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Introduction: In order to improve the diagnostic accuracy of respiratory illnesses,

our research introduces a novel methodology to precisely diagnose a subset

of lung diseases using patient respiratory audio recordings. These lung diseases

include Chronic Obstructive Pulmonary Disease (COPD), Upper Respiratory Tract

Infections (URTI), Bronchiectasis, Pneumonia, and Bronchiolitis.

Methods: Our proposed methodology trains four deep learning algorithms on an

input dataset consisting of 920 patient respiratory audio files. These audio files

were recorded using digital stethoscopes and comprise the Respiratory Sound

Database. The four deployed models are Convolutional Neural Networks (CNN),

Long Short-Term Memory (LSTM), CNN ensembled with unidirectional LSTM

(CNN-LSTM), and CNN ensembled with bidirectional LSTM (CNN-BLSTM).

Results: The aforementioned models are evaluated using metrics such as

accuracy, precision, recall, and F1-score. The best performing algorithm, LSTM,

has an overall accuracy of 98.82% and F1-score of 0.97.

Discussion: The LSTM algorithm’s extremely high predictive accuracy can be

attributed to its penchant for capturing sequential patterns in time series based

audio data. In summary, this algorithm is able to ingest patient audio recordings

and make precise lung disease predictions in real-time.

KEYWORDS

artificial intelligence, neural networks, audio parsing, machine learning, pulmonary

diagnostics, predictive analytics, lung disease

1. Introduction

Anomaly detection in the field of computing for health and wellbeing has emerged as

a prominent research topic, driven by the availability of vast amounts of medical data and

the increasing need for accessible and scalable applications in real-world healthcare settings.

The ability to leverage digital technologies, such as digital stethoscopes, has revolutionized

the way respiratory audio files from patients’ lungs are captured and analyzed. This paradigm

shift opens up new possibilities for diagnosing lung ailments using advanced computational

techniques. In this paper, we focus on the experimentation, detection, and classification of

lung anomalies from respiratory audio files using deep-learning models with hyper-tuned

neural networks. Our goal is to develop a robust and accurate model that can effectively

diagnose patients based on their respiratory audio recordings.
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The advent of digital stethoscopes has significantly transformed

the medical landscape, enabling the collection of audio data

that encompasses respiratory sounds. These digital audio files

hold valuable information for diagnosing various respiratory

conditions. For instance, the presence of wheezing sounds often

indicates the occurrence of obstructive airway diseases, such

as Chronic Obstructive Pulmonary Disease (COPD) (1). By

harnessing the power of artificial intelligence algorithms, it

becomes feasible to analyze these respiratory audio files and

make diagnostic predictions using computational methodologies.

Successful implementation of such applications could lead to the

deployment of our software in hospitals nationwide, providing

physicians with a diagnostic classifier that can support, validate, or

further investigate their own clinical assessments.

In this paper, we tackle the formal problem of developing

a robust deep-learning model consisting of hyper-tuned neural

networks to diagnose lung ailments using respiratory audio files.

This approach involves processing a large collection of audio files

and providing accurate diagnoses of respiratory diseases such as

bronchiolitis. To achieve this, we employ innovative deep-learning

techniques to train our model, enabling it to effectively classify and

predict respiratory anomalies.

To gain insights into the existing research landscape and inform

our work, we conducted a thorough survey of relevant literature.

Rocha et al. (2) contributed a comprehensive dataset comprised

of 6898 respiration cycles extracted from 920 recordings obtained

from 126 subjects. These respiratory cycles encompass various

abnormalities, including crackles and wheezes. This dataset serves

as a foundational reference for our own research. In a related

context, Shin et al. (3) explored the utilization of cockpit audio

data to detect significant events, presenting valuable strategies

for handling noisy audio recordings and extracting meaningful

features.

Furthermore, Acharya et al. (4) proposed a hybrid

convolutional neural network (CNN) and recurrent neural

network (RNN) model for crackle and wheeze classification,

which aligns with our dataset and objectives. They achieved

an accuracy of 66.31% with their algorithm. Kim et al. (5)

demonstrated the effectiveness of CNN models in medical audio

classification, providing valuable insights into the performance

of CNNs on audio data. Similarly, Aykanat et al. (6) concluded

that CNNs in combination with support vector machines (SVM)

offer accurate classification and pre-diagnosis of respiratory

audio. Their findings validate the potential of CNNs in our

research domain.

