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Introduction: Since its outbreak in December 2019, SARS-CoV-2 has spread
rapidly across the world, posing significant threats and challenges to global
public health. SARS-CoV-2, together with SARS-CoV and MERS-CoV, is a highly
pathogenic coronavirus that contributes to fatal pneumonia. Understanding the
similarities and differences at the transcriptome level between SARS-CoV-2,
SARS-CoV, as well as MERS-CoV s critical for developing effective strategies
against these viruses.

Methods: In this article, we comparatively analyzed publicly available
transcriptome data of human cell lines infected with highly pathogenic SARS-
CoV-2, SARS-CoV, MERS-CoV, and lowly pathogenic HCoV-229E. The host gene
expression profiles during human coronavirus (HCoV) infections were generated,
and the pathways and biological functions involved in immune responses, antiviral
efficacy, and organ damage were intensively elucidated.

Results: Our results indicated that SARS-CoV-2 induced a stronger immune
response versus the other two highly pathogenic HCoVs. Specifically, SARS-CoV-
2 induced robust type | and type Il IFN responses, marked by higher upregulation
of type | and type Il IFNs, as well as numerous interferon-stimulated genes
(ISGs). Further Ingenuity Pathway Analysis (IPA) revealed the important role of ISGs
for impeding SARS-CoV-2 infection, and the interferon/ISGs could be potential
targets for therapeutic interventions. Moreover, our results uncovered that SARS-
CoV-2 infection was linked to an enhanced risk of multi-organ toxicity in contrast
to the other two highly pathogenic HCoVs.

Discussion: These findings provided valuable insights into the pathogenic
mechanism of SARS-CoV-2, which showed a similar pathological feature but a
lower fatality rate compared to SARS-CoV and MERS-CoV.
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1 Introduction

Over the past 20 years, highly pathogenic human coronaviruses
(HCoVs), consisting of SARS-CoV-2, SARS-CoV, and MERS-
CoV, have caused three life-threatening epidemics (1). SARS-
CoV emerged in 2002-2003 and rapidly spread throughout Asia,
infecting approximately 8,000 people and causing 774 deaths, with
a mortality of about 9.6% (2). MERS-CoV, which was discovered in
the Middle East in 2012, infected 2,519 people, of whom 866 died,
representing a mortality of about 34% (3). SARS-CoV-2, which
emerged in December 2019, has resulted in a global pandemic
with immense damage to human health and the economy, causing
approximately 761 million infections and 7.9 million deaths by
March 2023 (4). The mortality rate of SARS-CoV-2 varied between
countries and populations, with an overall pooled mortality of 5.6%
(5). Although SARS-CoV-2 has a lower fatality rate than the other
two, it still poses a significant threat to human health due to its
rapid and elusive mutation and the possibility of reinfection after
vaccination (6, 7).

SARS-CoV, MERS-CoV, and SARS-CoV-2 have similar clinical
symptoms, such as cough, fever, and brachypnoea (8). In severe
cases, all three diseases can progress to fatal acute respiratory
distress syndrome and multiple organ damage. Although the
SARS-CoV-2-induced COVID-19 disease shares consistent clinical
features with SARS and MERS, it is less lethal than them.
In addition, compared to these highly pathogenic HCoVs,
the prevalent strains of coronavirus (HCoV-OC43, HCoV-229E,
HCoV-HKU, and HCoV-NL63) generally lead to mild respiratory
illnesses like the common cold (9, 10). The reason for this varying
pathogenicity of different HCoVs is still a subject under research.
Limited evidence suggests that some factors may contribute to
their differences in pathogenicity, such as the ability to replicate
efficiently in humans, the immune escape ability, and the damage
caused by promoting excessive inflammation.

Cell invasion and replication are essential to virus infection,
these processes are usually mediated by the interaction between
viral S proteins and cellular receptors (11). SARS-CoV-2 encoded
longer S proteins compared with SARS-CoV and MERS-CoV
(12). ACE2 is the common cellular receptor for SARS-CoV and
SARS-CoV-2. However, the affinity of ACE2 to SARS-CoV-2 is
10-20 times higher than that to SARS-CoV (13, 14). HCoVs
also evolve different strategies to escape host immunity. Human
respiratory viruses spread along the nasopharyngeal tract, which
partly avoids the innate immune cells (15). In severe infections
with SARS-CoV-2, the innate immunity is diminished. However,
monocytes and macrophages are recruited to the infected tissues,
which induce excessive inflammation (16). In addition to the
decline of lymphocytes during SARS-CoV infection, the virus
interferes with some protective immune intracellular pathways,
thereby preventing the production of IFN-1 and the activation of T
cells (17). MERS-CoV encodes ORF4a, which acts as an antagonist
of IFN to escape the host innate immunity (18).

