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Background: Precise preoperative evaluation of lymph node metastasis (LNM) is 
crucial for ensuring effective treatment for rectal cancer (RC). This research aims 
to develop a clinical-radiomics nomogram based on deep learning techniques, 
preoperative magnetic resonance imaging (MRI) and clinical characteristics, 
enabling the accurate prediction of LNM in RC.

Materials and methods: Between January 2017 and May 2023, a total of 519 rectal 
cancer cases confirmed by pathological examination were retrospectively recruited 
from two tertiary hospitals. A total of 253 consecutive individuals were selected 
from Center I to create an automated MRI segmentation technique utilizing deep 
learning algorithms. The performance of the model was evaluated using the dice 
similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and the 
average surface distance (ASD). Subsequently, two external validation cohorts were 
established: one comprising 178 patients from center I (EVC1) and another consisting 
of 88 patients from center II (EVC2). The automatic segmentation provided radiomics 
features, which were then used to create a Radscore. A predictive nomogram 
integrating the Radscore and clinical parameters was constructed using multivariate 
logistic regression. Receiver operating characteristic (ROC) curve analysis and decision 
curve analysis (DCA) were employed to evaluate the discrimination capabilities of the 
Radscore, nomogram, and subjective evaluation model, respectively.

Results: The mean DSC, HD95 and ASD were 0.857 ± 0.041, 2.186 ± 0.956, and 
0.562 ± 0.194 mm, respectively. The nomogram, which incorporates MR T-stage, 
CEA, CA19-9, and Radscore, exhibited a higher area under the ROC curve (AUC) 
compared to the Radscore and subjective evaluation in the training set (0.921 
vs. 0.903 vs. 0.662). Similarly, in both external validation sets, the nomogram 
demonstrated a higher AUC than the Radscore and subjective evaluation (0.908 
vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734).

Conclusion: The application of the deep learning method enables efficient automatic 
segmentation. The clinical-radiomics nomogram, utilizing preoperative MRI and 
automatic segmentation, proves to be an accurate method for assessing LNM in RC. This 
approach has the potential to enhance clinical decision-making and improve patient care.

Research registration unique identifying number (UIN): Research registry, 
identifier 9158, https://www.researchregistry.com/browse-the-registry#home/
registrationdetails/648e813efffa4e0028022796/.
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Introduction

Rectal cancer (RC) is a prevalent tumor affecting the 
gastrointestinal system and poses a significant global burden (1). The 
presence of lymph node metastasis (LNM) in RC individuals, 
particularly in cases defined as locally advanced rectal cancer (LARC), 
is associated with a poor prognosis. In order to manage LARC, the 
customary clinical strategy comprises administering neoadjuvant 
chemoradiotherapy (nCRT) before conducting total mesorectal 
excision (TME) surgery (2). This approach proves effective in 
diminishing the likelihood of local recurrence or the spread of cancer 
to distant sites (3). Achieving precision treatment in RC relies on 
accurate preoperative assessment of LNM (4). Consequently, it 
becomes crucial to accurately detect of lymph node (LN) involvement 
before surgery (4–6).

High-resolution magnetic resonance imaging (MRI) holds 
significant importance in the initial assessment of RC conditions. 
Nonetheless, achieving a precise preoperative diagnosis of LN 
involvement remains challenging in clinical practice (5). Relying 
solely on size as the exclusive criterion provides only acceptable 
precision. For instance, just 94% of the impacted LN possess a 
dimension less than 5 mm (6). A large node could be a successful tool 
to examine dimensions, perimeter, and signal intensity in 
LN. However, morphological criteria did not enhance the precision of 
lymph node staging in cases of RC (7). This challenge is further 
complicated by the absence of agreement regarding the relevant 
standards for evaluating LN contribution (7–9). Therefore, it is 
imperative to establish advanced and highly sensitive diagnostic tools 
to enhance the accuracy of LNM diagnosis in patients with RC.

