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Currently, there are a large number of reports about the development of 
autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-
like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since 
one of the etiological theories of sarcoidosis considers it to be an autoimmune 
disease, we decided to study changes in the adaptive humoral immune response 
in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 
can provoke the development of sarcoidosis. This review discusses histological 
changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell 
subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells 
(Tfr), and analyzes various autoantibodies detected in these pathologies. Based 
on the data studied, we  concluded that SARS-CoV-2 infection may cause the 
development of autoimmune pathologies, in particular contributing to the onset 
of sarcoidosis in convalescents.
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1 Introduction

Sarcoidosis remains to be recognized as one of the granulomatous diseases of unknown 
etiology (1). Multiple conducted studies confirm one of the most common theories regarding 
autoimmune pathogenesis behind the emergence of granulomatous inflammation that might 
result from bacterial and viral agents, inorganic and organic substances, vaccines, etc. (Figure 1) 
(2, 3). The current concept implies that caseous necrosis-free granuloma arises due to the 
aforementioned cues in genetically predisposed subjects, followed by the development of self-
recovery or chronicity of clinical and multi-organ alterations (4–6).

Granuloma formation occurs in intrathoracic lymph nodes, lungs, skin, heart, and other 
organs upon contact with antigen-presenting cells (macrophages, dendritic cells, activated 
epithelial cells) by a triggering agent, followed by the development of unregulated autoimmune 
inflammation, additionally characterized by an imbalance between pro- and anti-inflammatory 
acquired immune cell subsets (T- and B lymphocytes) as well as regulatory T cells (7–9). 
Moreover, a tight link between sarcoidosis and COVID-19 caused by SARS-CoV-2 has been 
hypothesized, which may be another new trigger agent related to sarcoidosis, capable of either 
provoking or exacerbating it (10–12).
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In early 2023, based on the analysis of the medical records of 
approximately 6 million subjects, it was shown that prior SARS-CoV-2 
infection elevated the risk of developing a wide range of autoimmune 
diseases, including rheumatoid arthritis, ankylosing spondylitis, 
systemic lupus erythematosus, dermatopolymyositis, systemic 
sclerosis, Sjögren’s syndrome, mixed connective tissue disease, Behçet’s 
disease, rheumatic polymyalgia, vasculitis, psoriasis, inflammatory 
bowel disease, celiac disease, and type 1 diabetes (13). It is believed 
that genetic and environmental factors act as the major causes 
contributing to the development of autoimmune diseases, whereas 
infectious events coupled with viral, bacterial, and fungal infections 
may serve as one of the most crucial triggers in the emergence of 
immune system impairment resulting in autoimmunity (14). 
Moreover, mechanisms such as molecular mimicry, recognition of 
similar epitopes derived from protein molecules, and polyclonal 
activation of T- and B cells may affect virus-induced autoimmune 
diseases. Similarly, an important cue resulting in the development of 
autoimmune pathologies may be  an uncontrolled inflammatory 
response related to the overproduction of pro-inflammatory cytokines 
(15), which may be  closely related to a cytokine storm in severe 
COVID-19 and long-COVID-19 sequelae, including autoimmune 
reactions (16–18). In this regard, it has been reported that psoriatic 
arthritis (19, 20), systemic lupus erythematosus (21, 22), and other 
organ-specific and systemic autoimmune manifestations (23, 24) can 
be  observed after COVID-19 infection. Moreover, 33 aberrantly 
expressed genes common to COVID-19 and sarcoidosis were 
discovered and functionally analyzed to reveal that such genes are 
associated with the production of cytokines involved in the immune 
response and T cell cytokine production (25). In addition, 
inflammatory aggregates consisting of macrophages, multinucleated 
epithelioid cells, and CD4+ T cells that histologically resembled 
sarcoidosis-related granulomatous events were detected during 
postmortem examination of lung biopsies from COVID-19 patients 
(26–28).

The aim of the review was to determine autoimmune features in 
patients with sarcoidosis and to assess immune disorders as predictors 
of activation and progression post-COVID-19.

2 Review analysis methods

We analyzed original papers and reviews covering the period from 
December 2019 to May 2023, published in accessible international 
databases (“Medline,” “PubMed,” and “Scopus”), with queries for the 
keywords “COVID-19,” “SARS-CoV-2,” “sarcoidosis,” “Treg,” 
“follicular Treg,” and “Treg subsets.” Inclusion criteria were as follows: 
original research with observation of patients with sarcoidosis and 
COVID-19, meta-analysis, reviews, and research articles; exclusion 
criteria: books, clinical trials, and clinical cases.

The analysis was carried out in accordance with the PRISMA 
protocol1 used for this type of study.

3 Onset of sarcoidosis during or after 
COVID-19

Granuloma formation associated with clinical cases in post-
COVID-19 patients is one of the most crucial confirmations of this 
event after a coronavirus infection. Clinical cases accompanied by the 
emergence of symptoms and manifestations of sarcoidosis during or 
after COVID-19, in addition to post-vaccination after the SARS-
CoV-2 infection, are shown in Table 1.

Hence, patients of different sexes and ages during or 2–3 weeks 
after the onset of COVID-19 had various manifestations of sarcoidosis, 

1 http://www.prisma-statement.org

FIGURE 1

A putative scheme of the development of sarcoidosis. ↑—high level; ↓—low level. The figure was drawn by the authors.
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ranging from cutaneous erythematous manifestations to pulmonary 
infiltrative changes. For example, a 72-year-old woman was found to 
have cutaneous painful, firm nodules representing noncaseating 
sarcoid-like granulomas, presented 2 weeks after recovery from 
COVID-19 pneumonia (29).

Another female patient was found to have swelling over old scars 
and de novo papules and vesicles 1 month after being diagnosed with 
COVID-19. Dense subcutaneous nodules appeared on the elbows. 
A needle biopsy obtained from an old scar-infiltrated plaque 
revealed during histopathological examination non-necrotic 
exposed granulomas in the superficial and deep dermis, suggestive 
of sarcoid granuloma. Similar data were obtained after an excisional 
biopsy of the subcutaneous nodule. However, no SARS-CoV-2 RNA 
was detected in the affected areas (30). Similar symmetrical 
erythematous non-pruritic papules and plaques were observed in a 
57-year-old COVID-19 convalescent woman who was found to have 
sarcoid granulomas after histological examination of a skin 
biopsy (33).

Some patients were noted to have bilateral lymphadenopathy 
affecting hilar, paratracheal, and subcarinal lymph nodes based on 
chest CT scans performed 10 weeks after COVID-19. At the same 
time, panuveitis and papillitis were simultaneously found. Histological 
examination of transbronchial biopsy samples from intrathoracic 

lymph nodes revealed pathological sarcoid granulomas (31). Such 
data were recapitulated when examining the patient 14 months after 
severe COVID-19 (32). The development of cardiac sarcoidosis after 
acute COVID-19 has been rarely described (37). One of the recently 
published cases described an infiltrative process based on respiratory 
CT data paralleled with a severe cough. The patient was also found to 
have painful 2–3 cm cutaneous erythematous changes after COVID-19 
infection (34). In addition, histochemical examination of a similar 
clinical case revealed a large number of specifically stained CD4+ T 
cells along the periphery of the granuloma (35).

Thus, it can be concluded that SARS-CoV-2 may be one of the 
cues resulting in the development of sarcoidosis-related inflammatory 
changes, ranging from affected skin to lymphadenopathy and 
pulmonary infiltrative foci, which may be paralleled by profoundly 
altered T and B cell immune responses.

4 B cell subset alteration in sarcoidosis 
during COVID-19

The phenotypic profile of B cells may indirectly mirror the 
functions of some B cell subsets and, therefore, their relevant role in 
the pathogenesis of sarcoidosis and COVID-19.