In the pursuit of accurate classification, Fraiwan et al. (7)

proposed a hybrid CNN-LSTM (long short-term memory)

approach for medical audio data classification. Their model

exhibited excellent performance, achieving high predictive

accuracy. However, the details of the dataset used for classification

and model development were not presented with sufficient

clarity, posing a potential limitation to their work. Hsu

et al. (8) utilized an open-source lung audio dataset they

developed themselves, evaluating the classification results

of eight different RNN variants. Their findings indicated

that bidirectional models outperformed their unidirectional

counterparts, providing valuable insights for our model selection

and evaluation.

While the surveyed papers contribute significant insights to

the field, it is essential to consider their limitations. Shin et al. (3)

proposed algorithms that may not be highly scalable, potentially

limiting their applicability in real-world scenarios with large-

scale data. Acharya et al. (4) prioritized reducing memory costs

over achieving higher model accuracy, which could impact the

performance of their hybrid CNN-RNN model. Kim et al. (5)

and Aykanat et al. (6) lacked rigorous parameter tuning for

their deep learning algorithms, potentially limiting their overall

performance. Fraiwan et al. (7), despite achieving high predictive

accuracy, did not provide sufficient detail about the dataset

used, which may hinder reproducibility and further investigation.

Hsu et al. (8) acknowledged the need for additional research

and experimentation to explore the performance of their state-

of-the-art convolutional layers in depth. Finally, papers (9–16)

contributed valuable insights into audio classification techniques,

real-world applications, and data visualization methods, enriching

our understanding of the broader context of audio classification in

healthcare.

In conclusion, this paper aims to address the challenge

of accurately diagnosing lung ailments by developing a robust

deep-learning model that leverages respiratory audio files to

perform disease detection and classification on patients. Through

relevant literature surveys, our team has gained insights into

various methodologies, datasets, and models proposed by previous

researchers in this domain. By building upon their contributions,

we aim to develop a highly accurate model that can effectively

classify lung diseases and provide valuable diagnostic predictions.

2. Materials and methods

2.1. Data collection

Rocha et al. (2) developed the respiratory sound database

that was used in this work with the intention of analyzing and

contrasting various respiratory sound categorization algorithms.

The recordings and annotations are the two main parts of the

database, which is publicly available and accessible to everyone.

126 participants including healthy controls and individuals

suffering from various lung conditions provided the recordings.

Four clinical centers in Portugal, Greece, Turkey, and Serbia were

used to find the participants. A digital stethoscope (Littmann 3200,

3M) connected via Bluetooth to a laptop computer was used to

make the recordings. Following a predetermined methodology,

the stethoscope was placed on the subjects’ anterior, lateral, and

posterior chest areas. The individual was required to sit still and

breathe normally while the protocol called for recording respiratory

sounds for 10 s in each place. Each participant underwent the

protocol twice, yielding 920 recordings in all. The database for

Respiratory Sound has a size of 2.01 GB total.

Two groups of specialists annotated the data: one for

respiratory cycles and the other for events including crackles and

wheezes. Three specialists from separate clinical centers annotated

the breathing cycles, noting the beginning and conclusion of each

inhalation and expiration cycle as well as the presence/absence

of accidental sounds. Four experts from several clinical centers
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annotated the events, pinpointing where each crackle and wheeze

occurred throughout each respiratory cycle.

The database was created for an international competition:

IFMBE’s International Conference on Biomedical and Health

Informatics’s first scientific challenge. The competition sought to

advance work on automatic analysis of patient respiratory audio.

To assure accuracy and dependability of the source data,

the data gathering method adhered to a number of ethical and

technological standards. All participants’ informed consent had to

be obtained, their identity and confidentiality had to bemaintained,

and the Declaration of Helsinki’s tenets had to be followed.

Technical requirements included employing a consistent recording

tool and process, providing a quiet atmosphere throughout

the recordings, assessing the quality of the recordings before

annotating, and safely storing the data.

There were a number of difficulties and restrictions in the

data collection procedure for the Respiratory Sound Database.