Recently, several studies have demonstrated that radiomics can assist 
researchers in tackling diverse clinical tasks. By extracting numerous 
quantitative features from medical images through high-throughput 
analysis, radiomics approaches have the potential to empower radiologists 
to enhance diagnostic accuracy, ultimately benefiting patients (10–16). 
Radiomics-based models have exhibited promising value in detecting 
LNM in digestive tumors (10–12, 17–20). However, most existing 
methodologies rely on manual volume measurements of the entire 
primary tumor, which can be highly laborious, time-consuming, and 
subject to operator variability (12, 19, 20).

To the best of our knowledge, there is a lack of clear exploration 
regarding a deep learning-based image segmentation and clinical-
radiomics nomogram for detecting LNM in individuals with 
RC. Therefore, the objective of this research was to create and validate 
an MR-based clinical-radiomics nomogram model that utilizes deep 

learning-based image segmentation. The purpose was to enable 
preoperative assessment of LNM and assess its clinical applicability in 
the context of RC.

Materials and methods

Participants

The trial followed the Declaration of Helsinki and had permission 
from the Ethics Committees of Changhai Hospital and Ruijin Hospital 
Luwan Branch. Written informed consent was waived as the 
retrospective design.

From January 2017 to January 2020, a total of 392 consecutive 
patients with RC diagnosed pathologically at Changhai Hospital (center 
I) were included in this retrospective trial. The inclusion criteria 
comprised the following: (1) histological diagnosis of rectal 
adenocarcinoma based on postoperative pathological examination; (2) 
presence of a single tumor focus; (3) baseline rectal magnetic resonance 
imaging (MRI) performed within 14 days prior to surgical resection. 
Exclusion criteria were as follows: (1) receipt of any local or systemic 
treatment prior to surgical resection (n = 86); (2) previous or concurrent 
diagnosis of cancers other than RC (n = 8); (3) poor image quality (n = 11); 
(4) synchronous distant metastasis (n = 22); (5) positive CRM (n = 7); (6) 
history of previous pelvic surgery (n = 5). Ultimately, a total of 253 cases 
were enrolled from center I. Additionally, another 178 patients from 
Changhai Hospital (temporal external validation center I, EVC1) and 88 
patients from Ruijin Hospital Luwan Branch (spatial external validation 
center II, EVC2), who met the same exclusion criteria as external 
validation sets 1 and 2, were also included between February 2020 and 
May 2023 for external validation.

Clinicopathologic data

Patient information and clinicopathologic findings were 
retrospectively obtained from the clinicopathological databases. This 
included data such as sex, age, BMI, histological differentiation, 
carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen 
(CEA), circumferential resection margin (CRM), and pathological 
T-stage and N-stage. The CEA level was considered negative if it was 
less than 5 ng/mL, while the CA19-9 level was considered negative if 
it was less than 37 U/mL. These measurements were recorded at the 
same time as the baseline MRI. During the surgical procedure, all LN 
within the mesorectum were obtained from the surgical samples, 
ensuring a minimum of 12 lymph nodes were extracted per subject. 
The patients were categorized into different groups based on the 
National Comprehensive Cancer Network (NCCN) and American 
Joint Committee on Cancer (AJCC) staging system (21). The N0 
group consisted of patients without lymph node metastasis (LNM), 
while the N1–2 group included patients with LNM.

Abbreviations: RC, Rectal cancer; nCRT, Neoadjuvant chemoradiotherapy; LNM, 

Lymph node metastasis; MRI, Magnetic resonance imaging; T2WI, T2-weighted 

imaging; ICC, Intraclass correlation coefficient; VOI, Volume of interest; LASSO, 

Least absolute shrinkage and selection operator; ROC, Receiver operating 

characteristic; AUC, Area under the roc curve; DCA, Decision curve analysis.

https://doi.org/10.3389/fmed.2023.1276672
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Ma et al. 10.3389/fmed.2023.1276672

Frontiers in Medicine 03 frontiersin.org

Image acquisition and analysis

Rectal MRI scans were conducted using either a 1.5 or 3.0 T MR 
systems (Siemens 1.5, 3.0, and GE 3.0 T) along with a phased array 
coil. Prior to the scan, a 20 mL glycerin enema was administered to 
perform intestinal cleansing. The standard imaging protocol included 
axial diffusion-weighted imaging (DWI) with a b-value of 0 and 
1,000 s/mm2, sagittal T2-weighted imaging (T2WI), axial T1-weighted 
imaging (T1WI), and gadolinium contrast-enhanced T1WI of the 
pelvis in sagittal, coronal, and axial planes. Additionally, oblique axial 
high-resolution T2WI (HR-T2WI) images, which were perpendicular 
to the long axis of the rectum and included the lesion, were obtained. 
Supplementary Table  1 provides detailed information on the 
parameters used for HR-T2WI, which were utilized for the 
radiomics models.