The immune system is the major line of defense against
intrusive viruses. Previous studies revealed the expression of
some genes associated with the immune response during HCoV
infections. Most of the over-expressed gene products in acute-phase
sera of SARS patients were involved in immunity, such as IFN-y,
TGF-B, IL-6, IL-8, and IL-18 (19, 20). Similarly, the serum levels of
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IFN-a, CXCL10, IL-6, IL-8, and CCL5 were elevated in the patients
with MERS-CoV, especially in those with severe MERS-CoV (21,
22). A similar cytokine profile of IFN-y, TNF-a, IL-2, IL-6, IL-
10, IL-1B, and GM-CSF was also observed in COVID-19 patients
(23-25). Most of these upregulated genes during highly pathogenic
HCoV infections are inflammatory cytokines, which suggests a
dysregulated inflammatory response.

Research on the host responses to HCoVs with different
pathogenicity could help develop effective interventions and
therapies against the ongoing COVID-19 and future pandemics
from the host perspective. Transcriptome analysis provides a
powerful tool for studying host immune dynamics, and it
also facilitates the identification of the regulated genes and
signaling pathways during infections. A meta-analysis of publicly
available transcriptome data from cell lines identified the common
regulated pathways during infection with SARS-CoV-2, SARS-
CoV, and MERS-CoV (26). These findings revealed that enhancing
glutathione metabolism may reduce the severity of the SARS-
CoV-2 infection. Additionally, a study on the transcriptional
response to SARS-CoV, MERS-CoV, SARS-CoV-2, IAV, HPIV3,
and RSV indicated that diminished innate antiviral defenses and
overproduction of inflammatory cytokines are the driving features
of COVID-19 (27). However, these studies mostly focused on the
three highly pathogenic viruses or other additional pathogenic
respiratory viruses. The differences in host responses induced
by different HCoVs with varying pathogenicity are still not
fully elucidated.

In the present study, we analyzed the transcriptome data from
four publicly available datasets of human cell lines. We identified
and compared the differences in gene expression and pathway
regulation during highly pathogenic SARS-CoV-2, SARS-CoV,
MERS-CoV, and lowly pathogenic HCoV-229E infections. The
obtained results contribute to comprehending the pathogenesis of
these coronaviruses and controlling any future HCoV outbreaks.

2 Materials and methods

2.1 Data collection and processing

We employed a search of the Gene Expression Omnibus
(GEO) database to identify transcriptome datasets related to
the seven HCoV infections in human respiratory cell lines. Of
these, we selected four datasets related to SARS-CoV, SARS-CoV-
2, MERS-CoV, and HCoV-229E for further analysis and listed
them in Supplementary Table 1. Specifically, we focused only
on the transcriptome data of the Calu3 and MRC-5 cell lines,
as well as their corresponding mock controls, at the 24-h time
point after infection with the four viruses in each dataset. The
transcriptome data of PBMC samples from COVID-19 patients
and corresponding healthy controls was obtained from GSE152418
dataset. All RNA-Seq data from our article were accessible through
the NCBI GEO with the accession numbers GSE147507 (27),
GSE56189, GSE148729 (28), GSE155986 (29), and GSE152418.
The SARS-CoV-2 strains used in GSE147507 (USA-WA1/2020)
and GSE148729 (Patient isolate, BetaCoV/Munich/BavPat1/2020|
EPI_ISL_406862) were early original strains.
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The FASTQ data from all these datasets was downloaded with
the SRA toolkit and quality-controlled with fastp (30). The “fastq-
dump” command was then employed to extract the fastq sequence
information. Subsequently, we employed the “split-files” function
to split the sequencing data, followed by applying a standardized
quality control using the “fastp” tool with the parameter “-q
25 -u 30 thread = 5” to remove reads with substandard base
quality. The human reference genome GRCh38.84 was used for
alignment through HISAT2 (v2.2.0), and the mitochondrial genes
were removed. Reads with alignment confidence scores exceeding
20 were extracted using “-F 4 -q 20, resulting in the generation
of the gene expression profiles required for downstream analyses.
Gene expression levels of the sequencing data were quantified using
the DESeq2 R package (version 1.18.1) and visualized through
boxplots (Supplementary Figure 1A). Only genes with a count
per million (CPM) greater than 1 in at least half of the samples
were retained. The VennDiagram package in R (version 1.6.20) was
implemented to plot Venn diagrams to visualize the relationship
between genes in each infection group (Supplementary Figure 1B).
The removal of the batch effects resulting from different links, such
as methods, cell lines, and experimental designs, was achieved by
the “removeBatchEffect” function of the limma R package (version
3.48.3). Finally, the results were checked through the fviz_pca_ind
function and the plotted principal component analysis (PCA)
diagrams (Supplementary Figure 1C).