For example it was difficult to find enough individuals with

various respiratory disorders from different clinical settings, which

necessitated coordination and cooperation between researchers

from many institutions and nations. Prior to annotation,

training and calibration sessions were necessary to assure

high inter-annotator agreement among specialists with various

clinical backgrounds and expertise. The lack of recordings

from other respiratory illnesses such as tuberculosis or lung

cancer was a drawback of the data-gathering process. Another

drawback was the absence of recordings from various body

positions or breathing styles such as lying down, coughing, or

deep breathing.

2.2. Feature engineering

For our research, features were extracted from each patient

recording using speech and audio signal processing systems.

Specifically, our team extracted the following five key features:

mel-frequency cepstrum coefficients, chromagram, mel-scaled

spectrogram, spectral contrast, and tonal centroids. We

then stored the above results in numerical form via matrix

arrays. These arrays capture critical information such as

respiratory oscillations, pitch content, breathing amplitude,

audio peaks/valleys, and chord sequences from the input

audio files.

2.2.1. Mel-frequency cepstrum coe�cients
The mel-frequency cepstrum (MFC) constitutes the power

spectrum of a sound. Taken together, MFCCs are coefficients

that comprise the above sound spectrum. These coefficients are

obtained by using linear cosine transform of a log power spectrum

on a non-linear mel-frequency scale (17).

The mathematical formulation is shown below where

MFCCs[n] represents the Mel-frequency cepstral coefficients

for the n-th frame, IDCT refers to the Inverse Discrete Cosine

Transform, Hm[k] denotes the filterbank weights for the m-th

Mel filter at frequency bin k, and X[k] represents the magnitude

spectrum of the k-th frequency bin (18).

MFCCs[n] = IDCT

(

log

(

M
∑

m=1

Hm[k] · |X[k]|
2

))

(1)

The MFCC values for each patient audio file is derived by

first calculating the fourier transform of the individual’s respiratory

audio. The resulting power spectrum output is then mapped onto

the mel scale using cosine overlapping windows. At each mel

frequency point, the log of powers is calculated followed by discrete

cosine transforms on each log power value. This feature extraction

procedure ultimately produces MFCC amplitude values.

2.2.2. Chromagram
Chromagrams map audio pitches into a single octave,

comprised of 12 semitones. Our team extracted chroma features

from each patient’s respiratory audio recording by deploying a

combination of Q Transform and Short-Time Fourier Transform

(STFT) on each ingested file. These specialized features capture

the tonal spectrum of patients’ respective audio waveforms by

mapping each pitch to one of twelve possible semitones. This

enables subsequent high-level analysis such as chord recognition,

structural audio analysis, and harmonic similarity measurements.

A chromagram can be formulaically expressed via the equation

below (18).

Chromagram(t, c) =
∑

all frames i

∣

∣STFT(t, fi)
∣

∣ · δ(Pitch(fi)− c) (2)

In the above formula t represents the time frame index, c

represents the chroma (pitch class) index, STFT(t, f ) represents

the Short-Time Fourier Transform magnitude at time frame t and

frequency bin fi, pitch represents the estimated pitch corresponding

to frequency bin fi, δ is the Dirac delta function, which returns 1 if

the condition inside the parentheses is true and 0 otherwise (18).

2.2.3. Mel-scaled spectrogram
The Mel-scaled spectrogram visually displays a time series

audio file as a 2-dimensional image. In this context, time is on the

x-axis while frequency is on the y-axis. A particular point in time

inside the sound file corresponds to a single pixel’s brightness inside

its corresponding image.

Conceptually speaking, Fast Fourier Transforms (FFTs) are

applied to each condensed frame of a patient’s respiratory audio.

This process results in a frequency band spectrum output. The

spectrum is pushed through a frequency-domain filter bank

responsible for transforming our sound data onto the mel-scale.

Higher mel-scale values correspond to greater pixel intensity inside

the image.

Smel(t, f ) =

M
∑

m=1

Hm(f ) · |S(t, f )| (3)

In the above formula, Smel(t, f ) represents the Mel Spectrogram

at time t and frequency f . S(t, f ) captures the magnitude spectrum
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of the audio signal at time t and frequency f . Hm(f ) denotes the

filter bank response at frequency f for the mth mel filter, and M

represents the total number of mel filters used (18).

2.2.4. Spectral contrast
Spectral contrast is defined as the decibel difference between

peaks and valleys in an audio spectrum (19). The objective of

this feature extraction technique is to analyze the contrast in

frequency bands over a harmonic spectrum to quantify perceived

decibel differences. Our team calculated spectral contrast in patient

respiratory audio files using logarithmic spectral differences.

