conditions aAmplicon NGS aCFTR Cystic fibrosis (7)

dPCR PKHD1 Autosomal recessive polycystic kidney disease (2)

Polymorphic markers fluorescence

PCR and fragment size analysis

CYP21A2 Congenital adrenal hyperplasia (8)

qPCR HBB β-thalassemia (9)

aAmplicon NGS HBB β-thalassemia (10)

Population-based haplotyping-NIPT HBB α and β-thalassemia (11)

ddPCR β-thalassemia mutations β+IVSI-110 and β039

(12)

RMD—dPCR HBB β-thalassemia (13)

dPCR HBB Sickle cell anemia (14)

ddPCR MUT Methylmalonic acidemia (15)

cSMART ATP7B Wilson disease (16)

aNGS-RHDO aCYP21A2 Congenital adrenal hyperplasia (16)

adPCR+ NGS-RHDO aHBB β-thalassemia (17)

aNGS-RHDO aCFTR Cystic fibrosis (18)

aNGS-RHDO aSMN1 and SMN2 Spinal muscular atrophy (18)

cSMART MMACHC cblC type MMA (19)

Trisomies 21, 18, and 13 Microarray with DANSR assays Chr 21, Chr 18, Chr13 Trisomy (20)

X-linked disorders aNGS-RHDO aDMD Duchene muscular dystrophy/Becker muscular

dystrophy (18)

dPCR F8, F9 Hemophilia (18)

aAdapted from Jenkins et al. (18) and updated.

the standards and guidelines for the interpretation of sequence

variants. The use of standard terms, which include “pathogenic,”

“likely pathogenic,” “uncertain significance,” “likely benign,” and

“benign,” is recommended by these guidelines. These terms are

used to describe variants identified in Mendelian disorders. The

recommendations also describe a procedure for evidence-based

classification of the variants into five categories (i.e., population

data, computational data, functional data, and segregation data). A

second sample of cfDNA is used to confirm pathogenic and likely

pathogenic variants using an amplicon-based NGS assay. This

method enriches the targeted region using gene-specific primers,

followed by deep sequencing methods (>10,000X) to confirm

cfDNA variants (28).

3. NIPT for chromosomal
abnormalities

The focus of early investigations on prenatal diagnosis

emphasized the potential role of amniotic fluid cytology in

the determination of fetal sex and karyotyping. Chorionic villi

sampling procedures have been performed since the 1980s to assess

fetal karyotypes, providing an alternative prenatal diagnosis option

for the first trimester and paving the way for large-scale utilization

of amniocentesis and chorionic villus sampling (CVS) for invasive

methods of genetic disorder diagnosis.

Limitations of invasive prenatal testing include the nature

of the procedure and the risk of a failed pregnancy. Current

literature suggests the invasive procedure-related risk to be <1%

(29) but there has been a shift to limit the tests for invasive

diagnostic testing, which has accelerated the identification of non-

invasive screening tests, especially for cases with a higher risk of

fetal aneuploidies. Traditionally, the choice of an invasive testing

method for prenatal testing was defined by the advanced maternal

age while considering family history and ultrasound findings.

However, the use of maternal age only as an index for screening

has a very low sensitivity of ∼30% and a very high false-positive

rate (FPR) of 15% (30). Moreover, advanced maternal age does

not represent an increased risk for sex chromosome aneuploidies

except for X chromosome non-disjunction errors or triploidy, even
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with an increased risk for trisomies 21, 13, and 18. Identification of

additional biochemical markers of fetal aneuploidies has resulted

in the development of two new methods of screening, namely, the

triple test, which combines maternal age and serum AFP levels, free

β-hCG, and uE3, with a detection rate of∼70%, and the quadruple

test, with the addition of inhibin A, with a detection rate of ∼75%

(30, 31).

The introduction of nuchal translucency (NT) and the

combined screening test (CST) in the 1990s revolutionized the field

of NIPT. It involves a first trimester CST for T21, T18, and T13

in combination with gestational age, NT, and the multiples of the

median of circulating free β-hCG and PAPP-A (32). Research data

from Santorum and colleagues (33) reviewed more than 108,000

CSTs and they reported a FPR of 4% and a DR of 90% for trisomy

21, 97% for trisomy T18, and 92% for trisomy 13.