Subjective evaluation of RC using MR imaging was conducted by 
three trained radiologists, namely R1, R2, and R3, with 12, 9, and 
6 years of expertise, correspondingly. These radiologists were unaware 
of the pathological data. The assessment encompassed the evaluation 
of the subsequent tumor attributes: (1) tumor height, described as the 
measurement from the lower border of the tumor to the anal verge on 
MRI; (2) MR-reported T stage; (3) MR-reported N stage, and LN 
metastasis was identified if any of the following criteria was met: LN 
short-axis diameter superior to 10 mm, internal necrosis, nonuniform 
signal, LN fusion, nonuniform enhancement, or ill-defined borders 
(22, 23); (4) involvement of the mesorectal fascia (MRF); (5) presence 
of extramural venous invasion (EMVI). Any discrepancies among the 
radiologists’ evaluations were resolved through discussion until a 
consensus was reached by at least two of the experts. The interobserver 
correlation of subjective evaluation for LN metastasis between any two 
radiologists was assessed using the Kappa statistic. The intraclass 
correlation coefficient (ICC) was calculated to evaluate the consistency 
of subjective evaluation for LN metastasis among all three radiologists.

Deep learning-based image segmentation

Since MR scans were performed using different MR scanners, the 
acquired DICOM data (oblique axial HR-T2WI) underwent 
preprocessing in these two centers. We adopted the data preprocessing 
strategy through data fingerprint information, including resampling 
strategy, cropping area size, gray value distribution, etc. information, 
thus forming a so-called “configuration plan.” The size of each raw 
image was first adjusted by cropping to a size of 384 × 384 × 64. 
Subsequently, all images were resampled to a target spacing of [0.36, 
0.36, 0.36] mm to ensure a consistent target spacing. The preprocessed 
images were subsequently brought into ITK-SNAP software version 
4.0.01 for manual layer-by-layer segmentation of the entire RC lesion. 
This segmentation process aimed to obtain the volume of interest 
(VOI) representing the most accurate boundary fitting the primary 
tumor’s area for each case. These segmented images served as mask 
images (ground truth, GT) for the training of the segmentation 
neural network.

1 www.itksnap.org

The initial cohort of 253 cases from center I was randomly split 
into a network training set (60%, n = 152) and a network test set (40%, 
n = 101) for the development and validation of an automated 
segmentation method using nnU-Net during Stage I of our research. 
nnU-Net is a self-configuring approach specifically designed for deep 
learning-based segmentation of biomedical images (24). The details 
of the segmentation neural network can be  found in 
Supplementary Figure 1. To mitigate overfitting, we implemented data 
augmentation along with 5-fold cross-validation. Additionally, the 
dice similarity coefficient (DSC), the 95th percentile Hausdorff 
distance (HD95), and average surface distance (ASD) between the 
automatically segmented images and the GT images were also 
reported in Supplementary Figure 2.

Then, the tested cases for automatic segmentation (n = 101) were 
also employed as a subsequent training set for the model to facilitate 
LNM classification in Stage II, thus avoiding excessively time-
consuming processes. As for the segmentation task in Stage II, we also 
learned from the “configuration plan” and selected a parameter setting 
with a centered distribution. The automatic segmentation process was 
repeated with a one-week time interval to assess feature consistency. 
Finally, the Artificial Intelligence Kit software (GE Healthcare) was 
utilized to extract features from all automatically delineated VOIs 
derived from the model training set (n = 101), EVC1 (n = 178), and 
EVC2 (n = 88).

