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Introduction: Current guidelines recommend renin angiotensin system inhibitors

(RASi) as key components of treatment of diabetic kidney disease (DKD). Additional

options include sodium-glucose cotransporter-2 inhibitors (SGLT2i), glucagon-

like peptide 1 receptor agonists (GLP1a), and mineralocorticoid receptor

antagonists (MCRa). The identification of the optimum drug combination for

an individual is di�cult because of the inter-, and longitudinal intra-individual

heterogeneity of response to therapy.

Results: Using data from a large observational study (PROVALID), we identified a

set of parameters that can be combined into a meaningful composite biomarker

that appears to be able to identify which of the various treatment options

is clinically beneficial for an individual. It uses machine-earning techniques to

estimate under what conditions a treatment of RASi plus an additional treatment

is di�erent from the treatment with RASi alone. The measure of di�erence is

the annual percent change (1eGFR) in the estimated glomerular filtration rate

(1eGFR). The 1eGFR is estimated for both the RASi-alone treatment and the

add-on treatment.

Discussion: Higher estimated increase of eGFR for add-on patients compared

with RASi-alone patients indicates that prognosis may be improved with the add-

on treatment. The personalized biomarker value thus identifies which patientsmay

benefit from the additional treatment.
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1. Introduction

Cross sectional inter- and longitudinal intra-individual heterogeneity in progression and

response to therapy is a common feature of many chronic and age-related diseases. The

current state-of-the-art guideline-backed clinical practice relies on studies in large cohorts

and does not take individual variability into account. Precision/personalized/stratified

medicine attempts to identify the individual prognosis and targeted treatment at the right

time for the right patient, or at least for smaller and more homogeneous groups (1–3).

Implementation requires adaptations in research as well as in clinical approaches. As

an example, patients with diabetes mellitus type 2 and kidney disease (diabetic kidney

disease; DKD) are currently categorized by two biomarkers, the estimated glomerular

filtration rate (eGFR), a measure of the kidneys ability to excrete waste products and the

amount of pathologically increased excretion of albumin in the urine (4). Even though

each of these alterations reflects a distinct pathology with impact on prognosis (5–7)
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and therapy is adjusted accordingly, heterogeneity in response

persists. If we increase the data space for deeper phenotyping

(including e.g., genetics, family and personal history, lifestyle,

environment, demographics, routine laboratory parameters or even

Omics profiling studies), we must use higher-resolution statistics

to extract usable information. Systems biology (8) and advanced

data-mining techniques are required to (1) improve phenotyping,

(2) predict the future state (prognosis) of the individual, and (3)

identify the most effective spectrum of drugs to intervene. The

design of clinical validation trials also needs adjustment to the

individual or small cluster level (9). Increased molecular resolution

of pathophysiology as well as drug mode of action will also

improve our understanding of diseases and support the process of

drug discovery (10). As an example, the hormone angiotensin II

increases blood pressure and prolonged hypertension drives DKD.

Renin angiotensin system inhibitors (RASi), such as angiotensin

converting enzyme inhibitors (ACEis) and angiotensin II receptor

blockers (ARBs), block the formation and action of angiotensin II

and lower systemic blood pressure. Interestingly, when compared

with other antihypertensive agents, ACEis and ARBs stabilize

kidney function at the same level of achieved blood pressure better

than conventional antihypertensive therapy (11). This suggests that

angiotensin II also operates in other processes (10, 12). Indeed,

the angiotensin receptor and other G-protein coupled receptors

can trigger distinct multiple downstream responses that depend

on the cellular environment (13–15) and thereby may lead to

heterogeneous disease progression and effect of therapy.

In this study, we focused on the identification of a biomarker

panel to support precision drug treatment in DKD. We used data

from a subgroup of patients included in the PROVALID study

(16–19), a longitudinal prospective observational study in patients

with type 2 diabetes. Information on eGFR and therapy as well as

many other biomarkers was available on an annual basis. Patients

with controlled kidney disease (CD) were characterized by an

annual decrease of eGFR not exceeding 5%, while eGFR dropped

more than 10% in uncontrolled DKD (UCD). A 1-year follow-up

period is consistent with international guideline recommendations.