In a nationwide implementation study in the Netherlands,

NIPT was conducted on 73,239 pregnant subjects (42% of all

pregnancies). Of these, 7,239 pregnant women (4%) chose first-

trimester combined testing. Trisomy 21 was detected in 239 women

(0.33%). For trisomy 18, 49 pregnancies were positive (0.07%) and

for trisomy 13, 55 women were positive (0.08%). Reported rates

in this study were comparable to earlier studies, but the positive

predictive value (PPV) was higher than expected, reported as 96%

for trisomy 21, 98% for trisomy 18, and 53% for trisomy 13 (34).

The demonstration of fetal cell presence in maternal circulation

and the presence of cell-free fetal DNA (cffDNA) in maternal

plasma and serum, which increases with maternal age, have led to

further advancements in the field of NIPT. Fetal heart rate, which

is used in some programs during first-trimester screening, has been

shown to improve the accuracy of the first-trimester combined test

in screening for trisomy 13, but not for trisomy 21 or 18 (33).

The introduction of prenatal screening for aneuploidy has

been one of the most successful applications of NIPT (35, 36).

Sequencing cffDNA in maternal plasma now enables screening

for T21 with a very low FPR. At present, there is a need for the

reassurance of healthy progeny from natural conception or from

techniques using in vitro fertilization (37, 38), which has accelerated

the development of NIPT (39).

3.1. Abnormalities of the sex chromosome

Varied rates of prevalence for abnormalities in sex

chromosomes have been reported. When considered individually,

the prevalence rates for SCAs are low, but when combined together,

SCAs may have a prevalence rate of ∼1% of live births (40). The

most prevalent aneuploidies in sex chromosomes include Turner

syndrome, Klinefelter syndrome (XXY), XYY syndrome, and

XXX. The prevalence rates are approximately 1 in 2,500, 1 in 500

to 1 in 1,000, 1 in 850 to 1 in 3,000, and 1 in 1,000, respectively

(41–46). These conditions do not present any symptoms in the

immediate period following delivery, except in the case of Turner

syndrome. Testing for monosomy X, which is available since 2012,

was followed by the introduction of other sex chromosome-linked

conditions, including XXX, XXY, and XYY (47). The combined

average detection rates (DR) for monosomy X are 89% (83–94%)

(47–49), 90% for diplo Y (49), 82% (67–100%) for Klinefelter

syndrome (47–49), and 87% (75–100%) for XXX syndromes.

In one of the largest studies on sex chromosome abnormalities

(SCAs), including a retrospective analysis of more than 67,000

chorionic villus sampling (CVS) karyotypes, the authors report

confined placental mosaicism in 23.4% of the cases without

ultrasound anomalies, with a PPV of 53% in these cases. Cases

with ultrasound anomalies reported a PPV of 98.9% (50). Different

research groups have reported varied SCA detection accuracy using

the NIPT assay. For example, Deng et al. (51) have reported the

PPV for NIPT as 18.39% for monosomy X, 44.4% for trisomy X,

39.29% for 47, XXY, and 75% for 47, XYY. In another study, Zheng

et al. (52) have reported a PPV of 44.4% for monosomy X, 58.3%

for trisomy X, 100% for 47, XXY, and 50% for 47, XYY. Similarly,

in a fetal cfDNA screening test on 9,985 pregnancies, Margotti et al.

(53) reported that the estimated PPV for monosomy X was 69.2%,

that for trisomy X was 100%, that for 47, XXY was 80%, and that

for 47, XYY was 100%. The overall PPV of NIPT in the present

study for fetal SCAs was 77.3%. In cases that are NIPT positive

for SCAs but have no ultrasound features, diagnostic testing by

amniocentesis is generally recommended (50).

Although the screening for SCAs is fairly accurate, it comes

with the ethical dilemma of sex selection. Therefore, while the

European Society of Human Genetics currently recommends

against the use of NIPT for SCAs, the recent practice guideline

from the American College of Medical Genetics (ACMG)

strongly recommends non-invasive prenatal screening (NIPS) over

traditional screening methods for all pregnant patients with single

and twin gestations for trisomies 21, 18, and 13. Additionally, it

strongly recommends that NIPS be offered to patients to screen for

fetal SCAs (54).