2.2 Data analysis

The edgeR package (version 3.34.0) was executed for analyzing
the differences in mRNA expression among the four HCoV's groups
and the mock controls. The adjusted p-values of 0.05 together
with absolute log2 (fold change) >1.5 were used as thresholds
for identifying the differentially expressed genes (DEGs), and
the up- and downregulated DEGs in each group were identified
(Figure 1A). The count of the unique and common DEGs in
each group was completed using the R package VennDiagram
(Figure 1B). Volcano plots of the DEGs in each group were
plotted using the ggplot2 R package (version 3.3.5), with the top
10 upregulated DEGs marked.

2.3 Pathway and functional enrichment
analysis

Function and pathway enrichment analysis of the DEGs were
implemented with the software Ingenuity Pathway Analysis (IPA,
Ingenuity Systems, Inc.) (31). For the IPA analysis, —logl0 (p-
value) >1.3 together with absolute Z-score >2 was set as the
thresholds to identify the significantly up- or downregulated
pathways and functional terms. The enrichment analysis results
were visualized using positive and negative bar graphs (Figure 2A).
The pathway and function terms were grouped into different
categories based on functional characteristics (Figure 2B). Bubble
plots of the enriched terms were generated with the ggplot2 R
package. The heatmap of cytokine related DEGs was drawn using
the R function pheatmap. The Cytoscape software was employed to
exhibit the relationship between the genes and enriched functions.
Tox function analysis was also conducted using IPA software.
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3 Results

3.1 Significant upregulation of DEGs
during highly pathogenic HCoV
infections

In this study, we analyzed publicly available transcriptome
data from cells infected with different coronaviruses (SARS-CoV-
2, SARS-CoV, MERS-CoV, and HCoV-229E) (Supplementary
Table 1). The results of PCA revealed distinct mRNA expression
profiles among the four groups of infected and mock-infected
cells (Supplementary Figure 1C). In particular, we observed that
the SARS-CoV-2 cluster exhibited a closer distance to the SARS-
CoV and MERS-CoV clusters than to the HCoV-229E cluster. This
finding indicated marked variations in gene expression between
highly pathogenic and lowly pathogenic HCoVs.

To further explore the differences in gene expression patterns
among HCoVs, we identified the DEGs among the four groups of
infected cells. In total, 949, 171, 278, and 1,198 DEGs were observed
in SARS-CoV-2, SARS-CoV, MERS-CoV, as well as HCoV-229E,
respectively (Figure 1A). Notably, we observed that a large
proportion of DEGs (70.7 and 88.1%) were specifically identified
in the SARS-CoV-2 and lowly pathogenic HCoV-229E group,
respectively (Figure 1B). These findings indicated significant
differences between highly and lowly pathogenic HCoVs. Besides
these, the results also revealed that the majority of DEGs were
significantly upregulated in the highly pathogenic HCoV-infected
groups, particularly in the SARS-CoV-2 group, where 90.3% of the
949 DEGs showed an upregulation (Figure 1A). These observations
suggested that infected cells may mount a resistance response to
highly pathogenic HCoV's by upregulating the expression of certain
genes.

To identify the key genes involved in the host response to each
virus, we analyzed the top 10 upregulated DEGs in each group
(Figure 1C). In the highly pathogenic SARS-CoV-2 group, 8 out
of the top 10 upregulated DEGs were interferon cytokine genes
(IFNL2, IFNL3, IFNBI, IFNLI, and IFNL4) and IFN-stimulated
genes (GBP5, TNF, and ZBPI), indicating a robust interferon
response in SARS-CoV-2 infection. Similarly, in the SARS-CoV
group, 6 out of the top 10 upregulated DEGs were interferon
cytokine genes (IFNs) and ISGs, including IFNL2, IFNL3, IFNBI,
GBP5, TNF, and ZBP1I. In the MERS-CoV group, 4 out of the top
10 upregulated DEGs were IFNs and ISGs, including IFNL2, IFNL3,
IFNBI, and TNF. Additionally, MRCI, which is related to antigen
recognition (32), was also among the top upregulated DEGs in the
MERS-CoV group. In the HCoV-229E group, the top upregulated
DEGs, such as FAM83B, AATBC, Linc02257, and SPATAI2, were
mainly related to cell proliferation and migration (33-36) and DNA
oxidative damage (37).