Radiomics feature extraction and reduction

Based on the automatically delineated VOIs, four categories of 
features were identified. These included: (1) first-order features, which 
describe the voxel intensity distribution on MR images, (2) shape 
features, which capture the 3D properties of the VOIs, (3) texture 
features, which quantify the dissimilarities in heterogeneity within the 
region using techniques such as size zone, run length, gray-level 
co-occurrence, and neighborhood gray-tone difference matrices, and 
(4) higher-order features, which are derived from transformed first-
order data and texture features. This category includes square, square 
root, logarithm, exponential, gradient, local binary pattern (LBP), and 
wavelet transformations.

The intraclass correlation coefficient (ICC) was calculated to 
evaluate the robustness of the features during model training. Only 
indexes with an ICC value above 0.8 were considered for further 
analysis. To identify the most relevant features associated with LNM, 
the Select K Best method and the least absolute shrinkage and 
selection operator (LASSO) algorithm were employed to develop a 
Radscore. The detailed process of feature selection can be found in 
Supplementary Figure 3.

Nomogram model building and validation

The predictive value of clinical features and the Radscore in 
detecting LNM was assessed through univariable logistic regression 
evaluation in the model training set. Factors with p lower than 0.05 
were then used to develop a nomogram model through multiple factor 
logistic regression. Receiver operating characteristic (ROC) curve 
analysis was conducted to evaluate the performance of the Radscore, 
nomogram, and subjective evaluation model. External validation sets 
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1 and 2 were used to validate the accuracy of the detection (25). The 
models were compared using the DeLong test, and the goodness-of-fit 
of the nomogram was determined employing the Hosmer-Lemeshow 
test and calibration curves. To assess the comprehensive benefits, 
decision curve analysis (DCA) was employed. The study’s workflow is 
depicted in Figure 1.

Statistical analysis

Statistical analysis was conducted using SPSS software (v. 26.0, 
IBM) and R package (v. 3.5.1, http://www.Rproject.org). Categorical 
data were analyzed using the Pearson chi-square test or Fisher’s exact 
test, whereas continuous data (mean ± standard deviation) were 
assessed using the Student’s t-test or Mann–Whitney U-test. A 
significance level of <0.05 (two-sided) was used to determine 
statistical significance.

Results

Patient features

The three cohorts exhibited no significant variations in 
demographic characteristics (all p > 0.05), as indicated in Table  1. 
Based on the pathological reports, LNM was identified in 50 out of 
253 cases (19.8%) in center I, compared to 36 out of 178 cases (20.2%) 
in EVC1 and 24 out of 88 cases (27.3%) in EVC2. The interobserver 
agreement for the subjective evaluation of MR N-stage across all 
cohorts is presented in Supplementary Table 2.

Automatic segmentation results

The developed deep learning-based automatic segmentation 
method demonstrates the capability to execute automated 
configuration for our datasets, effectively encompassing the entire 

lesion in HR-T2WI (Figure  2). The mean DSC, HD95, and ASD 
between the automatic segmentation and GT were 0.857 ± 0.041, 
2.186 ± 0.956 mm, and 0.562 ± 0.194 mm, respectively 
(Supplementary Figure 2).

Model building and evaluation

In the model training set, five features were identified and utilized 
to develop a Radscore, as shown in Table 2 and Supplementary Figure 3. 
Univariable analysis demonstrated a significant association between 
LNM and the following factors: MR T-stage, MR N-stage, CEA, 
CA19-9, and Radscore (Table 3). Subsequently, a nomogram model 
was constructed using multivariable logistic regression analysis, 
considering the selected risk factors (MR T-stage, CEA, CA19-9, and 
Radscore, as indicated in Table 4). The probabilities were calculated 
using the formula: −4.97107 + 3.72165 * Radscore + 1.85358 * 
CEA + 2.16416 * CA199 + 2.18032 * MR T-stage, resulting in an AUC 
of 0.921 (Supplementary Table  3). The generated nomogram, 
presented in Figure  3, exhibited a higher AUC compared to the 
Radscore and subjective evaluation in both external validation sets 
(0.908 vs. 0.735 vs. 0.640, and 0.884 vs. 0.802 vs. 0.734). These 
statistically significant differences were confirmed by the DeLong test. 
Detailed ROC analyses can be  found in Table  5 and Figure  4. 
Calibration curves for the nomogram in both validation datasets 
indicated no significant deviation (Hosmer-Lemeshow test, p = 0.065 
and 0.610) from an ideal fit (Supplementary Figure  4). DCA 
demonstrated that utilizing the nomogram model to assess the 
probability of LNM offered a positive net benefit compared to the 
Radscore, subjective evaluation, and the all-or-none approach at a 
significant threshold probability (Figure 5).