TABLE 1 Clinical cases of sarcoidosis onset during or after COVID-19.

Authors, year of 
publication

Patients
(sex, age)

Onset of 
symptoms

Symptoms Treatment and outcome

Behbahani et al. (29) Woman, 72 years old 2 weeks after recovery 

from COVID-19 

pneumonia

Cutaneous, painful, firm nodules 

representing noncaseating sarcoid-like 

granulomas

Clobetasol ointment: granulomas 

gradually reduced within 25 days.

Polat Ekinci (30) Woman, 55 years old 2–3 weeks after COVID-19 Sarcoid-like granulomas mimicking 

cicatricial syndrome. 1–2 cm round, mobile 

and tender subcutaneous nodules on both 

arms, 3–4 mm size three subcutaneous 

papules in the periorbital area

No treatment was administered to the 

female patient due to the lack of any 

evidence of systemic sarcoidosis, and the 

lesions began to regress spontaneously 

within one month.

Somboonviboon (31) Man, 35 years old 10 weeks after COVID-19 Bilaterally enlarged hilar, paratracheal, and 

subcarinal lymph nodes revealed by CT. 

Panuveitis and papillitis found during an eye 

examination

One-month of prednisolone therapy 

resulted in reduced intrathoracic lymph 

nodes, improved vision, and reduced 

hyperemia of the optic nerve head.

Capaccione (32) Man, 61 years old 14 months after severe 

COVID-19

Lymphadenopathy of mediastinal and 

intrathoracic lymph nodes

Systemic prednisolone therapy

Rodrigues (33) Woman, 57 years old After COVID-19 Erythematous, symmetrical, non-pruritic 

papules and plaques

Systemically administered prednisolone 

together with Azathioprine. Clinical 

improvement.

Palones (34) Woman, 45 years old 2 weeks after COVID-19 

onset

Cough and 2–3 cm erythematous skin rashes, 

painful on palpation. CT showed lung 

infiltrates with granulomatous changes.

Inhaled corticosteroids: six-month 

follow-up X-ray improvement

Rabufetti (35) Man, 31 years old 2 weeks after COVID-19 

onset

Erythematous skin lesions and mediastinal 

lymphadenopathy found by CT

Systemically administered prednisolone: 

regression of skin lesions

Pokhriyal (36) Man, 64 years old 1 week after COVID-19 

onset, using PCR (+)

Shortness of breath and symptoms of 

pneumonia concomitant with a large 

6.3 × 4.7 cm size lung mass detected in the 

right upper lobe along with enlarged bilateral 

lymph nodes with signs of granulomatous 

inflammation

Simultaneously administered inhaled 

corticosteroids together with systemic 

prednisolone therapy: clinical and X-ray 

improvement.
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The role of the adaptive humoral arm in the pathogenesis of 
sarcoidosis is additionally evidenced by data showing that one of the 
signs of this disease is coupled to polyclonal hypergammaglobulinemia 
(38). Despite this, several reports noted that patients with sarcoidosis 
have normal serum immunoglobulin levels (39), but molecular 
biological analysis of IgA and IgG transcripts revealed a high 
frequency of somatic hypermutations suggesting persistent antigenic 
B cell stimulation (40). In addition, the latter study using histological 
methods showed B cell accumulation in pulmonary foci, which agrees 
with previous observations (41).

Recent studies described that patients with sarcoidosis had 
reduced levels of peripheral blood “naïve” IgD + CD38– and memory 
IgD–CD38+ and IgD–CD38– B cell subsets, while activated 
IgD + CD38+ and IgD + CD38++ were increased (42). This may be due 
to the migration of such cells to the lymph nodes and, possibly, to the 
foci of inflammation (43). Further investigation allowed to identify 
that the peripheral blood memory B cell population was altered in 
sarcoidosis patients compared to healthy subjects due to the decreased 
levels of “unswitched” (IgD + CD27+) and “class-switched” 
(IgD − CD27+) memory B cells, whereas the levels of 
CD19 + CD24+++CD38+++ and CD19 + CD5 + CD27– regulatory B 
cells were increased (42). The latter B cell phenotype is characterized 
by a stronger anti-inflammatory potential due to IL-10 production 
(44). Saussine et al. also found a higher count of IL-10-producing 
regulatory B cells in the peripheral blood of active chronic sarcoidosis 
patients (43). Classically, it is recognized that the CD5+ B cells could 
be  found in various human tissues being capable of autoantibody 
production (including rheumatoid factor and anti-ssDNA antibodies) 
and that the count of CD5+ B cells is expanded in autoimmune 
diseases such as rheumatoid arthritis and Sjögren’s syndrome (45, 46). 
Unfortunately, little is known about the functional potential of CD5+ 
B cells and the role they may play in the pathophysiologic mechanisms 
of human autoimmune diseases. In mouse models, CD5+ B cells have 
been shown to belong to a B1a subset that is typically located in the 
peritoneum and produces low-affinity autoreactive IgM antibodies 
(47). Furthermore, IL-10 is produced by CD5+ B cells and is involved 
in the regulation of autoimmunity during experimental autoimmune 
encephalomyelitis in mice (48). In humans, CD5 expression could 
be found on the cell surface of CD24+++CD38++ T1 transitional B 
cells (49), but recent data suggest that these cells are capable of 
producing low levels of IL-10 compared with other transitional B cell 
subsets (50). Intriguingly, some reports show that CD5 can 
be considered an activation marker for human B cells. Hence, human 
CD5-negative B cells may be  suggestive of an in vitro activated 
population after exposure to phorbol-myristic acetate (PMA) or EL4 
thymoma cells, which turn into CD5-positive cells (51). Finally, 
human CD5+ B cells have not been clearly characterized, although 
they may act as additional diagnostic and therapeutic targets in several 
autoimmune diseases.

In addition, high-frequency CD19+/–CD20–CD27++ 
plasmablasts in peripheral blood have been demonstrated in 
sarcoidosis (52). A special role in the development of inflammation 
has been attributed to IgA+ plasmablasts, which are found in 
substantial numbers in the peribronchial infiltrates of sarcoidosis 
patients (53). To assess B cell activation, serum B cell activating factor 
(BAFF), belonging to the TNF family, was also analyzed and found to 
be  elevated in sarcoidosis, paralleling the activated inflammatory 
process (43, 54). BAFF levels were correlated with severe disease 

course and clinical manifestations (55). Moreover, elevated vitreous 
BAFF levels have been also noted in patients with sarcoidosis uveitis 
(56, 57) and granulomas in skin lesions of sarcoidosis (58). Hence, 
activated B cells are involved in granuloma formation and contribute 
to the development of not only systemic but also local 
inflammatory events.

Thus, B cells in sarcoidosis predominantly bear an “activated” 
phenotype, likely as a compensatory response due to the 
hyperactivation of pro-inflammatory immune cells and their 
migration into affected tissues. An increased count of 
CD19 + CD5 + CD27– cells in bronchoalveolar lavage has been 
previously reported in sarcoidosis (59), thereby confirming the 
assumption that Breg cells counteract to suppress inflammatory 
reactions. However, Breg cells may also contribute to disease 
progression. In this regard, Mengmeng et al. uncovered an elevated 
CD19 + CD24 + CD38+ Breg cell count in peripheral blood in active 
sarcoidosis. Moreover, the level of peripheral blood IL-35-producing 
Bregs was elevated and correlated with disease activity, while anti-
IL-35 antibodies provided better control of sarcoid granuloma 
development in mice (60). Hence, Breg function in sarcoidosis 
remains underinvestigated, while recent studies suggest an ambiguous 
role such cells may play in disease pathogenesis.