3.2 SARS-CoV-2 induces stronger
immune responses than SARS-CoV and
MERS-CoV

To gain insights into the molecular mechanisms underlying
the pathogenicity of different HCoVs and to identify enriched
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FIGURE 1

Differentially expressed genes analysis of the four HCoV groups in vitro compared with the uninfected cells. (A) Bar plot of the differentially
expressed mRNAs compared with the uninfected cells in each group. (B) Venn diagram of differentially expressed mRNA in the four HCoV-infected
groups. (C) Volcano plots of the four HCoV groups based on the DEGs. The upregulated DEGs with the top 10 log2FC are shown.
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Pathway and function enrichment analysis upon HCoV infections based on IPA. (A) Quantity of the pathways and functional terms enriched in the
HCoV-infected groups. (B) Classifications of the pathways and functional terms based on functional characteristics. For IPA analysis, —log (p-value)
>1.3 and absolute Z-score >2 were set as the thresholds to identify the significantly up- or downregulated pathways and functional terms.
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pathways and functional categories, we conducted an IPA analysis.
The analysis revealed a total of 66, 11, 10, and 15 pathways,
as well as 167, 72, 64, and 56 functional terms, in the highly
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pathogenic SARS-CoV-2, SARS-CoV, MERS-CoV, and lowly
pathogenic HCoV-229E groups, respectively (Figure 2A). Notably,
the majority of enriched pathways and functions were significantly
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activated across all four groups [Z-score >2 and —log (p-value)
>1.3], with the SARS-CoV-2 group displaying the highest number
of activated terms (Figure 2A).

To provide a comprehensive overview of the enriched pathways
and functional terms, we have grouped them based on their
functional characteristics (Figure 2B). The results showed that
both the top-ranked pathway or function term category in all
three highly pathogenic HCoV groups was “Immune response.”
Specifically, 27, 7, and 4 pathways and 100, 43, and 46 functions
associated with “Immune response,” were significantly activated
across all three highly pathogenic HCoV groups (Figure 2B).
In contrast, only one significantly inhibited immune response-
related pathway (“Interferon Signaling”) was discovered in the
lowly pathogenic HCoV-229E. Moreover, none of the immune-
related function terms were significantly activated or inhibited
[Z-score >2 and —log (p-value) >1.3]. Our findings suggested
that highly pathogenic HCoVs induced a robust immune response,
while lowly pathogenic HCoVs might not activate extra immune
responses or elicit a weaker immune response.

To determine the precise immunological response of cells to the
highly pathogenic HCoVs, we intensively investigated the innate
and adaptive immune responses of infected cells (Figure 3). For
innate immunity, the SARS-CoV-2 infection significantly activated
20 out of the 21 enriched pathways and all of the 45 enriched
functions (Figures 3A, B). Of these, 14 pathways and 28 functions
were unique to the SARS-CoV-2 infection, such as “Toll-like
Receptor Signaling” (Z = 2.333), “Production of Nitric Oxide and
Reactive Oxygen Species in Macrophages” (Z = 3.606), “iNOS
Signaling” (Z = 2.449), “Natural Killer Cell Signaling” (Z = 2.887),
“Interferon Signaling” (Z = 3.5), and “Role of PKR in Interferon
Induction and Antiviral Response” (Z = 2.673). In contrast,
the SARS-CoV and MERS-CoV groups exhibited fewer enriched
innate immune pathways and functions (Figures 3A, B). Only
three common innate immune-associated pathways, including
“Phagosome Formation,” “Role of Pattern Recognition Receptors in
Recognition of Bacteria and Viruses,” and “Necroptosis Signaling
Pathway,” as well as 10 innate immune-associated functions, were
significantly activated in all three highly pathogenic HCoV groups
(Supplementary Figure 2A). Our results indicated that the innate
immune response triggered by SARS-CoV-2 infection was distinct
from that of SARS-CoV and MERS-CoV and may be potentially
capable of inducing stronger innate immune responses than the
other two.

This was also true for adaptive immunity in response to highly
pathogenic HCoV infections (Figures 3A, C). The SARS-CoV-
2 group exhibited 7 significantly activated adaptive immunity
pathways and 29 functions, including 6 pathways and 23 functions
that were specific to the SARS-CoV-2 infection. Interestingly, three
out of the seven adaptive immunity pathways were related to
IL-17 (Figure 3A). In contrast, the SARS-CoV and MERS-CoV
groups displayed less enrichment in adaptive immune pathways
and functions, with only “IL-17 signaling” (Z = 2) and “IL-15
production” (Z = 2.236) being significantly activated in the SARS-
CoV and MERS-CoV groups, respectively. Furthermore, there
were no common adaptive immunity-associated pathways among
the three groups, and only three adaptive immunity-associated
functions were significantly activated in all three groups, which
were “Cell movement of lymphocytes,” “Lymphocyte migration,”
and “T cell migration” (Supplementary Figure 2B). Collectively,
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these results uncovered that SARS-CoV-2 infection evoked more
specific and robust innate and adaptive immune responses than
SARS-CoV and MERS-CoV.