The 1-year follow-up minimizes the effect of longitudinal intra-

individual heterogeneity in treatment response and our threshold

of 10% decrease for identification of uncontrolled disease still

represents a change in eGFR not expected to occur spontaneously

(18). All patients were continuously treated with a RASi. In

some individuals, one other agent supposed to beneficially affect

DKD [glucagon-like peptide 1 agonist (GLP1a), mineralocorticoid

receptor antagonist (MCRa) or a sodium-glucose cotransporter 2

inhibitor (SGLT2i)], was added on top of RASi therapy in the 1-

year follow up period. We set out to define a biomarker panel

that supports clinicians to decide if a patient, who is currently

treated with an ACEi or ARB-only should remain on this regimen

as CD is expected or be changed to a drug combination to improve

outcome in case of UCD prognosis. To answer this question

at the most basic level, we use data to construct a model 1R

that predicts the future value of the change (1eGFR) in eGFR

between baseline and the next follow-up visit in RASi-only treated

patients. Next, we apply the model to patients taking one of the

other three combination drug therapies. If the added treatment

has no effect, we expect the RASi-only model to predict the

outcome accurately. If, however, the other treatment has an effect

beyond that of the effect of RASi only, the model will not be a

good predictor. Next, we developed models, 1G, 1M , and 1S,

to predict 1eGFR for each individual drug of interest, GLP1a,

MCRa, and SGLT2i, respectively, when added on top of RASi.

If a new patient thus presents on RASi only therapy and that

patient’s value for 1R is measured and calculated, the physician

can decide if the individual should stay on RASi only or not. In

those with a negative prognosis on RASi alone, the change in

1eGFR expected under different combination therapies can be

estimated, and the best therapy is selected. The process described

will become part of a toolbox that supports clinicians treating

patients with DKD. We therefore recognized a number of practical

constraints on biomarker selection and on the prediction model.

Clinical tests can be time-consuming and expensive, and therefore,

the selection of variables should ideally be restricted to a small

number of readily available and inexpensive parameters, if possible.

In addition, they should be familiar and explainable to clinicians

and ideally be linked to relevant biological processes. Moreover, as

many patient tests will pass through the toolbox, the models should

be computationally efficient.

2. Approach

Data on patients with DKD used in this study were obtained in

an extensive data-collection effort, the PROVALID (PROspective

cohort study in patients with type 2 diabetes mellitus for

VALIDation of biomarkers) study (16–19). Here, 4,000 patients

were recruited at the primary level of healthcare in Austria,

Hungary, Netherlands, Poland, and Scotland. The patients visited

their physicians annually as part of standard clinical practice

and were followed for at least 4 years. Information on patient

history, physical status, laboratory measurements, medication,

and renal and cardiovascular events were collected as well as

urine and plasma for measurement of biomarkers. We used the

Modification of Diet in Renal Disease Study equation (MDRD)

formula for the calculation of 1eGFR (20). Only individuals with

eGFR values between 30 and 90 ml/min/1.73 m2 were included.

The prevention of progression of DKD (defined as a loss of

eGFR) is most efficient in early disease. Therefore, we excluded

individuals with advanced stages (i.e., an eGFR <30 ml/min/1.73

m2). On the contrary, hyperfiltration with elevated eGFR is atypical

early feature of DKD. The pathophysiology of induction and

resolution of hyperfiltration is not completely clear but may be

different from progression thereafter. Hence, we decided to set

the upper boundary of eGFR for inclusion to 90 ml/min/1.73

m2. Baseline characteristics and medication for all participants

per group are presented in the Supplementary material. For

this analysis, patients with the following treatment regimen

were selected:

1. RASi as the only drug treatment during a 1-year follow-up

period (RASi only). For this group, the same patient could

contribute multiple annual sequences, and we aimed for a equal

distribution of CD and UCD.