B cells also play an important role in the pathogenesis of 
COVID-19 (61–63). The quality of the B cell response, including the 
development of high-affinity antibodies and memory B cells, is 
necessary to prevent the spread of infection and rapid virus 
elimination (64). In this regard, patients with COVID-19 were found 
to have decreased peripheral blood “naive” B cell levels along with 
elevated plasmablast counts (65). Moreover, Kudryavtsev et  al. 
discovered a decline in peripheral blood memory B cell levels along 
with increased plasmablast counts during acute vs. convalescent 
COVID-19 in healthy volunteers [I. V. (66)]. Further investigation 
allowed to find that the peripheral blood levels of “class-switched” 
(IgD-CD27+) and “unswitched” (IgD + CD27+) memory B cells were 
significantly reduced during acute disease, while the percentage of 
double-negative (DN) memory B cells (CD27-IgD-) was markedly 
increased (67).

Based on the surface expression of CD21 and CD11c, DN 
memory B cells can be  divided into four subsets: DN1 
(CD21 + CD11c–), DN2 (CD21–CD11c+), DN3 (CD21–CD11c–), 
and DN4 (CD21 + CD11c+). DN1 B cells (CD21 + CD11c-) were 
significantly reduced in severe and critical cases, but not in mild/
moderate ones, compared with healthy subjects; DN2 B cells (CD21–
CD11c+) were significantly increased in severe, mild/moderate, and 
critical cases; the DN3 (CD21–CD11c–) subset increased along with 
escalating disease severity; and the DN4 subset was not determined 
in peripheral blood samples from either COVID-19 or healthy 
subjects (68, 69). In COVID-19, the DN3 B cell subset may migrate 
to the site of inflammation to further contribute to developing 
formation (68). Moreover, this cell type can also contact CD4+ T cells 
in the lungs, thereby accounting for local antibody production (68). 
The presence of the DN3 subset may be  related to a dominant 
extrafollicular B cell response, implying earlier production of 
antibodies with low-affinity maturation, a lack of memory cell 
formation, or the emergence of “short-lived memory B cells” unable 
to produce high-affinity antibodies upon repeated antigen encounters 
(64, 69). Indeed, it has been shown that peripheral blood IgM-positive 
DN2 and DN3 B cell subsets dominate in patients with severe 
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COVID-19 (70). Moreover, some studies have reported high levels of 
“extra-follicular” B cell development and low efficiency of somatic 
mutagenesis during B cell maturation in peripheral lymphoid organs 
(71, 72), which may also be paralleled with the emergence of low 
affinity antibodies that can, among other effects, elicit autoreactivity. 
A recent study demonstrated a positive correlation between 
peripheral blood DN3 B cell subset levels and autoreactive antibodies 
such as anticardiolipin IgG, antichromatin IgG, and Smith antigen 
IgG in COVID-19 patients (70). In addition, the increased count of 
peripheral blood DN B cells in COVID-19 may suggest the prevalence 
of the “extra-follicular” pathway for B cell development during the 
antigen-specific humoral response that may be predominant in the 
severe disease course (73, 74). Furthermore, the prevalence of “extra-
follicular” mechanisms in antigen-dependent B cell maturation has 
been observed in a typical autoimmune disease such as systemic 
lupus erythematosus (75, 76).

Such alterations in developing B cells are also suggested by the 
high serum BAFF levels observed in severe acute COVID-19 (77, 78). 
COVID-19 non-survivors vs. survivors demonstrated higher serum 
BAFF levels (79). Moreover, upregulated lung BAFF expression was 
observed in COVID-19 infection (80), while Alturaiki et al. found 
higher blood BAFF levels in mild SARS-CoV-2 (81). Elevated BAFF 
levels may underlie the maintenance of autoreactive B cell clones 
because this cytokine promotes the survival of CD38high B cells (82, 
83), which are able to secrete autoantibodies, therefore suggesting the 
risk of developing autoimmune pathologies during the long 
COVID-19 syndrome. On the other hand, anti-BAFF monoclonal 
antibodies can be effective in the treatment of autoimmune pathologies 
(84), which could be a crucial component in lowering the risk of 
developing autoimmune reactions in severe COVID-19 cases.

B cell hyperactivation was also observed after COVID-19 
recovery, which can be  considered part of the post-COVID-19 
syndrome, resulting in autoimmune reactions. It is known that both 
the percentage and the absolute count of activated B cells bearing a 
CD19 + CD80 + /CD86 + phenotype remain at a high level after 
recovery (85). Moreover, COVID-19 convalescents have also been 
observed to have high peripheral blood levels of upregulated surface 
PD1-positive plasmablasts and plasma cells (85). In addition to high 
CD86 expression on B cells, Castleman et al. (86) found high levels of 
the activation molecule CD69 on CD19+ B cells in COVID-19 
convalescents, who were also noted to have a greater percentage of 
memory B cells compared to acute COVID-19 [I. V. (66)]. However, 
such cells may be involved in autoreactive effects post-infection, as 
was found by Vijayakumar et  al., who showed that patients who 
experienced acute respiratory distress syndrome (ARDS) as part of the 
post-COVID-19 respiratory syndrome had an increased number of 
airway IgD–CD27+ memory B cells that correlated with CT scan-
detected respiratory abnormalities (87). Overall, there is evidence of 
impaired B cell function after SARS-CoV-2 infection and aberrant 
expression of major B cell markers, e.g., in patients after severe 
COVID-19 who experienced downregulated B cell CD19 expression 
1 year later (88), which may affect B cell activation upon antigen 
recognition. Furthermore, after severe COVID-19, patients were 
noted to lack surface CD21 (involved in the transduction of the 
surface B cell receptor-linked activating signal) typical of activated 
self-reactive B cells (86). The levels of the surface inhibitory molecules 
CD22 and CD72 on B cells were also found to be downregulated. 
BCR-linked stimulation of B cells with a similar phenotype resulted 

in hyperactivation of BCR-coupled effector molecules such as pSYK, 
pBLNK, and pPLCγ2 (86).

5 Autoantibodies in sarcoidosis and 
COVID-19

As mentioned above, the adaptive humoral arm is of particular 
importance in the pathogenesis of sarcoidosis. In addition to antibody 
production, some B cell subsets may also play a regulatory role by 
suppressing activated immune cells through the secretion of anti-
inflammatory cytokines such as IL-10 and IL-35 (89).

Recent studies assessing the autoantibody profile demonstrate that 
class M (IgM) and class G (IgG) immunoglobulins are produced (90), 
which are able to specifically recognize proteins expressed in different 
human tissues targeted by sarcoidosis. For instance, uveitis in 
sarcoidosis patients was noted to be associated with elevated levels of 
anti-retinal autoantibodies (91). Caforio et  al. found that 
cardiomyocyte-specific and anti-intercalated disc autoantibodies are 
produced in cardiac sarcoidosis (92). Hence, such findings were 
mainly observed in cardiac sarcoidosis (92). In addition, other studies 
have reported autoantibodies against cytoskeletal components and 
lysosomal trafficking proteins, regardless of the organ affected (93). 
Moreover, patients with sarcoidosis often had high antinuclear 
antibody (ANA) titers (58), anti-dsDNA antibodies (94), and those 
recognizing cyclic citrullinated peptides (95). Analyzing samples 
collected from 154 sarcoidosis patients uncovered elevated levels of 
anti-mitochondrial antibody-M2, anti-Ro52, anti-Ro60, anti-SSB, 
anti-P0, anti-CCP, anti-β2-GP, anti-Sm antibodies, and rheumatoid 
factor (RF) (96). Bronchoalveolar lavage fluid and sera from patients 
with sarcoidosis have been found to contain large amounts of IgG 
capable of specifically recognizing a wide range of different 
autoantigens (97).