3.3 Specific upregulation of chemokines
and interleukins during SARS-CoV-2
infection

The COVID-19 severity is linked to an excessive inflammatory
response characterized by the generation of a substantial amount of
pro-inflammatory cytokines, a phenomenon known as the cytokine
storm (38). To explore the differences in cytokine responses among
the highly pathogenic SARS-CoV-2, SARS-CoV, MERS-CoV, and
the lowly pathogenic HCoV-229E, we investigated the cytokines
and cytokine-related pathways in each group (Figure 4).

Our results unveiled that SARS-CoV-2 infection significantly
activated 14 cytokine-related pathways, whereas only two
cytokine-related pathways were activated in the SARS-CoV
and MERS-CoV group, respectively (Figure 4A). The “Role of
Hypercytokinemia/hyperchemokinemia in the Pathogenesis of
Influenza” pathway displayed the highest enrichment among all
three highly pathogenic HCoV groups. The Z-scores for this
pathway in the SARS-CoV-2, SARS-CoV, and MERS-CoV groups
were 5.568, 3.162, and 2.828, respectively. Notably, no activated
cytokine-related pathways and only one inhibited pathway,
“Interferon signaling” (Z = —2.449), were identified in the lowly
pathogenic HCoV-229E group.

To further explore the cytokine profiles during infection
with these HCoVs, we analyzed the expression levels of the 41
cytokines and 13 cytokine receptor genes that were significantly
regulated during infections (Figure 4B). Our analysis signified
that the SARS-CoV-2 group exhibited significantly higher cytokine
and cytokine receptor gene expression levels than the other
three HCoV groups. Among these, the upregulated chemokines
and interleukins were the most common cytokine genes in the
SARS-CoV-2 group. Specifically, three chemokine genes (CXCLI10,
CXCL8, and CX3CL1I) and five interleukin genes (IL-6, IL-12A, IL-
1B, IL-23A, and TSLP) were found to be specifically upregulated.
In contrast, no interleukin-related genes were observed to be
upregulated in the SARS-CoV or MERS-CoV group. Furthermore,
three interleukin genes were found to be downregulated in the
HCoV-229E group, with CSF2 (log2FC = —15.644) exhibiting
the most significant downregulation among the interleukin genes.
These findings suggested that chemokines and interleukins might
play a pivotal role in the pathogenesis of SARS-CoV-2 infection.

3.4 Strong IFN/ISG response responsible
for the inhibition of SARS-CoV-2
replication

The IFNs and ISGs, which are mainly involved in innate
immunity, have been identified as being highly upregulated in
response to infection with highly pathogenic HCoVs (Figure 1C).
To further investigate this phenomenon, we analyzed the
expression levels of IFNs and ISGs in the four HCoV groups.
Our results demonstrated that IFNs were significantly upregulated
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in cells infected with the highly pathogenic SARS-CoV-2, SARS-  upregulated IFNs in highly pathogenic HCoV's were type III IFNL2,
CoV, and MERS-CoV, whereas no significant upregulation was  IFNL3, and type I IFNBI. Notably, our analysis revealed that

observed in cells upon infection with the lowly pathogenic  type III IFNLI was commonly upregulated in both SARS-CoV-
HCoV-229E (Figure 4B). Of particular interest, the top three 2 and SARS-CoV groups, while type III IFNL4 was uniquely
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identified in the SARS-CoV-2 group. Furthermore, we noted
that the “Interferon signaling” pathway was significantly activated
(Z = 3.5) in the SARS-CoV-2 group, whereas this pathway was
significantly inhibited (Z = —2.449) in the lowly pathogenic HCoV-
229E (Figure 4A). These results highlighted the critical role of
interferon in the host's immune response to highly pathogenic
HCoV infections.

Further analysis of the expression levels of 628 known ISGs
(39) in the four HCoV groups revealed that SARS-CoV-2 exhibited
significantly higher levels of ISG expression than the other three
HCoVs (Figure 5 and Supplementary Table 2). Specifically, we
observed that 115 ISGs were distinctly upregulated in cells with
the SARS-CoV-2 infection, implying a robust interferon response
(Figure 5A). Notably, 95 of these ISGs (82.6%) were uniquely
upregulated in the SARS-CoV-2 group (Supplementary Table 2).
Our investigation further revealed an upregulation of several
ISGs with known antiviral functions, including IFIT, IFITM,
RSAD2, ZNFX1, TRIM21, ISGI5, and ISG20 (40-45). Moreover,
we observed an upregulation of GBP genes (GBP3, GBP4, GBP>5,
and GBP6), which have been demonstrated to modulate extensive
innate immune responses against various pathogens (46). In
addition, the upregulation of genes that potentiated IFN signaling
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was also observed, including TAP1, STATI, and XAFI (47-50). In
contrast to SARS-CoV-2, infections with SARS-CoV and MERS-
CoV induced significantly fewer ISGs (17 and 12, respectively), and
infection with the lowly pathogenic HCoV-229E resulted in the
downregulation of 17 out of 28 ISGs (Figure 5A).