2. RASi during a 1-year follow-up period with addition of

a glucagon-like peptide 1 agonist added after baseline

(RASi+GLP1a).
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TABLE 1 Expert selection of key continuous predictors.

Marker Symbol

Estimated glomerular flow rate eGFR

Urine albumin-creatinine ratio UACR

Systolic blood pressure SBP

Diastolic blood pressure DBP

Hemoglobin HB

Serum cholesterol TOTCHOL

Body mass index BMI

HbA1c HBA1C

Age Age

TABLE 2 Reduced data set.

Marker Name Data set

eGFR Estimated glomerular filtration rate Expert

DPP4 Dipeptidyl peptidase-4 Extended

ICAM1 Intercellular Adhesion Molecule 1 Extended

LEP Leptin Extended

AGE Age Expert

ADIPOQ Adiponectin Extended

TOTCHOL Total serum cholesterol Expert

SBP Systolic blood pressure Expert

SERPINE1 Plasminogen activator inhibitor-1 Extended

The PROVALID identifiers are displayed in the left column. The data sources are given in the

far right column. The labels “Expert” are from the expert data set. Those labeled “Extended”

are from the PROVALID dataset that are not also in the expert set.

3. RASi during a 1-year follow-up period with addition of a

mineralocorticoid receptor antagonist added after baseline

(RASi+MCRa).

4. RASi during a 1-year follow-up period with addition of a

sodium-glucose cotransporter 2 inhibitor added after baseline

(RASi+SGLT2i).

The data presented several challenges to modeling:

1. The number of visits per group was small (approximately 100)

with the exception of the RASi only group. As a consequence,

data-hungry multi-layer perceptrons, for instance, are not

adequate for non-linear modeling of this particular sparse

data. Machine-learning techniques that can efficiently extract

information from small amounts of data were required.

2. The evolution of 1eGFR, as seen in PROVALID data, can

change significantly within a period of 1 year, which is the

measurement interval (21). This requires modeling techniques

that can change predictions discontinuously over a period of 1

year. For this, we used recurrent neural networks that handle

discontinuities in data.

3. Physician visits by the same patient are correlated with

each other leading to co-linearity issues in the building all

the models in this study. As a consequence, we removed

collinearity by preprocessing the data with the partial least

squares (PLS) algorithm, which is designed to minimize the

effects of collinearity.

4. The results should be biologically interpretable, which is a

ubiquitous concern of statistical modeling and will be a

constraint on variable panel selection. As a consequence, we

relied on data, that are available in daily clinical routine (e.g.,

blood pressure urinary albumin excretion). These variables were

complemented urinary or plasma proteins that were identified

to be part of DKD pathophysiology and molecular drug mode

of action by bioinformatical analysis. The complete list of

parameters available is given in Supplementary Table 1.

Variables were selected from the complete PROVALID data set

and a subset of PROVALID as suggested by experts in (22) (Table2).

Only continuous but not discrete and binary variables were

included. We used the partial least squares algorithm to determine

the baseline variables that were most accurately correlated with

1eGFR in the complete PROVALID set. We did the same for the

subset of variables in the expert selection, and we combined the

most important variables from each calculation into a single data set

and performed the PLS calculation on this combined set, selecting

the most important variables (see the nine variables selected in

Table 2). We then used a hybrid machine-learning technique (see

Appendix) to predict 1eGFR for the group of patients treated with

RASi only. The model (PLSNN) is a combination of partial least

squares (PLS) and normalized radial basis function neural network

(NN). The prediction of 1eGFR for the RASi-only set of patients

is the composite biomarker 1R, which will allow the physician

to estimate 1eGFR within the next year (and thus the state of

CD or UCD) in case the patient remains on RASi only. In case

UCD is predicted, similar models for the other treatment option

groups will enable the clinician to select the best option to maintain

kidney function.

3. Results

The nine continuous input variables as given by experts in (22,

23) are displayed in Table 1. Discrete variables were not included in

this study because the modeling process used here is restricted to

continuous inputs. The highest PLS-ranked continuous variables

from the PROVALID set and the expert data set were combined,

re-ranked by PLS, and the consensus file is displayed in Table 2.