The corresponding equation is shown below (18).

Spectral Contrast(X) =
1

N

N
∑

i=1

∣

∣

∣

∣

∣

∣

log10(Xi)−
1

M

i+L
∑

j=i−L

log10(Xj)

∣

∣

∣

∣

∣

∣

(4)

In this formula, X represents the magnitude spectrum of the

audio signal while Xi is the magnitude at frequency bin i within

a specific frequency band (18). N is the total number of frequency

bins considered andM is the number of neighboring frequency bins

used to calculate the average magnitude (18). Finally, L represents

the half-size of the range of neighboring frequency bins.

2.2.5. Tonal centroids
Tonal centroids can be interpreted as the resting centers of a

pitch or chord. Taken together these centroids help quantify the

central pitches of an audio sequence. They are able to effectively

summarize both the characteristics and tonal movements of

respiratory audio files over time.

The mathematical formulation is shown below where pi
represents the pitch class (0 to 11) and fi represents the frequency

of that pitch class within the audio (18). The sum is taken over

all 12 pitch classes, and the resulting value represents the tonal

centroid (18).

Tonal Centroid =

∑11
i=0(fi × pi)
∑11

i=0 fi
(5)

While tonal centers are most frequently deployed in musical

analysis, they have proven useful within the context of dissecting

patient breathing audio as well. In particular, our team has been

able to extract tonal center values associated with patient coughing,

wheezing, and lung crackling noises from recorded audio.

2.3. Process flow

Our team’s overall process flow is visually summarized in

Figure 1. Initially, raw patient audio recordings and corresponding

annotations were attached together for preprocessing. In total,

there are 920 distinct audio files obtained from 126 patients.

Each patient has only one disease classification label. The original

distribution of diseases across patients and their audio files is shown

below:

FIGURE 1

Process flow chart explaining the methodology inspired from (20).

• Patients {Asthma: 1, Bronchiectasis: 16, Bronchiolitis: 13,

COPD: 785, Healthy: 26, LRTI: 2, Pneumonia: 6, URTI: 14}

• Audio Recordings {Asthma: 1, Bronchiectasis: 16,

Bronchiolitis: 13, COPD: 795, Healthy: 35, LRTI: 2,

Pneumonia: 35, URTI: 23}

Disease labels were given numerical values from 0 to 7 with

“Chronic Obstructive Pulmonary Disease (COPD)” referring

to 0, “Healthy” referring to 1, “Upper Respiratory Tract

Infections (URTI)” referring to 2, “Bronchiectasis” referring to 3,

“Pneumonia” referring to 4, “Bronchiolitis” referring to 5, “Asthma”

referring to 6, and “Lower respiratory tract infection (LRTI)”

referring to 7.

Prior to cleaning raw data, the one-hot encoding procedure is

applied to transform relevant categorical variables. Each category

is turned into a binary vector in this encoding technique, with

the exception of the element corresponding to the category itself

which is set to one. During preprocessing, Asthma and LRTI

were removed due to very low counts in the source dataset. In

the data exploration stage, our team also noticed over 80% of

actual patient diagnoses fell within the COPD class. We used the
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imbalanced-learn (21) toolbox to oversample minority diseases and

undersample the majority representation (COPD) to create a more

balanced dataset for subsequent model training and patient disease

classification.

Applying a combination of over and under-sampling

techniques from the aforementioned library, our team was able

to generate an updated input dataset with less imbalanced sample

sizes across all six diseases. See distribution below:

• Audio Recordings {Bronchiectasis: 73, Bronchiolitis: 63,

COPD: 393, Healthy: 118, Pneumonia: 118, URTI: 82}

After completing data pre-processing activities, 5 features

(mel-frequency cepstrum coefficients, chromagram, mel-scaled

spectrogram, spectral contrast, and tonal centroids) were extracted

from each individual patient recording using a python library

called librosa (22). These features captured critical information

such as respiratory oscillations, pitch content, amplitude of

breathing noises, peaks and valleys in audio, and chord sequences

from the sound recordings. Feature extraction is described in

detail in Section 2.2 of this paper. The results are then stored in

2 patient delineated arrays, one consisting of extracted features

from raw audio files and the other containing corresponding

disease labels.