Inhibition of virus replication has been demonstrated in
many ISGs. To investigate the effectiveness of ISGs in inhibiting
virus replication, we conducted a functional analysis that
identified 52 ISGs that were significantly enriched in ten
functional terms associated with virus replication (Figures 5B,
C). These functional terms displayed significant inhibition in
the highly pathogenic SARS-CoV-2 group, including “Viral life
cycle” (Z = —4.491), “Replication of virus” (Z = —4.392), and
“Replication of coronavirus” (Z = —3.517). Furthermore, it was
found that more than half of the DEGs (52-64%) enriched
in each functional term related to virus replication were ISGs
(Figure 5B). This indicated a strong IFN/ISG response that
contributed to inhibiting SARS-CoV-2 replication. In contrast,
only three functional terms related to virus replication were
inhibited in the SARS-CoV group (Figure 5C), including
“Replication of Herpesviridae” (Z = —2.214), “Replication of
vesicular stomatitis virus” (Z = —2.425), and “Replication of viral
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replicon” (Z = —2.236), which included three ISGs (TNF, ZBP1, and
CCL5). Interestingly, no such virus replication-related functions
were found in the MERS-CoV group.

To further investigate the putative role of ISGs in shaping
the clinical course of COVID-19, we conducted an analysis
using publicly accessible PBMC transcriptome data sourced from
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the GSE152418 dataset. This dataset comprises PBMC samples
collected from a cohort of 15 COVID-19 patients exhibiting
various degrees of symptom severity, with categorizations ranging
from moderate, severe, to critical, alongside a control group
consisting of 17 healthy individuals. We identified a total of
107 ISGs, demonstrating distinctive expression profiles across
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the spectrum of COVID-19 symptom severity, with marked
upregulation in moderate cases and conspicuous downregulation
in severe patients, particularly those requiring ICU admission
(Supplementary Figure 3 and Supplementary Table 3). Of notable
significance, among these ISGs, we found that 13 ISGs exhibited
a significant upregulation in patients with moderate COVID-19
symptoms, while 17 ISGs displayed a significant downregulation
in patients necessitating ICU admission. This observed pattern
in ISG expression harmoniously reinforces the conclusions drawn
from our prior investigation of lung cell lines. Notably, these
findings suggested the potential role of insufficient ISG expression
and its subsequent suppression as plausible contributory factors to
the manifestation of more severe clinical symptoms in COVID-
19 patients.

Overall, our findings demonstrated that SARS-CoV-2 infection
induced a distinctive and strong interferon response characterized
by the upregulation of multiple ISGs with antiviral functions.
These results provided valuable insights into the pathological
characteristics of SARS-CoV-2, which showed a relatively milder
pathogenesis and a lower fatality rate in contrast to SARS-
CoV and MERS-CoV.

3.5 Multi-organ toxicity of SARS-CoV-2
infection

We evaluated the potential multi-tissue injury using IPA tox-
function analyses. Our results revealed that SARS-CoV-2 infection
significantly upregulated multi-organ damage related functions,
particularly in the liver, kidney, and vasculature (Figure 6). In
contrast, fewer relevant terms were significantly enriched in the
other three HCoV groups.

In the SARS-CoV-2 group, four functions associated with
the angiocarpy system were significantly upregulated (Figure 6).
These activated functions were all associated with elevated blood
pressure. In contrast, the other four downregulated functions in
this group were associated with congenital heart disease, including
atrial and ventricular septal defects (Figure 6). These findings
suggested that SARS-CoV-2 infection can increase blood pressure
and reduce the risk of congenital heart malformations, which may
be realized through the effect of ACE2 on the renin-angiotensin
system (RAS) (51). In general, our findings unveiled that the SARS-
CoV-2 infection had a more pronounced effect on multi-organ
toxicity than other HCoV infections.