The Figure 1 upper left panel shows the relation between 1R and

1eGFR in the RASi-only treatment group (black dots). A decrease

of 10% or more of 1R characterizes patients with UCD (drop in

eGFR more than 10%, dotted green lines) and higher values of 1R

those with CD (dashed green lines). The upper right and the lower

panels show the observations for the add-on treatments (colored

dots) vs. the RASi-only model prediction. The RASi-only model

predicted well for individuals with CD regardless of the type of

add-on therapy. On the other hand, patients in whom the RASi-

only model predicted UCD clearly showed a different outcome

when drugs were added, with most moving to the CD population.

Of note, the lower the 1R is, the larger is the effect of the add-

on drug. This supports the hypothesis that addressing a different

pathophysiology via a specific drug mode of action is beneficial
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FIGURE 1

PROVALID data output 1eGFR as a function of the composite biomarker 1R. Here, 1R is the predicted output for the RASi Alone model. The black

markers represent data for RASi only, and the colored markers represent data for the add-on drugs. If the colored markers have greater values for

1eGFR than the black markers, then possible benefit from the add-on drug may be indicated. The green dashed line indicates values for 1eGFR and

1R that are equal to −5%. The dotted green lines are for values of −10%. These values are often used as markers for controlled and uncontrolled DKD.

in patients with a disease trajectory unresponsive to RASi therapy

alone. As 1R developed for RASi to predict 1eGFR obviously was

not accurate in the add-on therapy groups, we developed models

for the individual groups using the same variables. Prediction

models were developed in each of the four treatment populations,

and the variable ranking regarding informational contribution

within each group (providing insight into pathophysiology) is

displayed in Table 3. The models were tested on each of the four

treatment populations. The predictions of 1eGFR and sensitivity

as well as specificity and accuracy for allocation of patients to

CD and UCD for RASi only, RASi + GLP1a, RASi + MCRa, and

RASi + SGLT2i provided by 1R, 1G, 1M , and 1S, respectively are

given in Table 4. These models are used to calculate the expected

increase/decrease in 1eGFR, which can be used to inform the

clinician on whether or not to prescribe the add-on drug (Figure 2).

4. Discussion

In this study, we identified a composite biomarker panel that

predicts the annual change in 1eGFR for four different drug

treatments. The baseline treatment was the blockage of the renin

angiotensin system by ACEi or ARB therapy. Next, three additional

drugs on top of RASi, SGLT2i, MCRa, or GLP1a, were tested.

Only one add-on drug at a time was allowed on top of RASi

TABLE 3 Top five biomarkers for each treatment population.

RASi alone RASi +
GLP1a

RASi +
MCRa

RASi +
SGLT2i

eGFR LEP DPP4 LEP

DPP4 DPP4 LEP SERPINE1

ICAM1 eGFR eGFR DPP4

LEP ICAM1 TOTCHOL eGFR

AGE ADIPOQ ICAM1 TOTCHOL

The columns represent the variables, in descending rank order, that are important for each

treatment model. For instance, in the model for the population that took GLP1a as an add-on

treatment, LEP had the greatest effect on the prediction.

treatment in our dataset. We do not have data on multi-drug

combination therapies. Higher estimated increase of eGFR for

add-on patients compared with RASi-alone patients indicates that

prognosis is improved with the add-on treatment. The personalized

biomarker value thus identifies which patients may benefit from the

additional treatment.

Several studies have addressed mid- to long-term prognostic

and predictive biomarkers in DKD and found reasonable

discrimination on a cohort level. However, for individuals with

their sensitivity and specificity is modest at its best (24) at
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TABLE 4 Diagnostics of model quality for four treatment models.