Recently, the theory describing the development of autoantibodies 
against vimentin has become widespread. Bagavant et al. revealed an 
increased anti-vimentin IgG titer in patients with sarcoidosis vs. 
healthy subjects (98). However, despite the discovery of anti-vimentin 
autoantibodies, other studies refuted that they could have a profound 
impact on the overall pathogenesis of the disease (99). Therefore, the 
question regarding the role of autoantibodies in the pathogenesis of 
sarcoidosis remains open. In this context, an experimental model of 
granulomatous inflammation has been proposed after inoculating 
mice with vimentin-rich patient-derived blood samples (98).

Both during and after acute COVID-19, phenotypical and 
functional impairment of B cells was noted when they acquired the 
potential to produce autoreactive antibodies. B cells are mainly known 
to produce antibodies as a determining arm of adaptive humoral 
immunity in both infectious events and autoinflammation. There are 
emerging data regarding the activation of autoreactive B cell clones in 
patients with COVID-19 (100). Moreover, COVID-19 convalescents 
were noted to contain peripheral blood autoantibodies against various 
cytokines (IFN-α, IFN-ω, IFN-γ, IL-1β, IL-6, IL-10, IL-17, IL-21, and 
GM-CSF) and chemokines (CCL2, CXCL1, CXCL7, CXCL13, and 
CXCL16) (101, 102). In addition, elevated titers of autoantibodies 
specific for chromatin, cardiolipin, and Smith antigen have been 
observed (86). The latter was found in systemic lupus erythematosus 
(SLE) (103). At the same time, Chang et al. uncovered anti-cytokine 
autoantibodies in acute COVID-19 [S. E. (104)], which were found in 
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approximately 50% of 147 COVID-19 convalescent patients. Another 
study showed that 101 out of 987 patients during acute SARS-CoV-2 
infection had type I  interferon-neutralizing antibodies, including 
those targeting IFN-ω (13 patients), 13 different types of IFN-α (36 
patients), or both (52 patients) (105). It should be  noted that the 
appearance of anti-type I IFN antibodies has also been observed in 
classic autoimmune diseases such as systemic lupus erythematosus 
(106) and systemic sclerosis (107). Furthermore, that study also 
identified three patients bearing blocking antibodies against IL-6, 
IL-22, and IL-12p70 (105). Another study obtained similar data (108), 
demonstrating that COVID-19 patients had elevated levels of 
autoantibodies recognizing various immunomodulating cues, 
including cytokines, chemokines, complement components, and cell 
surface proteins. Hence, it has been suggested that such autoantibodies 
interfere with the effective functioning of the human immune system 
and affect immune control of viral infection by inhibiting cell-to-cell 
signaling and altering the composition of circulating immune cells, 
ultimately exacerbating the severity of SARS-CoV-2 infection.

Interestingly, Woodruff et al. showed that virtually no antibodies 
against Sm/RNP, Ro, La, and dsDNA were detected in severe 
COVID-19 cases, whereas antinuclear antibodies were detected in 
approximately 40% of these patients (109). Moreover, approximately 
40% of COVID-19 patients had antibodies against carbamylated 
vimentin (anti-CarP), which plays an important role in the destruction 
of connective tissue in SLE and rheumatoid arthritis (110, 111).

On the other hand, the majority of patients with ARDS were 
found to have elevated antinuclear antibody levels (112), which raises 
the question of the existence of similar mechanisms underlying lung 
damage in SARS-CoV-2 infection and exacerbation of some 
autoimmune diseases, including SLE and rheumatoid arthritis (113). 
Similar data have been obtained by several independent groups 
describing elevated antinuclear antibody (ANA) and antineutrophil 
cytoplasmic antibody (ANCA) titers after acute COVID-19 (112, 114, 
115). Moreover, ANAs may be closely related to hair loss as a part of 
the long COVID-19 syndrome (116). On the other hand, detected 
rheumatoid factor may be another example of emerging autoantibodies 
after COVID-19, whose increase during acute disease was closely 
associated with its severe and critical course (117). Other studies 
described anti-platelet autoantibodies as able to markedly impact the 
severity of acute coronavirus disease (118). Gagiannis et  al. also 
observed an elevated titer of anti-PM-Scl−/anti-Scl-70 antibodies in 
patients who developed pulmonary fibrosis, which raises the question 
of long-term consequences related to severe COVID-19. In addition, 
the detection of increased autoantibody titers specific to phospholipids 
(anticardiolipin, anti-β2-glycoprotein I, anti-phosphatidylserine/ 
prothrombin) in acute COVID-19 has also been reported (119–121).

Furthermore, anti-cytokine autoantibodies associated with 
human inborn genetic defects mimic primary immunodeficiencies. 
Such pathologies are called “phenocopies of inborn errors of 
immunity” (122) and are often found in adults (123). Due to the 
appearance of autoantibodies specific for various kinds of cytokines, 
such as autoantibodies against type I IFN, IFNγ, GM-CSF, IL-17A, 
IL-17F, IL-22, IL-23, and IL-6, patients are predisposed to various 
infectious diseases, as well as bacterial, fungal, or viral infections 
(124). Patients with inborn defects in the IFNAR1 and IFNAR2 genes 
encoding type I IFN have a severe course of acute respiratory viral 
infections such as influenza and COVID-19 (105, 124). Neutralizing 
autoantibodies related to SARS-CoV-2 or phenocopy of inborn errors 

of immunity leads to severe infection and contributes to 
autoimmune disease.

An autoantibody spectrum detected in sarcoidosis and COVID-19 
is shown in Table 2.

6 Alterations in Th subsets in patients 
with sarcoidosis and acute COVID-19.

It should be noted that the pathogenesis of sarcoidosis has long 
been associated with Th1 cell hyperactivation (125); sometime later, 
the key role in its development was considered to be due to altered  
Th1/Th17 cell ratios in the foci of granuloma formation (126). 
Currently, it is also common to pay attention to Th2 cells as a potential 
player in granuloma formation (127). This assumption is confirmed 
by clinical observations pointing to increased levels of peripheral 
blood CCR4 + CD4+ cells in sarcoidosis, as well as elevated 
concentrations of CCL17 chemokines both in the blood serum and at 
the site of granuloma formation (128). Moreover, underlying in vivo 
experimental models of pulmonary fibrosis demonstrated the key role 
of CCR4 ligands (primarily CCL17, but also CCL22) in tissue fibrosis, 
where blockade of CCL17 effects in mice resulted in lesion reduction 
(129). Excessive Th2 cell activation in patients with sarcoidosis is also 
confirmed by upregulated expression levels of IL-13 mRNA (one of 
the key Th2 cytokines) in peripheral blood mononuclear cells (130). 
Moreover, animal models (131) and tissue specimens obtained from 
patients with sarcoidosis (132) showed that hyperproduction of Th2 
cytokines is accompanied by tissue macrophage activation and 
differentiation toward the M2 phenotype, which contributes to the 
development and maintenance of tissue foci of chronic inflammation, 
the formation of granulomas, and foci of fibrosis.

