AUTHOR=Gibson David , Tran Thai , Raveendran Vidhur , Bonnet Clémence , Siu Nathan , Vinet Micah , Stoddard-Bennett Theo , Arnold Corey , Deng Sophie X. , Speier William TITLE=Latent diffusion augmentation enhances deep learning analysis of neuro-morphology in limbal stem cell deficiency JOURNAL=Frontiers in Medicine VOLUME=Volume 10 - 2023 YEAR=2023 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2023.1270570 DOI=10.3389/fmed.2023.1270570 ISSN=2296-858X ABSTRACT=Limbal Stem Cell Deficiency (LSCD) is a blinding corneal disease characterized by the loss of function or deficiency in adult stem cells located at the junction between the cornea and the sclera (i.e. the limbus), namely the limbal stem cells (LSCs). Recent advances in in vivo imaging technology have improved disease diagnosis and staging to quantify several biomarkers of in vivo LSC function including epithelial thickness measured by anterior segment optical coherence tomography, and basal epithelial cell density and subbasal nerve plexus by in vivo confocal microscopy. A decrease in central corneal sub-basal nerve density and nerve fiber and branching number has been shown to correlate with the severity of the disease in parallel with increased nerve tortuosity. Yet, image acquisition and manual quantification require a high level of expertise and are time-consuming. Manual quantification presents inevitable interobserver variability. The current study employs a novel deep learning approach to classify neuron morphology in various LSCD stages and healthy controls, by integrating images created through latent diffusion augmentation. The proposed model, a residual U-Net, is based in part on the InceptionResNetV2 transfer learning model. The model trained on data that contained images generated through latent diffusion on average outperformed the same model when trained on solely original images. This suggests that utilizing latent diffusion to supplement training data may be effective in bolstering model performance. The results of the model emphasize the ability as well as the shortcomings of this novel deep learning approach to predict various nerve morphology metrics as well as LSCD disease severity.