Model Output ACC SE SP #
patients

RASi

alone

1R 0.78 0.50 0.93 277

RASi +

GLP1a

1G 0.92 0.93 0.92 52

RASi +

MCRa

1M 0.87 0.77 0.92 64

RASi +

SGLT2i

1S 0.93 0.81 0.97 104

The predictions of1eGFR for RASi alone, RASi + GLP1a, RASi + MCRa, and RASi + SGLT2i

are given by 1R , 1G , 1M , and 1S , respectively. The quantity 1R is the composite biomarker.

The quantities 1G , 1M , and 1S are the model outputs for RASi plus GLP1a, RASi plus

MCRa, and RASi plus SGLT2i, respectively. The data are divided into UCD and CD. Model

output predictions were performed using leave-one-out validation performed on the entire

population for each treatment. Sensitivity (SE) is the fraction of observed UCD patients

that were predicted correctly. Specificity (SP) is the fraction of observed CD patients that

were predicted correctly. Accuracy (ACC) is the total number of patients that were predicted

correctly. The number # of patients in each population is displayed in the last column. As

explained in the Appendix, the models contain random number generators, which causes

slight run-to-run variation in outputs for the same data set.

least partially due to longitudinal intra-individual variability in

progression. Consequently, our approach relies on short-term

prediction and a direct comparison of published mid- to long-term

markers with our composite short-term biomarker is not adequate.

An added value of the composite biomarker is that it increases

the resolution of biomarkers to identify patients that respond

differently to treatments. This can be seen in Figures 1, 2, where the

composite biomarker identifies a specific cluster of low-1R patients

that respond positively to add-on treatments.

The studywasmotivated by the need for precision treatment for

DKD. Precision drug therapy is becoming increasingly important

in this area as more and more options to intervene become

available. Several efforts to predict inter-individual differences in

kidney disease progression to “hard” long-term outcome endpoints

(incidence of e.g., end-stage kidney disease) under specific therapies

have already been undertaken. While the identified markers/ or

marker panels show some promise in cohorts, their accuracy

at the level of an individual is modest, limiting their value in

bedside medicine. One reason for this shortcoming is the fact that

progression of chronic kidney disease (e.g., as assessed by a decrease

in eGFR) also shows considerable variability within an individual

over time. Even under stable drug therapy, periods of falling eGFR

can be followed by recovery under stable treatment (21). Our study

design respects this aspect by restricting predictions to relatively

short (annual) intervals of follow-up. Of note, this approach closely

follows current guidelines that recommend repetitive annual

assessment of eGFR to adjust the treatment strategy (25). Clearly,

the magnitude of change in eGFR to detect is smaller with

shorter follow-up and a “misclassification” based on spontaneous

eGFR variability must be taken into account. Our discriminatory

threshold for the definition of CD and UCD takes these caveats also

into consideration.

The modeling process was constrained by the large number of

possible inputs and a small amount of available data in relation

to the number of possible inputs. To address these constraints, we

reduced the number of variables by identifying those variables that

had the biggest effect on the output 1eGFR. We also removed

collinear variables that contained redundant information. We

used PLS, which is a linear process, to achieve both these goals

(Appendix). We also addressed the constraint that the chosen

reduced set of variables must include inputs that are measurable

in a clinical setting and that are reasonably familiar to clinicians.

To do this, we heuristically ran both data sets generated by experts

and the complete PROVALID data set through PLS pre-selection.

We then combined the highest ranking inputs from both data

sets into a single reduced data set (Table 2). We then used the

reduced data set including the PLS regression output as inputs

to a non-linear neural network model that is designed to extract

information from small amounts of data as can be found in control

problems (26). Managing disease treatments is a biological control

problem. The output from the neural network is the composite

biomarker 1R used to identify optimal treatment regimes. This is

done by comparing observed and predicted outcomes from various

treatments with each other.

The most immediate use of the composite biomarker is to

inform the clinician on the predicted change of 1eGFR if a

treatment with an add-on drugs is applied. The model possibly may

be used to access the particular disease pathway in each patient. For

instance, the data and model predictions of Figures 1, 2 indicate

that add-on treatmentsmay be preventing outcome degradation for

sicker patients with lower values of the composite biomarker 1R.