4 Discussion

SARS-CoV-2, SARS-CoV, and MERS-CoV are all members of
the Coronaviridae family and have been associated with severe
respiratory illnesses in humans. The pathological manifestations of
COVID-19 share similarities with those seen in SARS and MERS.
However, SARS-CoV-2 has a comparatively milder pathogenesis
and a lower fatality rate in contrast to SARS-CoV and MERS-
CoV. A comprehensive study of the factors that lead to the
lower virulence of SARS-CoV-2 is essential for developing effective
interventions and therapies against the disease.
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In this work, we revealed that SARS-CoV-2 elicited a more
significant immune response modulation, particularly in the
interferon response, than SARS-CoV, MERS-CoV, and HCoV-
229E (Figure 3). IFNs function in the immune response to
viral infections by activating the immune cells and inducing the
production of antiviral proteins. Our results suggest that SARS-
CoV-2 can induce robust type I and type III IFN responses,
characterized by a notable upregulation of both type I and
type III IFNs, along with the induction of numerous ISGs. The
type I interferon gene IFNBI and type III interferon cytokine
genes (IFNL2 and IFNL3), as well as 11 ISGs, were significantly
upregulated in the highly pathogenic SARS-CoV-2, SARS-CoV, and
MERS groups (Figure 4B and Supplementary Table 2), indicating
common antiviral mechanisms of highly pathogenic coronaviruses.
The type III interferon gene IFNLI was significantly upregulated in
both SARS-CoV-2 and SARS-CoV groups but not following MERS-
CoV infection. IFNL1 can inhibit viral replication in infected
cells (52). In addition to its antiviral activity, IFNLI also plays
a part in modulating the immune response, helping to regulate
inflammation, and preventing tissue damage (53). Besides, the
upregulation of IFNL4 was observed only in SARS-CoV-2 infection
(Figure 4B). IFNL4 is a member of the human type III IFNs (54)
and plays a critical role in antiviral immunity. IFNL4 activates the
JAK/STAT pathway, leading to the expression of ISGs (55). It is
reported that IFNL4 has stronger therapeutic effects in reducing
coronavirus infection with higher ISG induction compared to other
type III IFNs (56). Given the importance of the IFN response in
the control of viral infections, IFN (IFNLI and IFNL4) targeted
therapies for COVID-19 are currently being developed.

Interferon-stimulated genes that impeded virus replication
during the four HCoV infections were also identified. Specifically,
we have identified 52 and 3 ISGs that were significantly
enriched in functional terms associated with virus replication in
the SARS-CoV-2 and SARS-CoV groups, respectively. None of
these ISGs were identified in the MERS-CoV infection. These
observations provided valuable insights into the comparatively
milder pathogenesis and lower fatality rate of SARS-CoV-2, in
contrast to SARS-CoV and MERS-CoV. Moreover, these ISGs
could be treated as potential therapeutic targets against highly
pathogenic HCoV infections. Indeed, we have identified 13 of
these ISGs as drug targets (Supplementary Table 2). Among
these, the JAK2 inhibitors, Ruxolitinib and Tofacitinib, had been
used to treat COVID-19 and cytokine release syndrome (57, 58).
Additionally, Rintatolimod, a TLR3 agonist, had been suggested
for treating post-COVID syndrome (59). Drugs and vaccines for
SARS-CoV-2 infection are being developed (60-62). These ISG
agonists identified in this study hold promise for treating COVID-
19 patients, while further studies are warranted to validate their
efficacy and safety in larger clinical trials.

The interferon response is the first defense for the host against
virus infections. HCoVs have evolved certain proteins that can
inhibit IFN responses to evade host immunity, which may result
in different IFN responses after infections with different HCoVs.
The significant differences in the ability to activate interferon-
related pathways of different HCoVs may reflect the mutational
differences among them. ORF6 is an important virulence factor of
HCoVs that can inhibit IFN response. Previous studies found that
the inhibitory efficiency of SARS-CoV-2 ORF6 on IFN response is
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lower than that of SARS-CoV ORF6 (63). Replacement of SARS-
CoV ORF6 with the full-length gene of SARS-CoV-2 ORF6 or
deletion of SARS-CoV ORF6 by stop codon results in decreased
replication efficiency of SARS-CoV, while the ability of ORF6
to antagonize IFN response is weakened. Papain-like protease
(PLpro) is another crucial IFN antagonist found in HCoVs. PLpro
can inhibit the activation of IFN response by suppressing IRF3
through its deubiquitinating activity and de-ISGylation activity
(64). Compared to SARS-CoV, SARS-CoV-2 PLpro has a higher
buried interface size, a conserved catalytic triad (C111, H278, and
D293), and a lower number of interacting residues in ubiquitin
with PLpro. These differences might contribute to a slightly
lower deubiquitinating activity in SARS-CoV-2 Plpro. Both SARS-
CoV and SARS-CoV-2 NSP1 proteins can inhibit IFN response.
However, Lacasse et al. (65) discovered that NSP2 of SARS-CoV-
2 can activate the NF-kB pathway and the IFNf promoter. They
also found that NSP2 of SARS-CoV-2 partially counteracts the IFN
inhibitory activity of NSP1. The phenomenon of genetic mutations
altering the ability of the virus to induce IFN responses is not
unique to HCoVs but is also present in other viruses, such as
the Zika virus. The A188V mutation on the NS1 protein of Zika
virus can reduce the phosphorylation of TBKI, thereby leading
to a decreased expression level of IFNP (66). Therefore, it is
speculated that SARS-CoV-2 significantly activates IFN response,
which may be attributed to genetic mutations in certain genes
of SARS-CoV-2. These genetic mutations enhance the ability of
certain proteins to activate IFN response or weaken the inhibitory
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capacity of certain proteins against IFN, as compared to SARS-
CoV.