Discussion

Here, we focused on the development and validation of a deep 
learning-based image segmentation method for accurate delineation 

FIGURE 1

Study flowchart (A) and modeling methods (B). Center 1, Changhai Hospital; EVC1, temporal external validation center I, Changhai Hospital; EVC2, 
spatial external validation center II, Ruijin Hospital Luwan Branch.
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of rectal adenocarcinoma. Subsequently, a clinical-radiomics 
nomogram was constructed, demonstrating significantly improved 
performance compared to the Radscore and subjective evaluation 
when assessing lymph node metastasis (LNM) in patients with rectal 
cancer (RC). Radiologists and clinicians can utilize this intelligent, 
noninvasive, intuitive, and convenient approach to obtain personalized 
predictive information through straightforward calculations prior 
to surgery.

In patients with RC, preoperative detection of LNM plays a 
crucial role in tumor staging and treatment decision-making. It 

provides fundamental information for individualized treatment 
approaches, which primarily include surgical resection and nCRT, 
with variations based on the pathological stage of the lesion (2). 
Precise LN staging in RC is crucial to appropriately select 
individuals for preoperative procedure, ensuring avoidance of 
undertreatment and minimization of overtreatment. However, 
conventional magnetic resonance imaging (MRI) falls short in 
accurately detecting LN metastasis, exhibiting suboptimal 
sensitivity, accuracy, and specificity (7–9, 26). This suggests that 
subjective MRI standards for LNM detection are unreliable, 

TABLE 1 Patient demographics.

Variables Center I EVC1 EVC2 p-value

n  =  253 n  =  178 n  =  88

Gender 0.849

Male 173 (68.4%) 124 (69.7%) 63 (71.6%)

Female 80 (31.6%) 54 (30.3%) 25 (28.4%)

Age (years) 58.420 ± 12.112 56.750 ± 11.357 57.830 ± 10.254 0.442

BMI (kg/m2) 23.434 ± 2.944 24.148 ± 2.968 23.334 ± 2.611 1.000

Tumor height (cm)* 4.751 ± 2.043 3.813 ± 1.864 4.773 ± 1.987 0.926

Pathological T-stage 0.187

T1–2 117 (46.2%) 74 (41.6%) 47 (53.4%)

T3–4 136 (53.8%) 104 (58.4%) 41 (46.6%)

Pathological N-stage 0.308

N0 203 (80.2%) 142 (79.8%) 64 (72.7%)

N1–2 50 (19.8%) 36 (20.2%) 24 (27.3%)

Differentiation 0.145

High-moderate 200 (79.1%) 153 (86.0%) 69 (78.4%)

Poor 53 (20.9%) 25 (14.0%) 19 (21.6%)

MR T-stage 0.366

T1–2 148 (58.5%) 116 (65.2%) 55 (62.5%)

T3–4 105 (41.5%) 62 (34.8%) 33 (37.5%)

MR N-stage 0.069

N0 120 (47.4%) 67 (37.6%) 44 (50.0%)

N1–2 133 (52.6%) 111 (62.4%) 44 (50.0%)

MRF 0.334

Negative 202 (79.8%) 152 (85.4%) 72 (81.8%)

Positive 51 (20.2%) 26 (14.6%) 16 (18.2%)

EMVI 0.696

Negative 162 (64.0%) 121 (68.0%) 58 (65.9%)

Positive 91 (36.0%) 57 (32.0%) 30 (34.1%)

CEA** 0.844

Negative 165 (65.2%) 112 (62.9%) 55 (62.5%)

