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Background: Testicular volume (TV) is an essential parameter for monitoring 
testicular functions and pathologies. Nevertheless, current measurement tools, 
including orchidometers and ultrasonography, encounter challenges in obtaining 
accurate and personalized TV measurements.

Purpose: Based on magnetic resonance imaging (MRI), this study aimed to 
establish a deep learning model and evaluate its efficacy in segmenting the testes 
and measuring TV.

Materials and methods: The study cohort consisted of retrospectively collected 
patient data (N  =  200) and a prospectively collected dataset comprising 10 healthy 
volunteers. The retrospective dataset was divided into training and independent 
validation sets, with an 8:2 random distribution. Each of the 10 healthy volunteers 
underwent 5 scans (forming the testing dataset) to evaluate the measurement 
reproducibility. A ResUNet algorithm was applied to segment the testes. Volume 
of each testis was calculated by multiplying the voxel volume by the number 
of voxels. Manually determined masks by experts were used as ground truth to 
assess the performance of the deep learning model.

Results: The deep learning model achieved a mean Dice score of 0.926  ±  0.034 
(0.921  ±  0.026 for the left testis and 0.926  ±  0.034 for the right testis) in the 
validation cohort and a mean Dice score of 0.922  ±  0.02 (0.931  ±  0.019 for the 
left testis and 0.932  ±  0.022 for the right testis) in the testing cohort. There was 
strong correlation between the manual and automated TV (R2 ranging from 
0.974 to 0.987  in the validation cohort; R2 ranging from 0.936 to 0.973  in the 
testing cohort). The volume differences between the manual and automated 
measurements were 0.838  ±  0.991 (0.209  ±  0.665 for LTV and 0.630  ±  0.728 
for RTV) in the validation cohort and 0.815  ±  0.824 (0.303  ±  0.664 for LTV and 
0.511  ±  0.444 for RTV) in the testing cohort. Additionally, the deep-learning model 
exhibited excellent reproducibility (intraclass correlation >0.9) in determining TV.

Conclusion: The MRI-based deep learning model is an accurate and reliable tool 
for measuring TV.
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Introduction

The testis is an important organ for male spermatogenesis and 
testosterone synthesis (1–3). As the seminiferous tubules account 
for approximately 80–90% of the testicular mass, the testicular 
volume (TV) reflects sperm and hormonal status (1, 2, 4–7). In 
clinical practice, the TV is an essential parameter for monitoring 
testicular functions and pathologies (2). An increased TV is the 
earliest sign of pubertal gonadotropin elevation; thus, TV 
measurements are used to monitor testicular development and 
pubertal status. Normal spermatogenesis occurs only when the 
total TV is normal or approximately normal, and the amount of 
TV loss is associated with the degree of spermatogenesis disorder 
(5). The TV has been proven to be related to semen profiles, and 
TV measurements are key components of male infertility 
evaluations (1, 6, 8). Therefore, accurate and individualized TV 
measurements may improve the diagnosis and treatment of 
patients with various disorders that affect testicular growth and 
fertility (2, 4, 7).

Several methods are used to assess TV, including calipers, different 
types of orchidometers, and ultrasonography (US) (4–6, 8–13). 
Clinical methods, such as calipers and orchidometers, are subjective 
in nature and tend to overestimate the true TV due to potential 
interference from the adjacent soft tissue, such as the epididymis, 
scrotal skin, and subcutaneous tissues, particularly in the case of small 
testes and hydrocele (5, 6, 11–14). Formula-derived US is generally 
used as the standard method for determining TV nowadays. TV is 
usually calculated as length (L) × width (W) × height (H) × constant 
(C), where C is a correction factor (often recommended as 0.71 or 
0.52), and the length, width, and height are the sizes of the testicular 
axes determined by the sonographers (2, 15). However, the formula-
derived measurement is recognized as a rough estimate of the TV, 
because the testis is an elastic and compressible organ with a shape 
that is neither uniform nor necessarily ellipsoid (5, 11). TV 
measurements obtained via US have been proven to vary from study 
to study, formula to formula, and examiner to examiner (2, 9, 10, 15); 
thus, establishing normative TV values and cutoffs for distinguishing 
pathological conditions has proven challenging, limiting the 
standardized use of TV in clinical practice (2, 5, 11, 15). Therefore, 
efforts are still needed to develop methods that are accurate, 
convenient, and individualized.