The immune response is a double-edged sword. On the one
hand, an effective immune response can limit viral replication
and clear the virus, thereby reducing morbidity and mortality.
On the other hand, an exaggerated and dysregulated immune
response can result in a cytokine storm, leading to tissue
damage, multi-organ dysfunction, and even death. SARS-CoV-
2 infection has been demonstrated to contribute to a cytokine
storm, which is linked to COVID-19 severity and is also a
very important determinant of mortality of COVID-19 (67). In
contrast, SARS-CoV and MERS-CoV infections are associated
with a lower incidence of cytokine storms (68). The findings
of our article revealed that SARS-CoV-2 induced a higher
expression of multiple cytokine genes and activated more cytokine-
related pathways than SARS-CoV, MERS-CoV, and HCoV-229E
(Figures 4A, B), and the cytokines IL-6, CXCL10, and CSF2
might serve as pivotal determinants in triggering the onset of
a cytokine storm in SARS-CoV-2. This finding was consistent
with previous studies on the cytokine storm in COVID-19 (23,
69), where a plethora of cytokines were produced following
SARS-CoV-2 infection. Recent research has highlighted the
importance of the IL-6/CXCL10/macrophage axis in driving
the initiation and maintenance of the cytokine storm (70).
IL-6 could activate the JAK/STAT pathway, resulting in the
large production of cytokines, especially chemokines (70-72).
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These cytokines induce the local enrichment of CSF2, leading
to further JAK/STAT pathway activation in the inflamed tissues
(73). CSF2 and chemokines, especially CXCL10, form a channel
for invading immune cells and promote the recruitment of many
immune cells in the lung tissues, which readily induce tissue
damage. This characteristic vicious cycle of the SARS-CoV-2
infection-evoked cytokine storm was not observed in HCoV-229E-
infected cells, where the downregulation of CSF2 might prevent
the activation and recruitment of innate immune cells, avoid
hyperactivation of the immune response, inflammation, and tissue
damage.

These identified cytokines, such as IL-6, CXCLIO, and
CSF2, could be potential therapeutic targets for COVID-19
damage management. Blocking the IL-6 pathway has been
demonstrated to be an effective approach for reversing pulmonary
failure and reducing mortality in COVID-19 (74-76). CXCL10
may exert functions in the development of COVID-19, as
described in research on the role of the CXCL10-CXCR3 axis
in the pathogenesis of COVID-19 (77). Anti-CSF2 receptor
monoclonal antibodies have been used to improve clinical
symptoms in COVID-19 patients with severe pulmonary disease
(78). Further research is needed to investigate the mechanism
of differential regulation of cytokines, especially IL-6, CXCLI10,
and CSF2, between highly pathogenic HCoVs and common
circulating HCoVs.

This study aimed to investigate the differential transcriptome
responses induced by the four HCoVs. Nevertheless, it is
important to recognize the limitations of our study. Firstly,
the lack of available high-throughput sequencing data from
patients infected with SARS-CoV during the 2003 outbreak
prevented their inclusion in our analysis. Additionally, due to
the rapid control of the epidemic, limited transcriptome data
were available from these patients. Besides, the relatively mild
symptoms and low mortality rate associated with common
HCoVs (HCoV-HKU, HCoV-229E, HCoV-OC43, and HCoV-
NL63) resulted in a paucity of transcriptome data for analysis.
Furthermore, validation of the identified targets by in vitro
experiments is impossible owing to laboratory constraints. In
spite of these limitations, we believe that our analysis provides
valuable insights into the different pathogenesis of highly
and lowly pathogenic HCoVs. The identification of key IFNs
and ISGs in our study may be beneficial for the future
development of treatments for COVID-19 together with other
highly pathogenic coronaviruses.
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