With above steps completed, the aforementioned data arrays

were segmented into train and test datasets following an 80:20

split. This was done using Python’s Scikit-learn (23) library.

The data was then passed to the deep learning models for

training and validation. For modeling purposes, CNN, LSTM,

CNN ensembled with unidirectional LSTM, and CNN ensembled

with bidirectional LSTM models were implemented. Our team

experimented with the 4 neural networks’ layering structures,

tuned hyper-parameters, selected model checkpoint values, and

calculated early stopping parameters for best classification results.

Additionally, we tested a range of plausible values for every

model parameter across all four neural networks. The algorithms

were designed using Python libraries Tensorflow (24) and Keras

(25). The libraries Numpy (26) and Pandas (27) were also used

for vectorization and data manipulation, respectively. The exact

architectural structure of our deep learning models can be found

in Figures 2A, B, 3A, B.

2.4. Models

2.4.1. Convolutional neural network
Convolutional Neural Networks (CNNs) are a class of deep

learning models widely used in image and audio analysis. They

are particularly effective in extracting spatial patterns and features

from data. In the context of respiratory audio recordings, CNNs

can learn to identify distinctive patterns, such as wheezes and

crackles, which are essential for diagnosing lung diseases. CNNs

use convolutional layers to convolve filters over the input data,

followed by activation functions and pooling layers to reduce spatial

dimensions. This process enables the network to learn hierarchical

representations of the input data, making CNNs a popular choice

for audio classification tasks (28).

FIGURE 2

The Architecture showing the specific layers and the parameters of

the models. (A) This is the LSTM model. (B) This is the CNN model.

2.4.2. Long short-term memory
Long Short-Term Memory (LSTM) is a type of recurrent

neural network (RNN) specifically designed to capture long-term

dependencies in sequential data. Unlike traditional RNNs, LSTM

has a gating mechanism that allows it to retain important

information for an extended period while discarding irrelevant

information (29). In the context of respiratory audio recordings,

LSTM can effectively model sequential patterns, such as respiratory

oscillations and irregularities over time, which are critical for

diagnosing respiratory illnesses. LSTM’s ability to learn from long-

range dependencies makes it suitable for time-series data like

audio signals.
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2.4.3. Convolutional neural network with long
short-term memory

CNN-LSTM is a hybrid model that combines the strengths of

CNNs and LSTMs. In this architecture, the initial layers of the

model use CNNs to extract spatial features from the input data. The

output of the CNN layers is then fed into LSTM layers to capture

temporal dependencies and sequential patterns present in the data

(30). This combination allows the model to effectively process both

spatial and temporal information, making it well-suited for tasks

involving sequential data, such as respiratory audio recordings.

2.4.4. Convolutional neural network with
bidirectional long short-term memory

CNN-BLSTM is another hybrid model that combines CNNs

with Bidirectional LSTMs. Similar to CNN-LSTM, CNN-BLSTM

uses CNN layers for spatial feature extraction. However, in the

subsequent layers, bidirectional LSTMs are employed to process

the data bidirectionally, allowing the model to access both past

and future information in the sequential data. This enables the

model to gain a deeper understanding of the temporal dynamics

and dependencies in the respiratory audio recordings, resulting in

improved accuracy for diagnosing lung diseases (31).

Lung audio data is sequential and exhibits patterns over time.

LSTM models are a type of recurrent neural network (RNN) that

can process sequential data, such as audio signals, by maintaining

a hidden state that encodes the temporal dependencies in the input

sequence (32). LSTM models have a special structure that allows

them to avoid the vanishing or exploding gradient problem that

plagues conventional RNNs. It has memory cells that can store

information over long periods and gates that control the flow of

information into and out of the memory cells (33). Lung diseases

may manifest as subtle, long-term changes in audio patterns.

LSTMs excel at capturing long-term dependencies in data, making

them capable of identifying these complex, nuanced patterns (7).

CNN models are a type of feedforward neural network that

can extract spatial features from the input data by applying

convolutional filters and pooling operations (34). CNNs, by default,

capture short-range dependencies due to their local receptive fields,

and they may struggle with capturing longer-term trends. CNN

models are primarily designed for and are good at handling high-

dimensional and structured data, such as images, but they do not

have the ability to model temporal dependencies in sequential data,

such as audio signals (8).