3.2. Detection of
microdeletions/duplications and rare
trisomies

Approximately 1.7% of the pregnancies have pathological

copy number variations (CNVs) with normal findings. The

array of conditions now included for NIPT testing of cell-

free DNA (cfDNA) covers DiGeorge, Cri du Chat, Prader

Willi/Angelman syndromes, 1p36 deletion, Jacobson syndrome,

andWolf Hirschhorn syndrome. DiGeorge syndrome is the second

most common cause of intellectual disability in children, after

Down syndrome. The PPV of cfDNA in cases with microdeletions

detected remains low, with a dataset from a large sample having

a 13% PPV for common microdeletion syndromes such as

DiGeorge syndrome, Prader-Willi/Angelman syndrome, Cri-du-

chat syndrome, and del1p36 syndrome. However, more recently

published data have highlighted the high sensitivity and specificity

of the detection of clinically significant CNVs using NIPT. For

classic MMSs, PPVs of 75–93% for DiGeorge syndrome (55),

68–80% for 22q11.22 microduplication (55), 50–75% for Prader-

Willi/Angelman syndrome (56), and 50% for Cri-du-chat (56) have

been reported.

Furthermore, there is no association with other known risk

factors, such as maternal age, for trisomies, preventing its clinical

application. These syndromes also have a high negative predictive
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value (NPV). Therefore, although the PPV is low, a negative

result could be considered reassuring. Recent clinical experience

of retrospective clinical outcomes of patients who received a

positive NIPT result tested the scope of NIPT use for the detection

of RAAs and large CNVs (>7Mb) in addition to common

aneuploidies. NIPT was successful in the detection of unbalanced

reciprocal translocations from carriers of two maternally balanced

reciprocal translocations. The detection was highly sensitive for a

specific minimal size of one translocated CNV of 15Mb and an

average sequencing depth of ∼11 million single-end reads of the

corresponding NIPT, both of which are critical parameters for CNV

sensitivity (57).

Rare autosomal trisomies (RAT) include placental mosaicism

or uniparental disomy, where the fetus inherits both sets of

chromosomes from a single parent. In a study published by Pertile

et al. (58), only 5 of the 60 cases were true RATs, and the

remaining cases were classified as confined placental mosaicism.

Except in the case of confined placental mosaicism for T16, which

has an established risk to the fetus, the data on the involvement

of other chromosomes in confined placental mosaicism remain

inconclusive (59).

A large nationwide implementation of NIPT in the Netherlands

determined the clinical impact of screening for chromosomal

aberrations other than common trisomies on fetal and/or maternal

health in 149,318 pregnancies (34). Additional findings other

than common aneuploidies were detected in 1 out of every

275 performed genome-wide NIPT and accounted for 35.5%

(402/1,132) of all abnormal NIPT results within the TRIDENT-2

cohort. The findings included 196 RATs, 188 structural aberrations,

and 18 complex profiles. Follow-up testing using genetic methods

indicated an assumed fetal origin in 22.1% of the cases. Assumed

placental origin was reported for 52.8% of the cases, and

an assumed maternal origin of chromosomal aberrations was

estimated for 25.1% of cases. A large variation in PPVs was

observed between RATs and SAs (7.7 vs. 44.1%), in line with a

previously published study (34). While the study reports a lower

PPV for the additional findings, especially for RATs, in comparison

to single-common trisomy, the PPV was still higher than the

PPV of first-trimester combined testing for trisomy 21, 18, or

13 (combined: 4.4%) (34). There are scarce data addressing the

clinical relevance of the additional findings from whole-genome

sequencing (WGS)-based NIPT, and it is rare to see the point of

view from the patient’s perspective. Clinical data remain scarce, and

large-scale clinical validation is still required before professional

societies recommend its clinical use. It is often difficult to assemble

a patient cohort closely resembling a clinical population, making

the validation process difficult and time-consuming. Furthermore,

conditions that are extremely rare in a population have less rational

basis to be included in NIPT screening as their prevalence rates

remain unknown.

3.3. Detection of triploidies through NIPT

Very thin placentas and very low cffDNA are generally seen

in triploidies, making them extremely difficult to be detected

through NIPT, even when features are seen in ultrasound scans,

along with the presence of abnormal biomarkers suggestive of

triploidy in up to 90% of cases (60). An extra haplotype is

sometimes encountered in single nucleotide polymorphism (SNP)-

based non-invasive prenatal testing (NIPT). This may be attributed

to either an undetected twin or triploidy. In an analysis of 515,804

women receiving SNP-based NIPT, 1,005 were positive for an extra

haplotype (1 in 513). Outcomes of pregnancy were available for 773

cases. Notably, 11% of cases had confirmed or suspected triploidy,

65% of those were attributed to a vanished twin, and 10% of the

available outcomes reported a loss of pregnancy. Ultrasound is

recommended to establish viability, evaluate for viable or vanished

twins, and detect findings consistent with triploidy in cases with an

extra haplotype (61).