An examination of the fundamental biomarkers for these low-1R

patientsmay indicate themechanism that prevents this degradation

in outcome. This is currently under investigation. This information

may identify additional drug targets.

The biomarkers were identified by an heuristic approach

on a set of continuous variables and without consideration

of proteomics. A more exhaustive inclusion practice (e.g., by

mining urinary proteomics data) may very well identify other

characteristics that add to or substitute for components. On the

other hand, the markers finally entering the algorithm ideally are

reasonably accessible and allow pathophysiological interpretation

as this increases acceptance of healthcare providers, payers, and

physicians. Another weakness of our current model is that we were

restricted to continuous markers as inputs, leaving out discrete

and binary variables. We are currently exploring the possibilities of

including them as well. Finally, the model was built and validated

on the PROVALID data set. Other data sets are in preparation

for external validation. The basic principle of our approach is that

longitudinal intra-individual variability in progression decreases

the accuracy of any prediction marker with extended follow-up

periods. This will be the topic of a follow-on study. However,

one specific property of the model is that it predicts the change

in eGFR 1 year in advance. It is possible to extend the model to

predict multiple years in advance; thus, it is possible to extend the

model to predict multiple repetitive years. This will require that the

model also predicts all fundamental biomarkers 1 year in advance,

rather than just the output 1eGFR. This will require that the

model predict all fundamental biomarkers 1 year in advance, rather

than just the output 1eGFR. The prediction can then be iterated

to provide predictions multiple years in advance. This process is

under study.

In summary, this study identifies a composite biomarker

for DKD that is an aggregate of fundamental biomarkers easily

accessible to clinicians. The composite biomarker can be used to
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FIGURE 2

Model outputs for RASi only (black) and RASi plus add-on drugs (colored) vs. the composite biomarker 1R. The add-on outputs are the expectation

of 1eGFR, just as the case for RASi-only. These outputs are designated 1G, 1M, and 1S for GLP1a, MCRa, and SGLT2i, respectively. The vertical

distance between the add-on model and the RASi-only model is the expected increase/decrease in 1eGFR for a patient with composite biomarker

1R and administration of the add-on drug. The use of models allows direct comparison of the add-on drug outcome to the RASi-only outcome. The

models can be calculated for any values of input biomarkers, while the actual data of Figure 1 only contains output data for a discrete set of sample

inputs and, thus, cannot give comparisons for all values of input biomarkers.

inform the decision to maintain a patient on a RASi-only treatment

or to add GLP1a, MCRa, or SGLT2i to the RASi treatment.

Clinical access to this model and related models is currently being

developed, tested, and prepared for the approval process.
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Appendix: The hybrid
machine-learning approach

PLS

The simplest model we consider to predict and maximize

1eGFR is a linear model.

ŷ = BTxb, (A1)

where xb is a vector of length p of biomarker values, ŷ is a the

estimate of the value of 1eGFR, and B is a vector of length p

of coefficients. The coefficients B can be determined by LR as

suggested in (22). Here, we calculate B with PLS. PLS has an

advantage over LR by reducing the issue of colinearity. PLS also

can be used to rank the importance of the input biomarkers in

determining the output ŷ. Therefore, not only can PLS be used in

estimating the output but it can also be used in input dimensionality

reduction, reducing the value of p. We use both of these features

of PLS in this study. PLS is available as a package in python and

MATLAB. Here, we use plsregres from the MATLAB library. Note

that PLS uses a random-number generator and, therefore, has slight

variation in the output from run to run even for the same data set.

Models can be divided into two classes, feedforward and

recurrent. Feedforward models map an input smoothly into an

output, while recurrent networks map inputs and outputs into

outputs. Recurrent models usually require iteration for evaluation.

A guess for the output is supplied and an updated value for the

guess is calculated by mapping the initial guess and the inputs

into the second guess. This process is repeated until the process

converges. A simple feedforwardmodel such as Eq. A1 can describe

a smooth dependence of ŷ on the biomarkers, but the evolution of

DKD can behave discontinuously as a result of vicious cycles in

the disease progression. In other words, the disease progress can

increase suddenly over a period of months, which is shorter than

the time between annual visits. This appears as a discontinuity in

the data.