Apart from analyzing the balance between Th1 and Th2 cells, 
studies investigating the pathogenesis of sarcoidosis have paid special 
attention to the role of Th17 cells and their specific subpopulations. 
Data on temporal changes in peripheral blood Th17 cells are very 
conflicting, because some studies indicate an increased level of CCR6+ 
effector T helper cells (CD45RA-CD45R0+) in patients vs. controls 
(133), whereas others evidence that, for example, the level of IL-17A-
producing cells in patients’ peripheral blood was markedly below the 
control range (134). We found no significant differences in the level of 
CCR6-expressing Th cells not only between acute or chronic onset 
sarcoidosis but also when compared with the control group. At the 
same time, elevated blood serum levels of cytokines and chemokines 
such as IL-17, IL-22, IFN-γ, and CCL20 produced by patient Th17 
cells are noted in the majority of studies (135). Subsequently, higher 
levels of these cytokines have been shown to be contained not only in 
bronchoalveolar lavage fluid (BALF) and granulomatous tissue but 
also in the cell types involved in their production (136). In parallel, the 
discovery of a fundamentally novel T helper cell population, T helper 
17 (Th17) cells, in addition to a unique highly specialized subtype, 
Th17.1 cells, capable of producing both Th1 and Th17 cytokines, 
including IFNγ and IL-17A, suggested that sarcoidosis might 
be autoimmune in nature (137, 138). A series of studies have detected 
higher levels of Th17.1 cells and related proinflammatory cytokines in 
the peripheral blood and BAL fluid in sarcoidosis (133, 139). 
Moreover, the level of total CCR6+ Th cells, including Th17.1 cells, 
was significantly increased in lung-related lymph nodes of patients 
compared to controls (140).
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Regarding the pathogenesis of COVID-19, the role of the Th1 cell 
subset, which plays a key role in the immune response against 
intracellular pathogens, is quite controversial. For instance, some 
studies suggest that IFNγ-producing Th1 cells may play a positive role 
in COVID-19, and their higher activity may be associated with a 
milder disease course (141, 142). On the other hand, older patients, 
who are usually characterized by severe COVID-19, were noted to 
have decreased levels of IFNγ-producing virus-specific cells, which 
also indirectly indicates an important role of Th1 cells in the 
development of an effective immune response (143). However, Th1 
cell-induced IFNγ and TNFa overproduction in response to SARS-
CoV-2 infection, as well as the massive death of virus-infected cells, 
can result in damaged lung tissue and trigger acute respiratory distress 
syndrome. In particular, during acute COVID-19 infection, the 
migration of Th1 cells into inflamed tissues has been indirectly 
evidenced by their slightly decreased percentage in the peripheral 
blood, which has been observed in several studies (144–146). 
However, some studies have revealed an accumulation of “atypical” 
peripheral blood Th1 cells expressing surface markers such as CD161 
and IL-1RI (146), which are more typical of Th17 cells (or 
“non-classical” Th17.1 cells) in patients with severe COVID-19 
pneumonia. Th2 cells primarily target multicellular pathogens, but 

virus-specific Th2 cells are detected in COVID-19 (147), while high 
levels of Th2 cell cytokines are found in the blood serum of patients 
during the acute phase of the infection (144). Patients also had an 
increased percentage of peripheral blood T helper cells expressing 
surface CCR4 along with nuclear GATA3 (148). A rise in peripheral 
blood Th2 cells bearing the CXCR3–CCR6– phenotype was closely 
related to unfavorable outcomes in severe COVID-19, which allowed 
for it to be considered as an independent prognostic marker (149). 
Elevated peripheral blood Th2 cell levels and hyperactivation may 
be  closely related to associated symptoms such as intestinal 
hypermotility, gastric acidification, and dyspnea, which accordingly 
could be considered typical defense mechanisms to remove parasites 
via Th2 cytokines (150). With regard to inflamed lung tissues, BALF 
cells obtained from patients with severe COVID-19 were shown to 
have upregulated expression of not only the genes encoding crucial 
cues accounting for Th2 cell “polarization” (GATA3, IL4R, and MAF) 
but also did not differ in production levels of key Th2 cytokines when 
assessing patients with varying degrees of COVID-19 severity (151). 
Moreover, COVID-19 convalescent patients were found to have 
additionally high peripheral blood Th2 cell levels that persisted for 
several months, while the concentrations of IL-4, IL-5, and IL-13 did 
not differ significantly from those in the control groups [F. (152)].

TABLE 2 Autoantibody spectrum in sarcoidosis and COVID-19.

Autoantibody type COVID-19 Sarcoidosis Functions

Antinuclear antibodies (ANA), including anti-

dsDNA antibodies, anti-Ro52 antibodies, anti-

Ro60 antibodies, anti-SSB antibodies, anti-P0 

antibodies, anti-chromatin antibodies, anti-Sm 

antibodies, anti-PM-Scl−/anti-Scl-70 

antibodies

↑ Basic-Jukic et al. (114), Castleman 

et al. (86), Gagiannis et al. (112), 

Manav et al. ((116), Pascolini, et al. 

(115), and Woodruff (109))

↑ Shi et al. (96), Ueda-Hayakawa (58), 

and Weinberg et al. (94)

Destroy cell nuclear material; 

immune complex-mediated damaging 

effect on host tissues

Anti-cyclic citrullinated peptide antibodies 

(anti-CCP)

↑ Woodruff (109) ↑ Kobak et al. (95) and Shi et al. (96) Induce bone erosion via osteoclast 

activation

Anti-mitochondrial antibody-M2, anti-

ribosomal-P0-antibodies

Not significant

Woodruff (109)

↑ Shi et al. (96) Directed against lipoproteins on the 

inner mitochondrial membrane and 

ribosomes; contribute to biliary 

cirrhosis and SLE, respectively

Rheumatoid factor (RF) ↑ Jeong et al. (117) ↑ Shi et al. (96) Contribute to chronic inflammation 

of the synovial membrane; promote 

cartilage destruction

Anti-vimentin antibodies ↑ Woodruff et al. (109) ↑ Bagavant et al. (98) and Hanoudi et al. 

(93)

Disorganization of cytoskeleton 

components

Antineutrophil cytoplasmic antibodies 

(ANCAs)

↑ Basic-Jukic et al. (114) Attack neutrophils, leading to their 

degranulation and destruction

Antiphospholipid antibodies (Anticardiolipin, 

anti–β2-glycoprotein I, anti-

phosphatidylserine/prothrombin)

↑ Castleman et al. (86), Xiao et al. 

(119), Zhang et al. (120), and Zuo 

et al. (121)

↑ Shi et al. (96) Damage to the endothelium and 

hemostatic system; contributes to 

thrombosis

Anti-cytokine autoantibodies, including anti-

type I IFN antibodies

↑ Acosta-Ampudia et al. (101), 

Bastard et al. (105), Chang et al. 

(104), Garmendia et al. (102), and 

Wang et al. (108)

Block cytokine signaling pathways, 

leading to the spread of infectious 

agents

Organ-specific autoantibodies (anti-retinal 

autoantibodies, anti-glomerular basement 

membrane (GBM) antibodies, anti-

cardiomyocyte antibodies)

↑ Woodruff et al. (109) ↑ Avendaño-Monje et al. ((91) and 

Caforio et al. (92))

Damage to various tissues

https://doi.org/10.3389/fmed.2023.1271198
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Rubinstein et al. 10.3389/fmed.2023.1271198

Frontiers in Medicine 08 frontiersin.org

Analysis of the Th cell subset profile in COVID-19 revealed a 
decline in the percentage of Th17.1 and Th1 lymphocytes capable of 
producing IFN-γ (145). Moreover, T helper cells from SARS-CoV-2-
infected patients contained more IL-17A and IL-2 in response to in 
vitro stimulation, compared to healthy volunteers (148). At the same 
time, the aforementioned work showed a lower percentage of T helper 
cells bearing surface key Th17 antigens (CD161 and CCR6) whereas 
the level of Th2-positive (CCR4 and GATA3) cells was significantly 
elevated compared to the control group. Similar data were obtained 
using molecular biology methods, which revealed that peripheral 
blood CD4+ T cells from patients with severe COVID-19 had 
downmodulated expression of Th17-associated genes, e.g., RORC, 
IL17A, IL17F, and CCR6 (151). However, another study showed that 
in the peripheral blood specimens of COVID-19 patients, the 
percentage of Th17 and follicular T cells was higher, paralleled by 
moderately decreased Th1 cell levels, whereas that for Th2 and Th17.1 
cell subsets did not differ compared with the control group (146).