3.4. Genome-wide NIPT for the detection
of monogenic diseases

The use of NIPT for the detection of monogenic diseases was

first reported in the year 2000 and has since been followed by many

studies establishing the proof of principle in the detection of several

single-gene diseases by analyzing cffDNA early in pregnancy (62).

There are a small number of commercially available non-invasive

prenatal tests that can detect monogenic diseases; however, the

tests are designed to either detect autosomal recessive conditions

or autosomal dominant and de novo conditions. The first

monogenic disease detected through NIPT was achondroplasia,

and later NIPT was introduced into clinical practice. Later, other

autosomal dominant monogenic diseases were also included. These

are Crouzon syndrome, thanatophoric dysplasia, osteogenesis

imperfecta, Apert syndrome, torsion dystonia, and several others

(63). Mohan et al. (64) published initial clinical experience with

NIPT-SGD, focusing on a set of 30 genes, to search for pathogenic

or likely pathogenic variants that were known to be involved

in 25 dominant conditions. The conditions included Noonan

spectrum disorders, skeletal disorders, craniosynostosis syndromes,

Cornelia de Lange syndrome, Alagille syndrome, tuberous sclerosis,

epileptic encephalopathy, SYNGAP1-related intellectual disability,

CHARGE syndrome, Sotos syndrome, and Rett syndrome. CffDNA

isolated frommaternal plasma was used for the analysis. In a cohort

enriched for pregnancies at increased risk for these disorders, 5.7%

(125/2,208) tested positive. In addition to identifying causal gene

variants in fetuses with abnormalities, the test detected previously

unidentified carrier parents. Analysis of cases with confirmatory

follow-up testing revealed no false-positive or false-negative results.

The study reports an observed test-positive rate of 0.4% (6/1,562)

for cases without ultrasound abnormalities or a family history.

The results suggest the benefits of using NIPT for pregnancies

with apparently normal ultrasound results. They went on to

suggest that NIPT-SGD could be offered in the first trimester

(in conjunction with NIPT to screen for aneuploidy) when fetal

anatomical abnormalities are typically not visible in the conditions

analyzed in their research. In this study, 99 cases had abnormal

sonographies. Of these, 30 cases (30.3%) were identified only after

the ultrasound abnormalities were detected in the third trimester,

which is beyond the recommended time window for invasive

testing via CVS or amniocentesis.
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Carrier screening with reflex single-gene non-invasive

prenatal screening has been developed to screen for a small

number of autosomal recessive conditions such as cystic fibrosis,

hemoglobinopathies, and spinal muscular atrophy via next-

generation sequencing. It is possible to identify a paternally

inherited fetal variant that is absent in the maternal genome, as

seen in CFTR screening for cystic fibrosis, or identify variants

in the fetus absent in the maternal genome by investigating

polymorphic regions using parental haplotypes as a reference (65).

The implementation of this testing is beneficial in cases where

pregnancy is unplanned, where gestational prenatal carrier testing

is late, where the partner is unavailable for testing, and/or to

expand the accessibility of testing for qualified, uninsured patients.

The detection of monogenic conditions is not without

problems, particularly in the case of maternally inherited alleles.

This is because the inherited allele is genetically identical to

the maternal allele, lowering its fetal detection. While NIPT for

paternally inherited monogenic conditions is already in clinical

practice, it is not yet applicable to maternally inherited conditions.

Further limitations of testing for the detection of monogenic

conditions include a relatively small cohort of positive cases

compared to most individuals who receive negative results, and

additional studies with larger cohorts are necessary to identify the

full clinical impact of NIPT for monogenic diseases.