Positive 88 (34.8%) 66 (37.1%) 33 (37.5%)

CA19-9** 0.139

Negative 204 (80.6%) 130 (73.0%) 71 (80.7%)

Positive 49 (19.4%) 48 (27.0%) 17 (19.3%)

BMI, body mass index; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; MRF, mesorectal fascia; EMVI, extramural venous invasion. *Tumor height was defined as the 
distance between the lower edge of the tumor and the anal verge by MRI. **Preoperative blood samples at the same time as baseline MRI. Center I, Changhai Hospital; EVC1, external 
validation from center I, Changhai Hospital; EVC2, external validation from center II, Ruijin Hospital Luwan Branch.
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primarily due to the absence of a consensus on appropriate 
morphological criteria for accurate assessment of LN involvement. 
The data from our validation sets confirmed that the subjective 
evaluation demonstrates acceptable sensitivity for detecting LNM, 
ranging from 86.4% to 83.3%. However, the specificity is relatively 
low, ranging from 45.6 to 62.5%, which aligns with our clinical 
experience. Meanwhile, the accuracies of subjective MR N-stage 
were 54.5% to 71.6%. This negative influence becomes more 
pronounced when constructing a clinical-radiomics nomogram, 
leading to the exclusion of subjective MR N-stage from the final 
nomogram model in current research.

Radiomics represents a novel approach that utilizes routine 
imaging findings to conduct high-throughput quantitative 
evaluations. This quantitative method offers a noninvasive tool for 
the detailed analysis of the biological properties and variability of 
RC, surpassing the limitations of morphological visual 
representation. Currently, several studies (10–12) have showcased 
the viability of radiomics in predicting LNM in CRC. Our previous 
study (12) developed a radiomics model for primary lesions in RC 
using a random forest (RF) classifier to LNM. The RF demonstrated 
an AUC of 0.746, serving as a performance evaluation of diagnostics. 
However, the sensitivity and specificity of the model still fell below 

80%. One potential explanation for this is the absence of 
clinicopathological risk factors in the model.

It is worth noting that we  developed a clinical-radiomics 
nomogram model that combines MR T-stage, CEA, CA19-9, and 
Radscore. This model serves as an intuitive visualization tool with 
enhanced discriminatory ability for preoperative detection of LNM. It 
demonstrated favorable performance and superior diagnostic 
efficiency compared to subjective evaluation (p < 0.05). Furthermore, 
our findings suggest that the combination of Radscore and clinical 
factors outperformed the radiomics signature alone in predicting 
LNM in rectal adenocarcinoma. The addition of clinical factors 
resulted in an elevated AUC (0.802 to 0.884), along with significantly 
higher specificity (96.9%) and PLR of 21.333 in the external validation 
cohort. Consequently, a preoperative nomogram which can be trained 
effectively and explained easily was developed to assist radiologists 
and clinicians in assessment of LNM intuitively and rapidly.

Moreover, this study utilized radiomics features extracted from 
automatic segmentation based on deep learning. Specifically, 
we employed 60% of the center 1 dataset for training a neural network 
called nnU-Net, which enables automated image segmentation in 
HR-T2WI. Although nnU-net is a unified framework, the original 
architecture displays strong generalization characteristics requiring 
neither expert knowledge nor compute resources beyond standard 
network training in various medical image segmentation challenges 
(24). Compared to the conventional manual approach, the automated 
image segmentation offers convenience, eliminates the risk of 
perceptual errors, and is well-suited for processing substantial 
amounts of records. As a standardized and dataset-agnostic 
framework, nnU-Net was proposed as a robust and powerful tool for 
medical image segmentation (24). This streamlined and efficient 
procedure has the potential to alleviate the burden of the often 
laborious and inconsistent manual segmentation process. By 
leveraging artificial intelligence, this approach enhances the reliability 
of research and holds promise as a replacement for the time-
consuming and non-reproducible manual segmentation method 
currently in use (27).