It is possible that Th17 cells migrate to the site of inflammation 
with varying efficiency at different stages of the infection process. This 
explains why the BALF data are so important because they point to an 
accumulation of Th17 cells bearing a “pro-inflammatory” phenotype 
in the affected lung tissue (153). For instance, lung tissue specimens 
obtained from COVID-19 patients were enriched for cells 
co-expressing CCR6 and IL17A and also had high levels of IL-6, 
IL-17A, GM-CSF, and IFNγ found in BALF. The crucial role of Th17 
cells in the pathogenesis of COVID-19 is suggested by the data 
showing that after successful completion of the infection process and 
pathogen elimination, memory Th17 cells remain persistently in 
circulation. In this regard, some studies have uncovered the emergence 
of virus-specific memory Th17 cells capable of producing IL-17A, 
IL-17F, and IL-22 in response to in vitro stimulation with the SARS-
CoV-2 S protein-derived peptide pool (147).

Thus, the pathogenesis of sarcoidosis and COVID-19 is closely 
related to profound alterations in the major T helper cell profile 
coupled to the regulation of the three types of inflammatory reactions, 
such as the type 1 response aimed at eliminating intracellular 
pathogens, the type 2 response associated with control over 
multicellular pathogens and relevant toxins, and the type 3 response 
necessary for effective elimination of pathogens (bacteria and fungi) 
localized in the intercellular space of various host tissues. These 
alterations may directly impact the activation of the humoral immune 
response, which is controlled by follicular T helper cells.

7 Follicular helper T cell subset 
alterations

Cross-talk between follicular helper T cells (Tfh) and B cells at the 
border of T cell and B cell areas in the lymphoid follicle is necessary 
for the development of an effective humoral immune response (154). 
Tfh cells are characterized by surface expression of the chemokine 
receptor CXCR5, which is necessary for migration to the B cell zone 
(154). Tfh plays a pivotal role in B cell maturation and differentiation 
during the germinal center reaction that occurs in peripheral 
lymphoid organs (155–157). Tfh cells also control antibody class 
switching in B cell-produced immunoglobulins, eliciting somatic 
hypermutation and clonal selection of high-affinity B cells that further 
differentiate into plasma cells and memory B cells. Thus, this CD4+ T 

cell is required for the production of both high-affinity pathogen- and 
self-antigen-specific antibodies and autoantibodies, respectively. The 
detection of CD4 + CXCR5+ T cells is crucial in both infectious and 
autoimmune diseases to assess the quality of the adaptive humoral 
immune response. At the same time, the half-life of Tfh cells in 
peripheral blood is highly heterogeneous. For instance, circulating Tfh 
cells can be divided into four major subsets based on CXCR3 and 
CCR6 coexpression: CXCR3 + CCR6 − Tfh1, CXCR3 − CCR6 − Tfh2, 
CXCR3 − CCR6+ Tfh17, and CXCR3 + CCR6+ Tfh17.1 cells. 
Moreover, these cell types mimic Th1, Th2, classic Th17, and 
pro-inflammatory Th17.1 cells, respectively, in terms of functional 
activity and phenotype (158–160). Altered Tfh cell function, as well as 
an altered balance between their individual circulating subsets, is 
closely related to pathological effects on the activity of the overall 
antigen-specific humoral immunity. This may potentially account for 
the fact that an imbalance between the proportion of Tfh1 cells, on the 
one hand, and Tfh2 cells, along with Tfh17 cells, on the other hand, is 
observed in rheumatoid arthritis, SLE, Sjogren’s syndrome, multiple 
sclerosis, type 1 diabetes mellitus, and other conditions (161).

Regarding sarcoidosis, the profile of Tfh cells has only recently 
been investigated. In particular, Kudryavtsev et al. assessed Tfh subset 
composition by assessing the expression of differentiation molecules 
and chemokine receptors (42). It was revealed that in chronic 
sarcoidosis, upregulated CXCR5 expression was observed on central 
memory CCR7 + CD45RA– CD4+ Т cells along with an elevated 
percentage of peripheral blood CXCR3–CCR6– Tfh2-like cells. While 
evaluating the surface chemokine receptor expression on central 
memory Tfh cells, it was found that in pulmonary sarcoidosis 
peripheral blood samples contained an elevated percentage of Tfh2 
(CXCR3 − CCR6 − CCR4+), Tfh17 (CXCR3 − CCR6 + CCR4+), and 
dual-positive Tfh17 (CXCR3 + CCR6 + CCR4+) paralleled with 
significantly reduced Tfh1 (CXCR3 + CCR6 − CCR4−) and Tfh17.1 
(CXCR3 + CCR6 + CCR4−) levels [I. (42)]. A decline in peripheral 
blood Tfh1 and Tfh17.1 cell levels in sarcoidosis seems to be related to 
their migration to organs and tissues affected by sarcoid granulomas. 
Zhou et  al. (9) also noted an altered Tfh cell subset composition 
associated with increased levels of Tfh2 and Tfh17 cells but decreased 
levels of Tfh1 and Tfh17.1 cells. Notably, Tfh2 and Tfh17 cells 
contributed to the survival of activated “naive” B cells, their 
transformation into plasma cells, and antibody class switching, 
whereas Tfh1 cells performed regulatory functions related to the 
emerging humoral immune response (159). It is possible that an 
imbalance between pro- and anti-inflammatory Tfh cell subsets may 
play a paramount role in abrogating the overall development of 
autoimmune reactions.

Indeed, other studies have reported elevated bronchoalveolar 
lavage fluid (BALF) levels of CXCR3 chemokine receptor-
expressing follicular T cells (53) found on both Tfh1 and Tfh17.1 
cells. Furthermore, d’Alessandro et al. (162) showed upregulated 
expression of the integrin molecule CD103 on peripheral blood, 
BALF, and intrathoracic lymph node biopsy specimens in patients 
with sarcoidosis, indirectly confirming a theory of migration of 
such cells into inflammatory foci. Ly et al. verified the presence 
of CD4 + CXCR5+ T cells in sarcoidosis-related skin lesions 
(163). However, other reports, on the contrary, revealed an 
increased level of peripheral blood Tfh1 cells along with 
decreased levels of BALF Tfh1 and Tfh2 cells in chronic 
sarcoidosis (59). Hence, ambiguous data regarding the role of 
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follicular T cells and B cells in this pathology implies a need for 
their more thorough study.

Follicular T helper cells are responsible for the quality of the 
antiviral B cell response in COVID-19, owing to the fact that Tfh cell-
mediated stimulation of B-lymphocytes enables more fine-tuned 
differentiation, resulting in the emergence of long-lived memory B 
cells and plasmacytes that produce virus-specific high-affinity 
antibodies (64). In particular, circulating Tfh cells from COVID-19 
patients support in vitro B-cell differentiation into antibody-secreting 
plasma cells and antibody production, whereas altered differentiation 
of SARS-CoV-2-specific Tfh cells at early stages of infection was 
closely related to severe COVID-19, accompanied by delayed 
production of high-affinity antibodies and disease progression (164). 
Subsequently, the level of SARS-CoV-2-specific cTfh cells in 
COVID-19 convalescent patients correlated with SARS-CoV-2-
neutralizing antibody titers, which evidenced a crucial function of this 
cell type in maintaining protective immunity [J. (165)].