Recently, non-invasive prenatal multi-gene sequencing was

developed and is commercially available to screen for monogenic

diseases. It was designed to detect de novo and paternally inherited

pathogenic and likely pathogenic variants in circulating cffDNA

present in maternal blood. The test can be performed as early

as 9 weeks for singleton pregnancies. The panel includes 30

genes that were selected based on single-gene etiology, high de

novo incidence-causing disease, and were either inherited in an

autosomal dominant or X-linked manner. Validation for this test

was completed in two phases and showed the ability to detect

benign and disease-causing DNA variants using spike-in samples

(DNA with known variants paired with known maternal and

paternal samples) and samples from pregnant women. Phase one

included a study design to determine the accuracy, sensitivity,

and specificity of the assay and was based on the detection of

fetal variants by comparison of the sequencing results of plasma

DNA and genomic DNA of parental samples (from both patient

and spike-in samples). Fetal fraction was validated using highly

polymorphic SNPs and SRY by examining two types of informative

loci to estimate fetal fraction from cell-free DNA.

Phase two assay validation removed the paternal sample, only

requiring the maternal sample to identify variants in the fetus

using plasma cell-free DNA and maternal DNA to inform the final

report. A statistical model was developed to evaluate the variants in

question using uniquemolecular indexes (UMIs) to label individual

DNA molecules in question to assess if changes are truly derived

from fetal DNA.

In the initial phase of validation, the fetal fraction was

calculated based on SNP information from maternal, paternal, and

egg donor samples, whereas phase two allowed for fetal fraction

calculation based on the maternal sample only without paternal

data or egg donor data using a regression algorithm. For variant

interpretation, NGS results from maternal cfDNA and maternal

genomic DNA were used for the interpretation of the variants

and calculation of the fetal fraction (66). Clinical performance

from both validation studies has been previously reported, as

both analytical sensitivity and specificity are >99% (66). While

results from monogenic NIPT are highly accurate, limitations

exist due to the limited data and validation studies performed.

Screening for monogenic diseases does not replace diagnostic

testing for pregnancies with abnormal clinical findings, nor can

the testing methodology detect exonic, gene, or chromosomal copy

number changes.

4. NIPT in the management of
multifetal pregnancies

There is an increased risk of a broad range of pregnancy

complications and adverse outcomes with multifetal pregnancies.

While only a minority of twin pregnancies may be monochorionic,

they are responsible for higher perinatal morbidity and mortality.

Chorionicity is a risk factor in pregnancies and is responsible

for poor outcomes in twin pregnancies. The risk of twin-to-

twin transfusion syndrome, twin anemia-polycythemia syndrome,

and twin reversed arterial perfusion is high in monochorionic

twins. Chorionicity can be established during routine first-trimester

ultrasound scans in patients who have access to early diagnostic

ultrasound (67).

Current research data validate that there is indirect evidence

to conclude that the use of cf-DNA testing has resulted in

improvements in fetal trisomy screening in cases of twin

pregnancies. Moreover, literature data also point to the direct

benefit of using cfDNA-based screening for common trisomies in

twin pregnancies. This is especially true for trisomy 21, where

cfDNA testing provides higher positive predictive values among

twin pregnancies compared with traditional serum and NT-based

screening for twin pregnancies (24, 68). In cases where chorionicity

assignment using ultrasound is uncertain or there is late detection

of twin pregnancies, NIPT can be used to evaluate zygosity.

Monozygotic pregnancies do not always imply monochorionicity,

but dizygotic twins are highly likely to be dichorionic. One of the

challenges in NIPT is the presence of two or more fetal genomes

in cf-DNA, each present in different concentrations. This may

result in higher rates of uninterpretable tests. In certain cases,

a vanished twin identified via cf-DNA testing may be helpful

in obstetric management and patient care. NIPT is expected to

play a pivotal role in the clinical management of women with

multiple pregnancies.

In multiple gestational pregnancies, cfDNA testing is offered as

complementary to first-trimester ultrasound screening. In addition

to determining chorionicity in twin pregnancies, first-trimester

ultrasound scans identify maternal pathology and abnormalities

in the developing fetus (e.g., increased NT and major structural

congenital abnormalities such as anencephaly), which may affect

the outcomes of multifetal gestations. As discussed, NIPT provides

high-quality screening for aneuploidy and information about

embryo zygosity. Taken together, ultrasound combined with NIPT

facilitates early diagnosis of serious adverse conditions and allows

clinicians to make informed decisions on the continuation or
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termination of pregnancy. Furthermore, the application of these

technologies in twin pregnancies illustrates the synergy between

imaging and laboratory diagnostic methods.