Recurrent models are able to model discontinuities [Sec.

1.3](26). Specifically, we model discontinuous jumps with a

polynomial in the output ŷ. For the case of a cubic polynomial, Eq.

A1 becomes

a3 ŷ
3 + a2 ŷ

2 + ŷ = BTxb, (A2)

where a2 and a3 are coefficients to be determined. The output ŷ can

be evaluated iteratively. Equation A2 can be written

ŷ = f (xb, ŷ), (A3)

where

f (xb, ŷ) = BTxb − a2 ŷ
2 − a3 ŷ

3, (A4)

which is non-linear in ŷ but linear in coefficients BT , a2, and a3.

Equations A3, A4 describe a recurrent model that models a cubic

equation. The particular case of a cubic model is described in [Sec.

1.3](26). The output is evaluated by making an initial guess ŷ0 for ŷ

on the RHS of Eq. A3 and using f to update the guess. The process is

a one-dimensionalmap of ŷ onto itself. The process is repeated until

the difference between successive guesses becomes smaller than a

threshold value. Here, we find that the differences become smaller

than 1% after 10 iterations. The guesses converge to one of as many

as three possible real fixed points.

The final fixed point is determined by two factors, the initial

guess and the slope:

f ′ =
∂f

∂ ŷ
(A5)

at each of the fixed points. It is easy to show that a stable fixed point

obeys the condition

|f ′| < 1 (A6)

In other words, if a fixed point violates Eq. A6 at the fixed point,

then that point is not stable. The system will avoid that fixed point

and converge to one in which Eq. A6 is satisfied. If the slope

approaches zero, the system converges or diverges from the fixed

point very slowly. We have not seen this situation in practice. The

final fixed point is not only a fixed point that is stable but also

one for which the initial guess lies within the fixed point’s basin of

attraction. The details of the boundaries for the basins of attraction

are determined by BTxb. The classic reference on the topic of fixed

points and basins of attraction for one-dimensional non-linear

dynamics is Feigenbaum (27).

The polynomial model, Eqs. A2, A4, can fit into the PLS

framework. In order to train the coefficients, the actual output y∗

is substituted for the estimated output ŷ in Eq. A4. The inputs x to

PLS are a vector of length p+ 2.

x = [xb, −(y∗)2, −(y∗)3] (A7)

The fixed points, therefore, are trained on actual outputs y∗, and we

expect the iterative evaluation process to converge to an estimate

for the actual output value y∗. The coefficients B, a2, and a3 are

given by the PLS process. Here, we choose the initial guess for ŷ to

be ŷ0 = 0. The consequences of this choice are tested numerically.

Biomarker selection

Biomarkers were selected from two data sets, the expert data

set (Table 2) (22) and the complete PROVALID data set, which also

contains the expert data set as a subset. Only continuous variables

were considered. The number of PLS components was chosen to

be five. The most important variables in both the expert and the

PROVALID data sets were selected and combined into a single data

set (Table 2). This combined data set was used for all subsequent

modeling.

PLSNN

Neural networks are commonly used for modeling data. The

most common networks used for deep learning, however, require

massive amounts of data to train (28). In this study, we use a class

of localized networks (29) that can provide quick and accurate

results on small problems such as those we have in this study (see

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2023.1271407
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jones et al. 10.3389/fmed.2023.1271407

FIGURE A1

Raw data can come from experts, the PROVALID data set, or other preproccessed sources. Preprocessing might include dimensionality reduction

with Bayesian networks, genetic algorithms, or other dimensionality reduction schemes as indicated in the figure. The data are run through PLS to

create a reduced vector of inputs ranked by how they a�ect the output and to create a linear estimate of the output. These are fed back into the PLS

process and iterated to convergence. The converged outputs are inputs to the normalized radial basis network. The output is both a non-linear

estimate of the output and a non-linear reduction of the input variables. The network is iterated to convergence yielding the final output 1R.