However, data regarding circulating Tfh cell levels in acute 
COVID-19 as well as in the post-infection period have been rather 
ambiguous. For instance, one study noted a decline in CD4 + CXCR5+ 
T cell frequency, particularly in severe disease (144). In contrast, other 
studies have reported an increase in peripheral blood Tfh cell levels 
(146), especially for those cell subsets expressing activation markers 
such as PD-1 (166), HLA-DR and CD38 (67), and ICOS (167). 
Importantly, such cell types are highlighted by high expression of the 
proliferation marker Ki67 (67), suggesting the emergence of post-
clonal expansion Tfh cells in an overactivated state that have entered 
the circulation in severe COVID-19. However, upon SARS-CoV-2 
infection, Tfh cell differentiation becomes altered (151). By examining 
lymphoid organ autopsy samples, Kaneko et al. detected atrophy of the 
lymph node germinal center (B-dependent zones) (73), which may 
be due to a heightened cytokine storm wherein TNF-α blocks Bcl-6+ 
Tfh cell differentiation. This may be related to an enhanced local Th1 
cell response. It has been shown that Th1/Tfh1 alters the differentiation 
of follicular T helper cells, promoting antibody production (73, 168). 
However, even CD4 + CXCR5+ Tfh cells lacking Bcl-6 expression can 
interact with and induce the proliferation of naive extrafollicular B 
cells. Thus, patients with acute COVID-19 infection were found to 
have enhanced functional and proliferative Tfh cell potential, but 
impaired differentiation negatively affected the B cell immune 
response. Importantly, such an impaired adaptive humoral response 
is often observed in severe COVID-19 and testifies to its inability to 
result in fully-fledged pathogen-specific humoral immunity (73).

When the CD45RA- memory Tfh cell population was subdivided 
into Tfh1, Tfh2, and Tfh17 subsets based on surface chemokine 
receptor expression, it was found that acute COVID-19 was associated 
with a decreased percentage of Tfh1 paralleled with elevated Tfh17 
levels (169). Juno et al. unraveled that among all Tfh cell subsets, the 
SARS-CoV-2-specific antiviral response peaked in Tfh17 cells, 
whereas Tfh1 and Tfh2 cells were most closely related to blood plasma 
SARS-CoV-2-specific antibody neutralizing activity (170). COVID-19 
convalescent patients continued to carry an altered profile of 
circulating Tfh cell cells. Although the total Tfh population did not 
differ between healthy and convalescent subjects, the level of CXCR3-
expressing Tfh1 cells was reduced. Interestingly, in a cohort of 
recovered patients, the percentage of Tfh1 cells that correlated with 
the antibody-neutralizing activity peaked in those who had a more 
severe infection (165). On the other hand, high levels of circulating 

Tfh1 and Tfh2 were paralleled by markedly reduced levels of Tfh17 
(152). COVID-19 convalescents vs. healthy subjects showed a higher 
frequency of circulating effector memory CCR7loPD-1+ Tfh-em cells 
and a low level of central memory CCR7hiPD-1+ Tfh-cm cells 
[F. (152)]. In addition, some studies reported enhanced Tfh cell 
activity in COVID-19 convalescents [F. (152, 171)], which may 
contribute to the emergence of autoimmune and allergic reactions 
during post-COVID-19 syndrome. Furthermore, Tfh cell activity 
depends on the severity of SARS-CoV-2 infection, such that the level 
of effector memory Tfh-em cells promoting class switching to IgG 
antibodies remains high for a long time in patients recovering from 
severe COVID-19 (152). Kudryavtsev et al. found that Tfh1, Tfh2, and 
Tfh17 levels remained high in COVID-19 convalescent patients 
compared with healthy subjects (66). Hence, it may serve as a basis for 
the development of an autoimmune process with altered immune 
tolerance often observed in post-COVID-19 syndrome.

A comparison of circulating Tfh cell subpopulations in sarcoidosis 
and COVID-19 is presented in Table 3.

8 Follicular regulatory helper T cells 
– Crucial players in the 
antigen-specific humoral response

It is believed that Tfr represents one of the regulatory T cell 
subsets that may originate from both thymic Tregs via thymic 
selection and emerging antigen TCR specificity, or from CXCR5 and 
BCL-6-co-expressing FoxP3+ cells arising de novo in peripheral 
lymphoid organs (175–177). Follicular regulatory helper T cells play 
a rather ambiguous role in regulating the humoral immune response. 
On the one hand, they contribute to the survival and proliferation of 
B cells specific for some environmental foreign antigens, while on the 
other hand, they are able to suppress the proliferation and 
differentiation of foreign antigen-nonspecific B cells by creating a 
proper environment that mainly promotes the development of 
antigen-specific germinal center B cell clones in peripheral lymphoid 
organs (175, 178). Moreover, Tfr cells suppresed Tfh activity, leading 
to a restrained germinal center response at the stage of Tfh cell-
mediated B cell costimulation, which appears to be the key function 
of this Treg population (175). On the other hand, Tfr cells act to 
suppress not only Tfh but also B cells, resulting in downregulated 
antibody production (179). It has also been hypothesized that during 
germinal center formation, Tfrs regulate the production of antigen-
specific antibodies during the primary immune response, and with 
repeated antigen encounters, their role in regulating the humoral 
response becomes less prominent (180). On the contrary, Tfrs are 
thought to play a key role in the later stages of the germinal center 
response (181).

In the context of the development of autoimmune pathologies, a 
suppressive role of Tfr has been demonstrated, contributing to the 
limitation of the autoimmune humoral response (179, 180). 
Potentially, it may explain why a key role in the development of 
efficiently functioning Tfr cells is related to their thymic differentiation. 
Analyzing circulating Tfr cells in patients with sarcoidosis showed that 
within the total CD45RA–CCR7+ central memory Treg population, 
the proportion of CXCR5+ Tregs was increased, whereas the 
percentage of thymic CXCR5+ Tregs did not significantly differ from 
that in the control group (174). Moreover, d’Alessandro et al. (162) 
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showed that the level of peripheral blood 
CD4highCD25highCXCR5high Tfr cells was increased in sarcoidosis, 
while the level of alveolar Tfr cells correlated with the Scadding stages. 
Furthermore, the level of this Tfr cell subset was shown to be higher 
in bronchoalveolar lavage fluid (BALF) than in peripheral blood in 
patients with pulmonary sarcoidosis (59). Based on such data, it can 
be assumed that in sarcoidosis, Tfr functions may be impaired both at 
the systemic level (e.g., at thymic Tfr differentiation or impaired 
function in peripheral lymphoid organs) and during their migration 
to inflammatory foci, where their regulatory functions may also 
be altered. It is likely that the peripheral blood Tfr subpopulation 
declines during novel coronavirus infection because Tfr differentiation, 
acted upon by pro-inflammatory cytokines, is aimed at creating 
effector Tfh subsets that promote sustained inflammation to eliminate 
the pathogen in the acute period. Of note, sarcoidosis is a chronic 
process often accompanied by fibrosis and a marked autoimmune 
reaction. Therefore, a rise in Tfr cell levels in both peripheral blood 
and BALF in sarcoidosis may be a compensatory response necessary 
to curb inflammation at the site of the tissue lesion, where Tfr cell 
functional activity may not be as effective, which could contribute to 
pulmonary fibrosis.

Very few clinical cases are available that describe thymoma 
formation in sarcoidosis. For instance, Hato et al. reported a clinical 
case in which calcified thymoma and sarcoid granuloma were localized 
in the lung parenchyma and intrathoracic lymph nodes (182). A 
clinical case has also been described in which a patient with existing 
sarcoidosis developed a thymoma (183). In addition, a malignant 
thymoma has also been reported, and it has been suggested that it 
provoked the development of autoimmune sarcoid due to impaired T 
cell tolerance (184). Moreover, Esendagli et al. clearly demonstrated the 
thymus-related role in the development of sarcoidosis (185). For 
example, in their reported clinical case, a 53-year-old female patient 
presented with sarcoid granulomas in the lung parenchyma, 
intrathoracic lymph nodes, and skin. A thymectomy resulted in the 
resolution of the sarcoidosis manifestations. In addition, impaired 
thymic T-cell differentiation in sarcoidosis was also suggested by high 
expression of non-TCR-mediated cell activation markers in total 
peripheral blood “naive” Th cells, apoptosis-related proteins, and 
profoundly dysregulated CD4+ T-cell differentiation (186).