Recently, deep learning models have demonstrated great potential 
in attaining highly accurate volume measurements (16). These models 
first automatically segment the targets using deep learning algorithms, 
and then calculate the volumes of the targets by multiplying the voxel 
size by the voxel number (17). Measurement accuracy relies more on 
the precision of automatic segmentation results than on the match 
between the shape of the targets and the formula employed (18). 
Highly accurate auto-segmentation and volume estimation using deep 
learning models have been reported in several organs and pathologies, 
such as brain tumors, the liver, the kidney, the spleen, and the inner 

ear (16–23). However, the performance of deep learning models in 
estimating testicular volume has not been reported previously.

Therefore, in this study, a deep learning model, specifically, a 
ResUNet algorithm, is used to automatically segment the testes on 
T2-weighted imaging (T2WI) and calculate testicular volume. Masks 
manually defined by experts served as the reference standard for 
evaluating the performance of the deep learning model. A subset of 
subjects was scanned multiple times to evaluate the repeatability of the 
segmentation results. Our findings demonstrate that the T2WI-based 
deep learning model is an accurate and reliable tool for 
TV measurement.

Materials and methods

Our institutional review board approved this study, and the 
requirement for informed consent was waived.

Study population

The study population consisted of a retrospective dataset and a 
prospective dataset. For the collection of the retrospective data, 
we searched the electronic database of our institution from February 
2014 to September 2021 for males who underwent magnetic resonance 
imaging (MRI) of the scrotum for any reason, such as scrotal pain and 
infertility. The inclusion criteria were defined as follows: (1) Both 
testes exhibited anatomically intact morphology, (2) no visible 
intratesticular lesions were present, and (3) patients underwent 3.0 T 
MRI scans of the scrotum, with available T2WI included in the MRI 
protocol. The exclusion criteria were defined as follows: (1) 
undescended testes, (2) testis was too small to observe in three image 
slices, (3) the quality of the MR images was poor, (4) patients 
underwent treatment, such as orchiectomy, partial orchiectomy, testis-
sparing surgery, radiotherapy, or chemotherapy, due to testicular 
diseases, and (5) patients underwent androgen deprivation therapy 
due to prostate cancer. Finally, a total of 200 consecutive patients (400 
testes) were enrolled in the retrospective dataset. This dataset was 
divided into training and independent validation cohorts according 
to a random distribution of 8:2. The training cohort was employed to 
train the network, while the validation cohort was used to evaluate the 
segmentation performance of the network.

A prospectively collected dataset comprising of ten healthy 
volunteers was used as the testing cohort. Each volunteer was scanned 
5 times. The subjects were repositioned (removed from the scanner 
and asked to sit up and move on the bed) and reregistered on the 
scanner console between scans in each session; thus, all scans were 
treated as separate measurements. In addition, we attempted to vary 
the acquisition geometry between each scan while still acquiring full 
testes coverage. The testing data were used to assess the reproducibility 
of the MRI-based measurements.
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MRI acquisition

All images were acquired using a 3 T MAGNETOM Skyra 
(Siemens Healthcare, Erlangen, Germany) and an anterior 18-element 
body matrix coil combined with a posterior 32-channel spine coil. 
Multiple sequences were scanned, but only the T2-weighted turbo 
spin–echo sequences were used in this study. The transverse T2WI 
were acquired using the following parameters: 3 mm slice thickness, 
0 mm slice gap, 6,500 ms repetition time, 104 ms echo time, 
180 × 180 in field of view and 384 × 320 acquisition matrix.

Notably, the T2WI parameters were consistent with the 
standardized technical requirements for scrotal imaging 
recommended by the Scrotal and Penile Imaging Working Group of 
the European Society of Urogenital Radiology (24, 25). The acquisition 
time of the transverse T2WI was approximately 180 s.

Manual segmentation

The manual segmentation results were used as the ground truth. 
Manual segmentation was performed using ITK SNAP software 
(version 3.4.0; www.itksnap.org). Three-dimensional binary masks of 
the entire testes were generated by tracing the testicular boundaries 
slice-by-slice on the transverse T2WI. The non-testicular parenchyma 
area, including the epididymis and mediastinum, was excluded from 
the manual segmentation. Manual segmentation was carried out by 
two radiologists (observer 1, with 10 years of experience in interpreting 
MRI of scrotum, and observer 2, with 5 years of experience in 
interpreting MRI of scrotum) in a blind manner. For the manual 
segmentation of the retrospective dataset, the images were collectively 
analyzed by the two observers, and discrepancies were resolved 
through discussion until a consensus was reached.