Figure A1). Normalized radial basis function networks (NRBNs)

have demonstrated good utility in control problems that require a

small number of inputs and that live in a changeable environment

(26, 30–34).

In order to increase the model accuracy beyond that achievable

by PLS, we input the variables, coefficients, and output from PLS

into NRBN to obtain an improved estimate for y∗. A training

set of sample observables is used to fit trainable parameters. The

combined model is designated PLSNN.

The architecture of PLSNN is (26, 30)

ˆ̂y =

q∑

i=1

p∑

j=1

aij Bjxj u[d(x
′, x′i], (A8)

where ˆ̂y is the PLSNN estimate, x is the expanded input vector

given by Eq. A7, B are the corresponding PLS coefficients, u is a

normalized basis functions, the hyperparameter q is the number

of basis functions, x′ is a selected set of inputs that taken from

PLS outputs, x′i are the basis function centers chosen randomly

from the training set, d(x′, x′i) is a dimensionless distance measure

between x′ and x′i, and aij is a set of trainable parameters. Here, the

two-dimensional input vectors x′ are given by

x′ → [y∗, ŷ] (A9)

for training the network and

x′ → [ ˆ̂y, ŷ] (A10)

for evaluation. The basis centers x′i are q random selections from the

training vectors given in Eq. A9. Note that this randomness causes

small variation in the output from run to run for the same data

set. In other words, the network is trained on actual data, which is

available from the training set, but it is evaluated using the iterated

process described above because the output is not yet known for the

test/evaluation set.

We take the dimensionless distance d between an input vector

and a basis center to be the Euclidean distance (29).

d(x′, x′i) = β
(x′ − x′i)

T(x′ − x′i)

σ ∗
(A11)

where the hyperparameter β is a scaling parameter and σ ∗ is the

standard deviation of all the observed outputs y∗ in the training set.

We typically set β = 1. Comparable results are found for values

β = 0.2 to 5.

The normalized basis functions u are given by

u[d(x̂, x̂i)] =
ρ[d(x̂, x̂i)]∑q
i=1 ρ[d(x̂, x̂i)]

(A12)

where we used the convenient choice for the localized basis

function (29)

ρ(d) = exp(−d) (A13)

For evaluation, ˆ̂y is an estimate for y∗. The PLSNN estimate for
ˆ̂y is evaluated in the same iterative manner as the PLS estimate, Eq.

A3. The initial guess for ˆ̂y is the PLS estimate ˆ̂y = ŷ.

We train the network with the projection-operator technique

[see, for example, (26, 30)]:

1aij = ν [y∗ − ˆ̂y]
vij

∑q
i=1

∑p
j=1 v

2
ij

. (A14)
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where the hyperparameter 0 < ν < 1 is the learning rate and

vij = Bjx u[d(x′, x′i)]. (A15)

The outcomes are insensitive to the learning rate. We take the rate

to be ν = 0.1. Equation A14 is updated for every sample x, x′, and ˆ̂y

in the training set. Multiple training sets were formed by removing

one sample for testing, shuffling the samples used as basis centers,

and shuffling the order in which the samples were presented to the

training algorithm Eq. A14.

A test set was created by randomly selecting and removing one

sample from each training set. PLSNN was not trained on this

sample. This sample formed a member of the leave-one-out test set.

Performance parameters were calculated from this test set.

We built four separate models of the annual percent change

(1eGFR), one for each sub-population that receives a particular

drug treatment (Table 4). The baseline sub-population are those

patients who only received renin-angiotensin system inhibitor

(RASi) (35). The remaining three treatment regimes involved

the addition of a second drug to the baseline treatment:

sodium-glucose cotransporter-2 inhibitor (SGLT2i) (36),

glucagon-like peptide-1 (GLP-1a) (37), and antimineralocorticoid

receptor antagonist (MCRa) (38). Distinct variable selection

and 1eGFR prediction was performed for each of the four

models.

The composite biomarker 1R is the

estimated value of 1eGFR for the RASi-Alone

Model.
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