CNN-LSTM and CNN-BLSTM models are hybrid models that

combine CNN and LSTM layers to leverage the advantages of both

techniques. CNN-LSTM models use a unidirectional LSTM layer

after the CNN layer to process the extracted features sequentially.

CNN-BLSTM models use a bidirectional LSTM layer after the

CNN layer to process the extracted features from both directions

(forward and backward).

The best performing algorithm classifies each patient’s

respiratory audio with one of the following diagnoses: COPD,

Healthy, URTI, Bronchiectasis, Pneumonia, or Bronchiolitis. The

model’s classification results are evaluated with precision, recall,

F1-score, and accuracy metrics. Deploying these deep learning

FIGURE 3

The Architecture showing the specific layers and the parameters of

the models. (A) This is the CNN-LSTM model. (B) This is the

CNN-BLSTM model.

models on respiratory audio data allows for more accurate and

efficient diagnosis of lung diseases, ultimately benefiting patients

and healthcare practitioners alike.

2.5. Performance metrics

A number of performance criteria such as accuracy, precision,

F1-score, and recall were used to assess model performance. Each

of these metrics offers insightful information about a model’s

predictive prowess.
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2.5.1. Accuracy
The accuracymetric provides a sense of howwell a classification

algorithm performs overall. It shows the percentage of instances
that were accurately categorized relative to all instances. The
following equation can be used to calculate accuracy (35):

Accuracy

=
True Positives+ True Negatives

True Positives+ True Negatives+ False Positives+ False Negatives

(6)

2.5.2. Precision
A measure of a model’s accuracy in identifying positive cases

is called precision. In other words, it is the proportion of genuine

positives to the total of both true and false positives (35). The

following equation can be used to determine precision (35):

Precision =
True Positives

True Positives+ False Positives
(7)

2.5.3. Recall
The capacity of the model to accurately detect positive cases is

measured by recall, often referred to as sensitivity or true positive

rate. It measures the proportion of real positives to the total of real

positives and real negatives (35). The following equation can be

used to determine recall (35):

Recall =
True Positives

True Positives+ False Negatives
(8)

2.5.4. F1-score
A balanced indicator of a model’s performance, the F1-score

is a harmonic mean of precision and recall (35). It combines the

precision and recall values into a single score after taking both into

account (35). The following equation can be used to determine the

F1-score (35):

F1-score = 2×
Precision× Recall

Precision+ Recall
(9)

The process of selecting the optimal model and architecture

involved a systematic and empirical approach. It encompassed a

rigorous evaluation using the specific dataset, wherein a diverse

range of layer structures and parameter configurations were

explored. The primary objective was to ascertain the architecture

that exhibits superior performance concerning critical metrics such

as accuracy, precision, recall, and F1-Score in the context of lung

disease detection from respiratory audio data.

2.6. Novelty

Our research’s focus on applying LSTM algorithms to patient

respiratory audio files offers a novel approach to pulmonary disease

diagnostics.

2.6.1. Long-term dependencies
The LSTM architecture is specifically designed to address the

vanishing gradient problem in traditional RNNs, which hinders

the modeling of long-term dependencies in sequential data (29).

In the context of respiratory audio data, where crucial diagnostic

information may span over multiple time steps, LSTM’s ability

to capture long-term dependencies becomes paramount (29).

This allows the model to better discern complex patterns and

variations in respiratory sounds, leading to more accurate disease

classification.

2.6.2. Sequential context understanding
In respiratory audio data, the context of each audio segment is

crucial for accurate diagnosis. LSTM excels in learning sequential

context by maintaining an internal memory cell and carefully

regulating information flow through gate mechanisms. This

mechanism allows the LSTM model to store relevant information

from past audio segments and selectively integrate it into the

current processing, enabling a more comprehensive understanding

of the audio data (36).

The proposed LSTM model shown in Figure 2A has 8,704,578

parameters, 6 LSTM layers and a total of 16 layers, whereas the

hybrid models only have 2 LSTM layers. The additional layered

complexity results in greater accuracy. The proposed LSTM model

that achieves the highest performance has the most complex

architecture with the largest number of parameters.

The paper on the Universal Law of Robustness via Isoperimetry

by Bubeck theoretically affirms that a model with an increased

number of layers possesses greater capacity to effectively learn

and retain complex patterns, consequently enabling the potential

to encompass a larger repertoire of mapping functions by virtue

of having a larger number of layers and parameters (37). The

complexity of the LSTM architecture allows it to model complex

temporal dynamics in audio signals, which is essential for accurate

audio signal processing (38).