For the initial segmentation of the prospective dataset, which 
served as the ground truth, readers 1 and 2 collectively segmented the 
images [region of interest (ROI) A] for all 5 repeated acquisitions. 
Then, 1 month after the initial segmentation, readers 1 (ROI B) and 2 
(ROI C) independently segmented all 5 repeated acquisitions to assess 
the inter- and intra-observer variability of the manual segmentation. 
The volume of each testis was computed by multiplying the voxel 
volume by the number of voxels in each testis mask. Subsequently, the 
total testicular volume (TTV) was calculated by summing the volumes 
of both testes.

Automated segmentation using ResUNet

All images were preprocessed, including resampling, 
normalization, cropping, and padding, to generate homogeneous MRI 
volumes. First, all volumes were resampled to the same voxel size of 
0.46875 mm × 0.46875 mm × 1 mm. Subsequently, the intensities of 
each volume were normalized to the range [−1, 1]. The architecture 
of the model is based on the ResUNet algorithm (7, 26–28). Briefly, 
the model has encoding, bridge, and decoding parts. The encoding 
part encodes the input image into compact representations, while the 
decoding part recovers the representations for pixel-wise 
categorization. The bridge part connects the encoding and decoding 
paths. The ResUNet algorithm was implemented in Python 3.9.7 using 
PyTorch version 1.8.0. The network uses a Tversky loss function. The 

model was trained with a batch size of 1 over 200 epochs using the 
Adam optimizer. We set the initial learning rate to 0.0001 and trained 
the network for 600 iterations, reducing the learning rate to 80% of the 
current value every 20 iterations. The ResUNet model was trained 
using RTX 2080Ti GPUs (NVIDIA).

Statistical analysis

The baseline demographics are reported in the form of 
mean ± standard deviation (SD). The accuracy of the deep learning 
model was assessed by comparing the automated segmentation results 
with the manual segmentation results. The reliability of the manual 
segmentation results and the reproducibility of the deep learning 
model were evaluated using the testing dataset. Voxel-based similarity 
metrics (e.g., Dice score) and surface-based similarity metrics (e.g., 
Hausdorff distance) were employed to evaluate the overlap between 
masks. In addition, volume differences, including actual volume 
difference and percentage volume difference, were computed. The 
mean coefficient of variation (CoV; defined as SD/mean) and the 
intraclass correlation coefficient (ICC) were used to assess 
repeatability. Bland–Altman and regression analyses were conducted 
to evaluate the correlation between manual TV and automated TV.

Results

Patients

The final training dataset included MRI scans of 160 cases from 
160 patients (aged 9–74 years; mean age 34.713 ± 14.542 years). In the 
training cohort, the average left testicular volume (LTV) was 
12.539 ± 2.625 mL (1.471–34.628 mL), the average right testicular 
volume (RTV) was 13.579 ± 4.366 mL (1.824–36.601 mL), and the 
average total testicular volume (TTV) was 26.333 ± 8.357 mL (3.295–
71.229 mL). The validation dataset included MRI scans of 40 cases 
from 40 patients (aged 11–70 years; mean age 33.4 ± 13.388 years). In 
the validation dataset, the average LTV was 12.351 ± 4.133 mL (2.356–
21.373 mL), the average RTV was 12.672 ± 4.821 mL (1.539–
23.126 mL), and the average TTV was 25.023 ± 8.676 mL (4.629–
43.276 mL). The prospective testing dataset included MRI scans of 50 
cases from 10 healthy volunteers (aged 13–30 years; mean age 
19.7 ± 5.33 years). In the testing dataset, the average LTV was 
12.539 ± 2.625 mL (8.162–16.072 mL), the average RTV was 
13.549 ± 2.505 mL (8.187–16.945 mL), and the average TTV was 
26.089 ± 5.052 mL (16.833–32.354 mL). The characteristics of the 
enrolled patients are provided in Table 1. The distributions of the TV 
in the training, validation and testing datasets are shown in Figure 1.