5. Limitations of NIPT using the
c�DNA test in clinical practice and
ethical concerns

The circulating cffDNA in maternal blood has its origins in the

placenta. Therefore, there is a limitation that the procedure may

generate false positives during NIPT, as the detected abnormalities

may be restricted to the placenta in cases of confined placental

mosaicism without any effect on the fetus. Additionally, in cases

where chromosomal abnormalities have a maternal origin, which

include those having their origin in a maternal tumor, a low fetal

DNA fraction may result in inconclusive, false-positive, or false-

negative results due to inefficient sequencing depth or low yields

of fetal DNA templates.

Current research indicates additional uses of NIPT in the

detection of other trisomies, abnormalities in sex-chromosomes,

and anomalies at a sub-chromosomal level associated with rare

diseases, as well as the unmet need to prioritize the development

of gene panels that allow for the comprehensive diagnosis of severe

childhood-onset disorders.

In comparison to other screening methodologies, the costs

associated with NIPT remain high and are more or less similar

to invasive tests with karyotyping. The second limitation includes

the rates of failed analyses, which pose a significant challenge in

case management as they often require confirmation via invasive

methods such as amniocentesis.

NIPT has experienced rapid diffusion, and it carries the

potential to disrupt traditional prenatal testing pathways. NIPT is

not a diagnostic test, and clinical practice guidelines recommend

that test results that are positive using NIPT must be confirmed

using invasive fetal testing methods such as amniocentesis.

However, the introduction of NIPT has been associated with a

decreased uptake of diagnostic testing. Furthermore, since NIPT

was introduced, the number of invasive diagnostic procedures

performed has shown a decline (69). Apart from the costs

associated with additional tests being included in NIPT, the

expansion raises ethical as well as policy-based questions on

whether NIPT should be expanded to include tests where rates

of prevalence in a population are unknown. It also raises the

question of clinical utility and concerns related to an informed

choice. Decades of research and medical literature on prenatal

testing emphasize the challenge for clinicians to provide unbiased

information to patients in a way that facilitates informed choice,

and the rapidly evolving nature of NIPT adds to this challenge.

To this end, the ACOG clearly states that physicians should be

aware of the potential of NIPT to generate false-positive and

false-negative results and that it is “not equivalent to diagnostic

testing”. As per ACOG, patients with a positive screening test

result for fetal aneuploidy should undergo genetic counseling and

a comprehensive ultrasound evaluation, with an opportunity for

diagnostic testing to confirm results. Additionally, clinicians have

described several limitations hindering the expansion of NIPT.

Most importantly, lack of knowledge about the latest advancements

in the field and their own comfort level with the use of NIPT have

been cited as important limitations. These have been attributed

to the lack of clinical evidence as well as a lack of education and

guidelines (69).

6. Conclusion

There is no doubt that NIPT has revolutionized the field

of prenatal testing due to its improved analytical performance

over other screening methods and its non-invasive nature

over traditional prenatal diagnostic techniques. The technical

advancements in detection methods for a condition may not

correspond to the clinical benefit to a population. Therefore,

the benefits and risks associated with screening programs must

be carefully considered before implementation. The guidelines

and criteria laid down by the World Health Organization on

the use of cfDNA screening should be taken into consideration

when implementing expanded test availability for cell-free DNA

analysis. Conditions such as microdeletions and duplications are

extremely rare in a population, and their prevalence has not

been defined. Furthermore, their consequences in the prenatal

period cannot be reliably predicted due to a lack of data and

scientific evidence.

The scope of NIPT should be responsibly expanded,

and informed choice must be taken as a precondition.

When NIPT includes an expanded set of tests for

chromosomal or sub-microscopic abnormalities, it must

be accompanied by an improvement in pre-test counseling

for ethical reasons. The expansion of the NIPT panel

of tests should be clinically justified. Finally, healthcare

resources invested in the reimbursement of NIPT should be

precisely distributed based on scientific evidence, benefit,

and utility.

7. What is already known about this
topic?

The detection of cell-free fetal DNA (cffDNA) in maternal

plasma was first reported in 1997. This discovery paved

the way for the development of a new field in prenatal

diagnosis. Based on the discovery, non-invasive prenatal

testing (NIPT) is now being used by millions of pregnant

women annually.

8. What does this study add?

This review highlights the important genetic conditions where

basic scientific discoveries can be translated and applied in the

clinic for improved diagnosis.

It also touches upon the ethical questions about the

implications of the expansion of this technology where the

disease conditions or its impact on the developing fetus are not

completely understood.
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