Profoundly altered thymic function and lowered thymic 
development of various “naive” T cell subsets in acute COVID-19 are 
evidenced by lowered TREC (T cell receptor excision circles) levels in 
the peripheral blood in severe and critical COVID-19 (187, 188). 
Moreover, this may be related to SARS-CoV-2 infection of the thymic 

epithelial cells, resulting in altered T cell maturation and differentiation 
(189). Also, impaired thymocyte selection may be accompanied not 
only by a decreased percentage of functionally active Treg subsets but 
also with the release of autoreactive T cell clones into the periphery, 
capable of mounting a response to host self-antigens and eliciting the 
development of autoimmune pathologies. This may potentially 
account for a decline in peripheral blood T regulatory follicular cell 
levels that was noted in acute SARS-CoV-2 infection compared to the 
control group (172). Moreover, Zahran et al. obtained similar data 
showing that hospitalized patients with a severe form of COVID-19 
had decreased counts of circulating CD4 + CXCR5 + ICOS+Foxp3+ 
Tfr cells (173). It should be  noted that the level of circulating 
CD45RA–CD127–CD25 + CXCR5hiPD-1hi Tfr also tended to 
decrease steadily in COVID-19 convalescent patients (152). In 
addition, a negative correlation between the frequency of circulating 
Tfr and virus-specific IgM, IgG, and IgA antibodies was observed in 
the latter cohort of patients. Follicular T regulatory cells may play an 
important role in controlling the development of the humoral memory 
response and antibody specificity, as well as interfering with 
autoantibody formation. Thus, lowered Tfr levels along with increased 
Tfh levels in acute COVID-19 may contribute to the development of 
humoral autoimmune reactions and the emergence of autoimmune 
pathologies during the post-COVID-19 syndrome. While analyzing 
the role of B cells and diverse Tfh cell subsets in the development of 
autoimmune events in sarcoidosis along with COVID-19, it is 
necessary to consider the issue of the disturbed structure of peripheral 
lymphoid organs, where an interaction between T and B cells occurs 
and arises under such pathological conditions. For instance, a 
non-infectious, non-caseating T and B cell-containing granuloma 
emerges (190, 191). Such lymphocyte cell types mainly reside in the 
periphery of the granuloma and exert a high proliferative potential as 
assessed by Ki-67 expression (192). A granuloma per se represents a 
focus of limited granulomatous inflammation primarily involving 
macrophages, epithelioid cells, lymphocytes, and plasma cells (191). 
Epithelioid cells may fuse to form giant cells, both along the periphery 
of the granuloma and in its center (191). A biopsy of intrathoracic 
lymph nodes collected from patients with chronic sarcoidosis revealed 
high levels of B cells and follicular T helper cells (162). When 
comparing B and Tfh cell counts in patients with sarcoidosis, it was 
found that the level of B cells and CD4 + CXCR5+ T cells was 
significantly higher in lymph node biopsy compared to BALF and 
peripheral blood sample (162). Thus, the adaptive humoral response 
in this pathology plays an important role not only in the systemic but 
also in the local inflammatory response.

TABLE 3 Patterns of circulating follicular helper T cell fluctuations in sarcoidosis and COVID-19.

Cell subsets COVID-19 Sarcoidosis Functions

Tfh1 ↑ (Golovkin et al. (169) and 

Kudryavtsev et al. (66))

↓ Zhang et al. (165)

↑ d’Alessandro et al. (162)

↓ Zhou and Arce (9)

Suppress Tfh2-dependent antibody induction, regulate humoral immune 

response

Tfh2 ↑ Kudryavtsev et al. (66) ↑ Kudryavtsev et al. (42) and Zhou 

and Arce (9)

Contribute to the differentiation and proliferation of activated “naive” B 

cells, primarily eliciting antibody class switching to IgA and IgG

Tfh17 ↑ Golovkin et al. (169), 

Kudryavtsev et al. (66)

↑ Zhou and Arce (9) Contribute to the differentiation and proliferation of activated “naive” B 

cells, primarily eliciting antibody class switching to IgE and IgG

Tfr ↓ Søndergaard et al. (172) and 

Zahran et al. (173)

↑ d’Alessandro et al. (162) and Igor 

Kudryavtsev et al. (174)

For antigen-specific vs. antigen-nonspecific B cell clones, it promotes the 

formation and survival of the former along with the inhibition of the 

latter, suppressing Tfh cells

https://doi.org/10.3389/fmed.2023.1271198
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Rubinstein et al. 10.3389/fmed.2023.1271198

Frontiers in Medicine 11 frontiersin.org

Multiple studies have noted disturbances primarily in the 
organization of B cell-dependent zones in acute COVID-19, most 
often being associated with a decreased volume of germinal centers or 
their full disappearance, apparently resulting in a mild humoral 
response in patients with severe disease course (73, 193, 194). The 
number of lymph node follicular dendritic cells, Bcl-6+ Tfh, and B 
cells is reduced, whereas AID+ B cells, which are usually kept at an 
intact level (73, 194), are aberrantly located in subcapsular and 
paracortical lymph node zones (195). On the other hand, 
extrafollicular plasmablasts, whose development is not tightly 
controlled by Tfh and Tfr cells, predominantly display an IgM+ 
phenotype. They can sometimes be  found at high levels in the 
paracortical and medullary zones of lymph nodes (193, 194, 196). 
However, along with the loss of follicles, some studies reported 
lymphoid hyperplasia and the mosaic structure of lymphoid tissue 
(197). Moreover, splenic white pulp was also noted to contain a 
lowered relative number and volume of lymphoid follicles, and a 
decreased number of Bcl-6+ B cell-containing germinal centers (73). 
Hence, severe acute COVID-19 infection was often found to have an 
inconsistent adaptive immune response due to depletion of the T 
helper arm and B-dependent zones in the lymphoid organs. However, 

it is primarily the increased activity of the above cell types that may 
underlie an allergic or autoimmune pathology in convalescent subjects.

9 Conclusion

Analyzing the available publications allowed us to uncover that 
SARS-CoV-2 elicits the development of symptoms typical of 
sarcoidosis a few weeks after COVID-19. The appearance of bilateral 
lymphadenopathy and eye and skin lesions related to a triggering 
factor is rather characteristic of an autoimmune process, accompanied 
by hyperactivation of specific B cell subsets observed after COVID-19, 
which are also observed in autoimmune inflammation (Figure 2). B 
cell phenotypic and functional impairments lead to the development 
of autoreactive potential and autoantibody production. In SARS-
CoV-2 infection, follicular helper T cells determine the quality of the 
virus-specific B cell response. At the same time, Tfh-mediated B cell 
stimulation may be more finely tuned, resulting in the emergence of 
long-lived memory B cells and plasmacytes that produce high-affinity 
antibodies. On the other hand, expanding our understanding of the 
essential rules of Tfh and Tfr function may allow the development of 

FIGURE 2

The SARS-CoV-2-induced immunological changes in T follicular helper cells, T follicular regulatory cells, and B cells, which contribute to the 
development of autoimmune reactions with sarcoid granuloma formation and autoantibody production.  ↑—high level; ↓—low level. The figure was 
drawn by the authors.
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new approaches to restore the functions and balance between 
individual subsets of these cell types in the prevention and treatment 
of autoimmune and inflammatory diseases. The data obtained not 
only reflect the specific features of sarcoidosis-related autoimmune 
inflammation associated with SARS-CoV-2 infection but also the need 
to shed light on the further management strategy of such patients, 
taking into account the changes identified. At present, the existing 
concept allows for the monitoring of sarcoidosis patients without 
therapy. On the other hand, patients with a history of sarcoidosis are 
required to be prepared for its activation and chronicity. However, the 
question of establishing immunological criteria accounting for the 
need for immunotherapy and drug administration remains open.
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