Reliability of the manual segmentation 
results

The healthy volunteers in the testing dataset were utilized to 
analyze the reproducibility of the manual segmentation results, as 
healthy testes have more consistent morphologies and therefore 
provide better performance for repeatability evaluation. First, based 
on masks manually determined by different experts, interobserver 
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variability of the manual segmentation results was evaluated, as shown 
in Supplementary Table S1. The overlap between different manual 
masks was analyzed using similarity metrics, including the Dice score, 
Jaccard index, and Hausdorff distance. The actual volume difference 
was calculated. Next, based on the 5 repeated scans in the testing 
dataset, the intra-observer variability of the manual segmentation 
results was assessed. As shown in Table  2, the intra-observer 
repeatability of the manual TV was excellent (ICC > 0.9), regardless of 
the experiments of the observers or whether the manual segmentations 
were performed independently by one radiologist or collectively by 
two radiologists.

Accuracy of the deep learning model

As shown in Table 3, there was excellent similarity between the 
automatic and manual segmentations, with a mean Dice score of 
0.922 ± 0.02 (0.921 ± 0.026 for the left testis and 0.926 ± 0.034 for the 
right testis) in the validation cohort and a mean Dice score of 
0.931 ± 0.018 (0.931 ± 0.019 for the left testis and 0.932 ± 0.022 for the 
right testis) in the testing cohort. Linear regression analysis indicated 
a strong positive correlation (R2 ranging from 0.974 to 0.987, p < 0.001 
for the validation cohort; R2 ranging from 0.936 to 0.973, p < 0.001 for 
the testing cohort) between the manual TV and automated TV 
(Figure 2, Supplementary Figure S1). For TTV, the bias (mean) and 
precision (SD) of the automated measurements were 0.838 and 
0.991  in the validation cohort and 0.815 and 0.824  in the testing 
cohort. For LTV, the bias and precision of the automated 
measurements were 0.209 and 0.665 in the validation cohort and 0.303 
and 0.664 in the testing cohort. For RTV, the bias and precision of the 
automated measurements were 0.630 and 0.728  in the validation 
cohort and 0.511 and 0.824 in the testing cohort. In terms of volume 
error, the actual volume differences between manual measurements 

and automated measurements were 0.209 ± 0.665 for LTV, 
0.630 ± 0.728 for RTV, and 0.838 ± 0.991 for TTV in the validation 
cohort. In the testing cohort, the percentage volume differences 
between manual measurements and automated measurements were 
0.303 ± 0.664 for LTV, 0.511 ± 0.444 for RTV, and 0.815 ± 0.824 for 
TTV. The percentage volume differences between manual 
measurements and automated measurements were 2.192 ± 6.129% for 
LTV, 4.654 ± 7.355% for RTV, and 3.711 ± 4.983% for TTV in the 
validation cohort. In the testing cohort, the percentage volume 
differences between manual measurements and automated 
measurements were 2.621 ± 5.580% for LTV, 3.909 ± 3.856% for RTV, 
and 3.266 ± 3.668% for TTV. Figure 3 illustrates an example of manual 
segmentation alongside the corresponding automated segmentation 
generated by the deep learning model.

Repeatability of the deep learning model

Based on the 5 repeated scans in the testing dataset, the 
repeatability of the MR-based automated measurements was evaluated 
(Table 4). Across the 5 different measurements, the automated method 
demonstrated excellent repeatability, with ICCs of 0.973 for LTV, 
0.970 for RTV, and 0.982 for TTV. The mean CoV across the 5 
different measurements were 2.964% ± 1.873% for LTV, 
2.556% ± 1.690% for RTV, and 2.156% ± 1.352% for TTV, which were 
similar to the CoV of the manual methods (p = 0.961, p = 0.118, and 
p = 0.343, respectively).

Discussion

In this study, utilizing retrospectively collected patient data and 
prospectively collected data from healthy volunteers, we developed a 

TABLE 1 Characteristics of the enrolled patients.

Patients Number of 
patients

Number of 
datasets

Mean Age 
(years)

LTV (mL) RTV (mL) TTV (mL)

Training Cohort 160 160 34.713 ± 14.542 12.753 ± 4.342 13.579 ± 4.366 26.333 ± 8.357

Validation Cohort 40 40 33.400 ± 13.388 12.351 ± 4.133 12.672 ± 4.821 25.023 ± 8.676

Testing Cohort 10 50 19.700 ± 5.330 12.539 ± 2.625 13.549 ± 2.505 26.089 ± 5.052

LTV, left testicular volume; RTV, right testicular volume; TTV, total testicular volume.
All values are quoted as mean ± SD.