The inclusion of two distinct validation cohorts from external 
sources was another noteworthy aspect of this research. Consistent 
with the findings in the training set, the temporal and spatial external 
validation cohorts exhibited favorable discrimination, calibration, and 
improved clinical utility when utilizing the nomogram. This suggests 
that incorporating an external dataset can help mitigate the limitations 
of overfitting associated with a novel model. Consequently, the 
nomogram model holds the potential to enhance diagnostic 
confidence for radiologists and offer clinicians a more valuable and 
objective understanding of overall prognostic factors prior to clinical 
decision-making.

This investigation had several limitations that should 
be acknowledged. Firstly, the sample size was small, and the study 
design was retrospective, which may introduce selection bias and 
limit the general applicability of the findings. Therefore, larger-scale 
multicenter studies are required to overcome these limitations and 
validate the results more robustly. Additionally, the imaging 
segmentation was conducted automatically based on the primary 
tumor in RC. While most methodologies emphasize the use of the 
entire tumor volume, this study only extracted and analyzed 
radiomics features from the primary tumor itself, without exploring 

FIGURE 2

Representative diagram of automatic segmentation.

TABLE 2 Description of the selected radiomics features.

Radiomics feature Radiomics class Filter

Size zone non-uniformity GLSZM wavelet-LLL

Gray level non-uniformity GLSZM wavelet-LLL

Zone entropy GLSZM wavelet-HLL

High gray level zone 

emphasis

GLSZM wavelet-HLL

Zone entropy GLSZM wavelet-HHL

GLSZM, Gray-level size zone matrix.
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TABLE 3 Univariate analysis in training set.

Variables Pathological N stage Univariate logistic regression

Total (n  =  101) N0 (n  =  79) N1–2 (n  =  22) OR (95% CI) p-value

Gender 0.897

  Male 77 (76.2%) 60 (76.0%) 17 (77.3%) 1.0 (reference)

  Female 24 (23.8%) 19 (24.0%) 5 (22.7%) 0.929 (0.302, 2.854)

Age (years) 56.139 ± 11.335 56.671 ± 10.789 54.227 ± 13.212 0.982 (0.942, 1.022) 0.371

BMI (kg/m2) 23.402 ± 2.947 23.545 ± 2.904 22.888 ± 3.110 0.925 (0.785, 1.090) 0.355

Tumor height (cm) 4.743 ± 2.057 4.785 ± 2.170 4.591 ± 1.623 0.953 (0.751, 1.210) 0.695

MR T-stage <0.001

  T1–2 66 (65.3%) 60 (76.0%) 6 (27.3%) 1.0 (reference)

  T3–4 35 (34.7%) 19 (24.0%) 16 (72.7%) 8.421 (2.886, 24.570)

MR N-stage 0.030

  N0 39 (38.6%) 36 (45.6%) 3 (13.6%) 1.0 (reference)

  N1–2 62 (61.4%) 43 (54.4%) 19 (86.4%) 1.887 (1.063, 3.351)

MRF 0.116

  Negative 81 (80.2%) 66 (83.5%) 15 (68.2%) 1.0 (reference)

  Positive 20 (19.8%) 13 (16.5%) 7 (31.8%) 2.369 (0.807, 6.952)

EMVI 0.208

  Negative 65 (64.4%) 54 (68.4%) 11 (50.0%) 1.0 (reference) 0.116

  Positive 36 (35.6%) 25 (31.6%) 11 (50.0%) 2.160 (0.826, 5.646)

CEA <0.001

  Negative 66 (65.3%) 61 (77.2%) 5 (22.7%) 1.0 (reference)

  Positive 35 (34.7%) 18 (22.8%) 17 (77.3%) 11.522 (3.732, 35.571)

CA19-9 <0.001

  Negative 82 (81.2%) 72 (91.1%) 10 (45.4%) 1.0 (reference)

  Positive 19 (18.8%) 7 (8.9%) 12 (54.6%) 12.343 (3.936, 38.709)

Radscore 0.263 ± 0.203 0.219 ± 0.153 0.421 ± 0.275 84.761 (8.301, 865.471) <0.001

LNM, lymph node metastasis; OR, odds ratio. The meaning of bold values provided in table was p-value < 0.05.

TABLE 4 Multivariate analysis in training set.