Another key novel step in the learning process of LSTM

networks is backpropagation, a technique for calculating

the gradient of a loss function with regard to the network

weights for a single input-output example. Local gradients

are computed at each stage of the backpropagation process,

accumulated, and then back propagated to earlier time steps.

Backpropagation Through Time (BPTT) is a term that is

frequently used to describe this phenomenon. However,

BPTT using conventional RNNs might result in gradients

that vanish or explode. With their distinctive architecture,

LSTMs solve this issue by allowing gradients to continue

to flow across numerous time steps without disappearing

or blowing up, allowing the network to learn from longer

sequences (39).

3. Results

Table 1 presents a comparative summary of predictive

performance among our four deep learning algorithms: LSTM,

CNN, CNN-LSTM, and CNN-BLSTM. These models are assessed

using evaluation criteria such as Accuracy, Precision, Recall, and
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TABLE 1 Accuracy, training time/epoch, precision, recall, and F1-score of di�erent models.

Model name Accuracy (%) Training time/epoch (s) Precision Recall F1-Score

LSTM 98.82 3.005 0.96 0.99 0.97

CNN 87.64 0.000078 0.83 0.82 0.81

CNN-LSTM 97.05 5.008 0.93 0.95 0.94

CNN-BLSTM 97.64 11.016 0.95 0.96 0.96

F1-Score. The model training time is also included in our table to

show relative execution time.

The LSTM model produced the highest scores across all four

evaluation metrics. As such, it is our best performing algorithm. Its

overall predictive accuracy sits at 98.82%. In comparison, the other

3 algorithms achieved accuracy levels of 97.64% for CNN-BLSTM,

97.05% for CNN-LSTM, and 87.64% for CNN. Given our adjusted

input dataset’s imbalanced class distribution, the F-1 Score serves as

amore robust metric to evaluate algorithmic performance due to its

consideration of both Precision and Recall. From this standpoint

LSTM also outperforms its competitors. As shown in Table 1, the

F-1 Scores for LSTM, CNN-BLSTM, CNN-LSTM, and CNN are

0.97, 0.96, 0.94, and 0.81 respectively.

According to the literature, LSTM models perform better than

CNN, CNN-LSTM, and CNN-BLSTM models for lung disease

detection from lung audio signals because: LSTM models can

capture the temporal dynamics and variability of lung sounds better

than CNN models, which only focus on the spatial features. LSTM

models are more robust and can handle noisy and corrupted lung

sounds better than CNN models, which are sensitive to noise and

distortion. LSTM models can generalize better to unseen data and

different lung diseases than CNN models, which tend to overfit

and have poor transferability. LSTMmodels can outperform CNN-

LSTM and CNN-BLSTM models, as the advantages of CNNs

in spatial data processing are not exploitable with audio signal

processing.

To gain deeper insights into the results, we also supply the

output confusion matrix for each respective model (LSTM in

Figure 4, CNN in Figure 5, CNN-LSTM in Figure 6, and CNN-

BLSTM in Figure 7). Confusion matrices compare an algorithm’s

predicted labels against the true labels for every lung disease

category comprising the response variable. By examining the

true positive (TP), false positive (FP), true negative (TN), and

false negative (FN) outcomes, we see that the LSTM model

performs exceptionally well across all lung disease classifications.

For example, it was able to accurately predict all cases of healthy,

URTI, bronchiolitis, and bronchiectasis patients. Additionally, the

remaining two diseases (pneumonia and COPD) were accurately

classified 96% and 95% of the time, respectively.

The runner up algorithm, CNN-BLSTM, also performed well

across all lung disease classifications. As evidenced in Figure 7,

it was able to predict all categories of lung diseases and healthy

controls at a rate of 93% or higher. But it underperformed LSTM

by 5–7 percentage points for healthy, URTI, and bronchiectasis

patients. Finally, CNN was our worst performing algorithm

overall. It struggled to distinguish between healthy patients

and those suffering from upper respiratory tract infections

and pneumonia.

FIGURE 4

LSTM confusion matrix.