FIGURE 1

TV distributions. LTV, left testicular volume; RTV, right testicular volume; TTV, total testicular volume.

https://doi.org/10.3389/fmed.2023.1277535
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Sun et al. 10.3389/fmed.2023.1277535

Frontiers in Medicine 05 frontiersin.org

deep learning model to automatically segment the testes and measure 
TV. The deep learning model achieved accurate segmentation and 
provided reliable TV measurements. For the first time, we report that 
the MR-based deep learning model holds promise as a valuable tool 
for TV measurements.

As an essential parameter for monitoring testicular functions 
and pathologies, TV measurements have long been a subject of 
research focus (1, 2, 29). Over the past decades, efforts have been 
made to improve the accuracy of TV measurements, and formula-
derived US measurements are generally used as the standard 
method for TV determination (1, 6, 10). However, the testis is an 
elastic and compressible organ whose elasticity varies across 
different developmental stages and pathological conditions. 
Moreover, the testis does not always conform to a strictly 
ellipsoidal shape. Consequently, precise and individualized 
measurements cannot be  achieved through formula-derived 
approaches (5, 15). Recently, deep learning models have been 
reported to obtain highly accurate volume measurements of 
various organs and tissues, including the lungs, liver, kidney, 
spleen, and brain tumors (16, 18–21). For example, Daniel AJ et al. 
enrolled 30 healthy volunteers and 30 chronic disease patients, 

reporting that their deep learning model allowed for accurate 
segmentation and volume measurements of the kidney, yielding a 
mean Dice score of 0.93 ± 0.01 and a mean volume difference of 
1.2 ± 16.2 mL (20). Modanwal G et al. demonstrated that a deep 
learning model enabled accurate segmentation of the liver and 
spleen in non-contrast computed tomography images, achieving 
a Dice coefficient of 0.95  in an independent validation cohort 
(16). In this study, utilizing retrospectively collected patient data 
(N = 200, comprising the training and independent validation 
cohorts) and prospective data from healthy volunteers (N = 50, 
serving as the testing cohort), we found that the ResUNet deep 
learning model enabled accurate TV measurements. This was 
reflected in mean Dice scores of 0.926 ± 0.034 and 0.922 ± 0.02, 
respectively in the validation and testing cohorts, along with 
volume differences of 0.838 ± 0.991 and 0.815 ± 0.824, respectively 
in the validation and testing cohorts. The possible reason might 
be as follows. On one hand, the testis exhibits relatively uniform 
characteristics in T2-weighted MR images, and the ResUNet 
model has previously demonstrated exceptional performance in 
automatically segmenting organs and tissues with repetitive 
structures (22–24, 26–28, 30). On the other hand, MRI, especially 
T2WI, provides excellent soft tissue contrast, facilitating the clear 
delineation of the tunica albuginea and tunica vaginalis that 
enclose the testes. Consequently, the testes can be  accurately 
differentiated from the surrounding tissue in T2WI.

Another point of concern in automated volume measurement 
is its repeatability. Longitudinal follow-up of TV may be necessary 
in certain clinical settings, such as closely monitoring changes in 
pubertal status, tracking testicular involvement in pathological 
processes, and assessing the impact of chemotherapeutic or 
hormonal agents on the testes. TV measurements must exhibit 
high reproducibility to be valuable in longitudinal studies (4, 5, 
31). In this study, we obtained 5 scans for each volunteer in the 
testing cohort to investigate the reproducibility of the MR-based 
measurement. Our results showed that MR-based deep learning 
model have small variations and excellent reproducibility; 
Thus is a reliable tool for TV measurements. In addition, our 
results also suggest that the MR-based manual measurements 
showed excellent inter- and intra-observer repeatability, 

TABLE 2 Intra-observer repeatability of the manual measurements.

Observer Testis CoV (%) ICC

Intra ROI A

Left 2.931 ± 1.291 0.971

Right 3.829 ± 2.792 0.946

Total 2.487 ± 1.193 0.981

Intra ROI B

Left 2.685 ± 0.965 0.977

Right 3.991 ± 2.192 0.949

Total 2.842 ± 0.813 0.978

Intra ROI C

Left 2.797 ± 0.842 0.976

Right 4.051 ± 2.833 0.946

Total 2.753 ± 1.420 0.979

CoV, coefficient of variation.
All CoV values are represented as the mean ± SD. ROI A was segmented collectively by 
readers 1 and 2. ROI B was independently segmented by reader 1, and ROI C was 
independently segmented by reader 2.