Variables Training set (n  =  101)

OR (95% CI) p-value

MR T-stage 0.005

T1–2 1.0 (reference)

T3–4 9.344 (1.973, 44.259)

MR N-stage 0.050

N0 1.0 (reference)

N1–2 2.513 (1.000, 6.317)

CEA 0.010

Negative 1.0 (reference)

Positive 7.810 (1.6252, 37.5291)

CA19-9 0.011

Negative 1.0 (reference)

Positive 9.418 (1.654, 53.641)

Radscore 39.242 (1.540, 999.808) 0.026

LNM, lymph node metastasis; OR, odds ratio. The meaning of bold values provided in table was p-value < 0.05.
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the features of the LN. This limitation may lead to incomplete 
observation data and potentially impact the overall analysis. This 
point has garnered significant attention in both theoretical and 
application domains. However, deep learning approaches for the 
direct identification of LNM have not been developed and validated 
in this research. Multiple prior studies provide evidence that DL 
models can effectively predict tumor heterogeneity in rectal cancer, 
covering aspects like lymph node metastasis, distant metastasis, 

and patient survival (28–31). Nevertheless, deep learning 
investigations vary widely, and these models often lack 
interpretability. Although it is not easy for deep learning models to 
become explanatory and reasonable, which still puzzles many 
researchers. The application of artificial intelligence methods has 
the potential to guide personalized treatment plans, offering an 
emerging prognostic approach that warrants further investigation 
in the future (32–34).

TABLE 5 ROC analysis in validation sets.

External validation set 1 External validation set 2

Subjective 
evaluation

Radscore Nomogram Subjective 
evaluation

Radscore Nomogram

AUC 0.640 0.735 0.908 0.734 0.802 0.884

95% CI 0.539 to 0.733 0.638 to 0.818 0.834 to 0.956 0.629 to 0.823 0.704 to 0.879 0.798 to 0.943

Sensitivity 86.4% 50.0% 81.8% 83.3% 66.7% 66.7%

Specificity 45.6% 92.4% 94.9% 62.5% 92.2% 96.9%

Accuracy 54.5% 83.2% 92.1% 71.6% 85.2% 88.6%

PLR 1.670 6.583 16.159 2.222 8.533 21.333

NLR 0.199 0.541 0.191 0.267 0.362 0.344

PPV 0.317 0.647 0.818 0.455 0.762 0.889

NPV 0.947 0.869 0.949 0.909 0.881 0.886

p-value* <0.001 <0.001 0.018 0.035

*Compared with nomogram by DeLong test. AUC, area under the curve; PLR, positive likelihood ratio; NLR, negative likelihood ratio; NPV, negative predictive value; PPV, positive predictive 
value.

FIGURE 3

The nomogram. In the visual nomogram, first, a vertical line was drawn according to the values of the most influential factors to determine the 
corresponding numbers of points. The total points were the sum of the above points. Then, a vertical line was drawn according to the value of total 
points to determine the probability of LNM.
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Conclusion

In summary, this study effectively developed and confirmed 
a clinical-radiomics nomogram by utilizing preoperative rectal 
MRI and automated segmentation. The nomogram incorporated 
both the Radscore and clinical risk factors, demonstrating its 
usefulness in predicting LNM. This innovative nomogram 
model demonstrated enhanced clinical utility compared to 
subjective evaluation and the Radscore alone. This noninvasive 

approach has the potential to intelligently enhance risk 
stratification in rectal cancer and can be readily applied in a 
clinical setting.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

FIGURE 4

ROC curves. (A) External validation set 1. (B) External validation set 2.

FIGURE 5

Decision curve analysis. (A) External validation set 1. (B) External validation set 2. The Y-axis represents the net benefit, calculated by adding true 
positives and subtracting false positives. The X-axis corresponds to the probability threshold (depicted as a solid line with a scale at the bottom). The 
light and dark gray lines indicate assumptions that all cases or no cases have lymph node metastasis (referred to as the “all” or “none” scheme), 
respectively. Red, green and blue curves showed that with a large probability range, utilizing the developed nomogram to predict the odds of LNM 
conferred a positive net benefit vs. the Radscore, subjective evaluation and the all-or-none scheme.
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