4. Discussion

The domain of machine learning classification in healthcare is

currently ripe for exploration. An overwhelming amount of data is

being collected and stored in many different medical fields. Within

the field of pulmonology, some physicians are utilizing digital

stethoscopes to record patient respiratory cycles for diagnostic

purposes. These audio recordings are used to help detect and

confirm irregular breathing patterns such as wheezes and crackles

which may be indicative of certain lung diseases. The purpose of

our research is to develop a robust machine learning tool to aid

physicians in their pulmonary diagnostic endeavors. Timely and

correct diagnosis is crucial for effective treatment, making deep

learning methods cost-effective and time-efficient for both patients

and practitioners.

Several other studies have also used deep learning algorithms

to classify patient respiratory audio files (4, 5, 8). For example, Kim

et al. (5) attained an accuracy score of 86.5% using convolutional

neural networks to categorize 1918 respiratory sounds recorded

in the clinical setting. Acharya et al. (4) achieved an accuracy of

71.81% using a CNN-RNN hybrid model to identify breathing

sound anomalies for automated diagnosis of respiratory diseases.
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FIGURE 5

CNN model confusion matrix.

FIGURE 6

CNN-LSTM confusion matrix.

In contrast, our team’s LSTMmodel reaches an improved accuracy

of 98.82%, indicating its potential for clinical use.

In comparison to the LSTM model, the CNN-BLSTM

algorithm presents a possible alternative approach. By integrating

spatial information extraction from CNN convolutional layers

and temporal dependency modeling through bidirectional LSTM

layers, it combines the strengths of both CNN and LSTM. This

unique architecture allows the model to access both past and future

information, enhancing its understanding of the input data.

FIGURE 7

CNN-BLSTM model confusion matrix.

Despite its upside, this study does have certain limitations that

should be addressed in future iterations. For example, the input

dataset was heavily skewed toward COPD, the most prominent

class. To address this imbalance, we employed oversampling

and undersampling techniques to balance the training set. While

oversampling can be helpful, it introduces some bias into the

model. Moving forward, we would like to curate a more balanced

dataset that encompasses high-quality audio data from a diverse

body of patients. Future studies would benefit from an extensive

data gathering stage to ensure a comprehensive and representative

dataset.

A major contributor to our LSTM model’s high predictive

accuracy is rigorous feature engineering. Prior studies like Kim

et al. (5) and Acharya et al. (4) leveraged mel-spectrogram

to convert input audio files into images for classification.

Moreover, Hsu et al. (8) used spectrogram,mel-frequency cepstrum

coefficients, and energy summation to enable adventitious sound

detection. Our model built upon prior research to deploy a

combination of MFCC, chromagram, mel-scaled spectrogram,

spectral contrast, and tonal centroid input features for algorithm

training. This specific combination of feature variables captured

critical information such as respiratory oscillations, pitch content,

breathing amplitude, audio peaks/valleys, and chord sequences

from input audio files. Although integrating the aforementioned

features increases model complexity compared to peer papers, it

succeeds in boosting overall predictive accuracy.

In addition to feature engineering respiratory audio, our team

also calibrated and tuned over 8 million model parameters, leading

to our finalized LSTM algorithm (see Figure 2A). The algorithm

consists of approximately 16 layers total. Each layer takes a 3D

tensor as input with the following dimensions: batch_size, time

steps, input_features. The output shape of each LSTM layer is

(none, 193, n). 193 represents the number of time steps in the
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input sequence while “n” denotes the number of LSTM units in

each layer. Six dropout layers are deployed to prevent model over

fitting by randomly dropping nodes from the previous LSTM layer.

After the last LSTM layer, a 1D max-pooling layer reduces time

steps by selecting the maximum value from a set. The output

shape then becomes (none, 96, 32) with 96 time steps and 32

features. Following max pooling, a flatten layer converts the 3D

tensor into a 1D tensor with 3,072 elements. Two dense layers

follow the flatten layer for classification purposes. The first dense

layer has 100 neurons while the second has 6 neurons, representing

the 6 possible lung disease classifications our algorithm is capable

of predicting.

An area of our work that warrants further exploration is neural

network quantization. Quantization is a process that takes the

weights, biases, and activation functions established during training

and converts the corresponding 32-bit floats to 8-bit integers.

This can significantly reduce a model’s memory footprint while

still maintaining state-of-the-art accuracy. Using a quantization

model, we can theoretically deploy our real-time diagnostic

tool in resource constrained platforms such as cell phones

or tablets.
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