TABLE 3 The accuracy of the deep learning model.

Datasets testis Dice score Jaccard index Hausdorff 
distance (95th 
percentage)

Actual volume 
difference (mL)

Percentage 
volume 

difference (%)

Training

Left 0.918 ± 0.044 0.852 ± 0.064 1.412 ± 0.756 0.388 ± 0.761 2.639 ± 7.475

Right 0.926 ± 0.034 0.864 ± 0.051 1.886 ± 7.471 0.578 ± 0.816 4.337 ± 8.170

Total 0.923 ± 0.029 0.859 ± 0.046 1.926 ± 7.272 0.967 ± 1.231 3.627 ± 6.153

Validation

Left 0.921 ± 0.026 0.854 ± 0.043 1.364 ± 0.687 0.209 ± 0.665 2.192 ± 6.129

Right 0.921 ± 0.027 0.856 ± 0.046 1.389 ± 0.747 0.630 ± 0.728 4.654 ± 7.355

Total 0.922 ± 0.02 0.856 ± 0.033 1.386 ± 0.482 0.838 ± 0.991 3.711 ± 4.983

Testing

Left 0.931 ± 0.019 0.871 ± 0.033 1.182 ± 0.426 0.303 ± 0.664 2.621 ± 5.580

Right 0.932 ± 0.022 0.873 ± 0.037 1.222 ± 0.515 0.511 ± 0.444 3.909 ± 3.856

Total 0.931 ± 0.018 0.872 ± 0.030 1.183 ± 0.424 0.815 ± 0.824 3.266 ± 3.668

All values are represented as the mean ± SD.
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regardless of the experiments of the observer or whether the 
manual segmentations were performed independently by one 
radiologist or collectively by two radiologists. These results 
demonstrate the reliability and rationality of the proposed 
MR-based measurement approach. One possible reason for these 
findings is that the testes could be well discriminated from the 
surrounding tissue in the T2WI.

Although MRI provides richer morphological and functional 
information and is less dependent on operator experience, US 
remains the first choice for diagnostic imaging of the scrotum (15, 
24, 29). MRI is recommended as a valuable alternative diagnostic 

tool for investigating scrotal pathology (24, 25). The main reason is 
that US is faster, more easily accessible, and more convenient, 
whereas multiplane and multimodal imaging are needed for scrotal 
MRI (24). However, in this study, the deep learning model was 
trained on only transverse T2WI, which takes only about 180 s to 
obtain the images. Therefore, the MRI-based deep-learning model 
proposed in this study is low time consuming, reliable 
and individualized.

This study has several limitations. First, there is a lack of data 
on US-derived measurements to conduct a comparison between 
US-derived measurements and MRI-based measurements. 

FIGURE 2

Scatter plot and Bland–Altman graph showing the difference between automated TV and manual TV. (A) Validation dataset. (B) Testing dataset. In the 
Bland–Altman graph, the solid lines show the actual mean difference (bias), and the dotted lines show 95% limits of agreements (LoAs).
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Second, the retrospective data served as training and validation 
cohorts containing heterogeneous patient populations, including 
infertility, hydrocele, scrotal pain, etc. A deep learning model 
trained with heterogeneous patient data can be  clinically 
significant since the TV is typically used to assess patients with a 
variety of disorders that may affect testicular growth and 
fertility, such as infertility and varicocele. Third, this work was a 
single-center study. Multicenter studies are needed to validate 
our findings. Notably, the scan parameters used in this study 
were consistent with the standardized scrotal MRI technical 
requirements recommended by the Scrotal and Penile 
Imaging Working Group of the European Society of Urogenital 
Radiology, suggesting the universality of the proposed deep 
learning model.

Conclusion

In conclusion, the proposed MRI-based deep learning model is an 
accurate and reliable tool for the segmentation and volume 
measurement of the testes.
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TABLE 4 Comparison of the repeatability between the manual and 
automated measurements.

Testis ICC CoV (%)

Manual Auto Manual Auto p*
Left 0.971 0.973 2.931 ± 1.291 2.964 ± 1.873 0.961

Right 0.946 0.967 3.829 ± 2.792 2.779 ± 1.853 0.118

Total 0.981 0.984 2.487 ± 1.193 2.047 ± 1.319 0.343

CoV, coefficient of variation.
All CoV values are represented as the mean ± SD.
*Paired student t test.
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