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Objective: Although observational and genetic studies have indicated a correlation 
between OA and COVID-19, it remains uncertain whether osteoarthritis (OA) 
contributes to the severity of COVID-19. Here, we  aimed to investigate the 
potential causal links between the two.

Methods: In this study, we  conducted Mendelian randomization (MR) analysis 
to investigate whether there is a potential causal connection between OA and 
COVID-19 outcomes. The analysis utilized publicly available GWAS summary 
datasets, incorporating data on OA (N  =  455,221), SARS-CoV-2 infection 
(N  =  2,597,856), hospitalized COVID-19 (N  =  2,095,324), and critical COVID-19 
(N  =  1,086,211). Additionally, we  performed a literature analysis to establish a 
molecular network connecting OA and COVID-19.

Results: The MR analysis showed causal effects of OA on hospitalized COVID-19 
(OR: 1.21, 95% CI: 1.02–1.43, p  =  0.026) and critical COVID-19 (OR: 1.35, 95% CI: 
1.09–1.68, p  =  0.006) but not on SARS-CoV-2 infection as such (OR: 1.00, 95% CI: 
0.92–1.08, p  =  0.969). Moreover, the literature-based pathway analysis uncovered 
a set of specific genes, such as CALCA, ACE, SIRT1, TNF, IL6, CCL2, and others, 
that were found to mediate the association between OA and COVID-19.

Conclusion: Our findings indicate that OA elevates the risk of severe COVID-19. 
Therefore, larger efforts should be made in the prevention of COVID-19  in OA 
patients.
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Introduction

Ever since the onset of the COVID-19 pandemic, SARS-CoV-2 has emerged as a worldwide 
peril to public health. This virus, originally considered a respiratory infection, also damages the 
central nervous system (1–5), cardiovascular system (6), and various other tissues and organs 
(7). Furthermore, to date, numerous factors have been recognized to increase susceptibility to 
COVID-19, notably chronic conditions such as diabetes, hypertension, and others (8–12). 
Despite the decrease in the prevalence of COVID-19, it continues to present a health challenge 
to the population.

Osteoarthritis (OA) is one of the most common chronic musculoskeletal diseases in the 
world, impairing the quality of life for more than 10% of elderly individuals over 60 years old 
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and 40% of those over 70 years old (13, 14). The primary pathological 
characteristic of OA is synovitis, with the damaged synovium secreting 
a variety of cytokines and chemokines that maintain inflammation 
and promote both cartilage degeneration and subchondral bone 
changes (15). In this case, patients with OA often experience chronic 
concomitant diseases such as cardiovascular diseases and systemic 
inflammation (15). These comorbidities may further reduce resistance 
and undermine health.

Epidemiological studies have shown that rheumatoid arthritis 
increases the risk of adverse outcomes of COVID-19 (16, 17). In the 
case of OA, it was found that OA displays positive genetic correlations 
with COVID-19 traits, and both conditions share certain 
chromosomal loci and particular genes. However, Mendelian 
randomization (MR) analysis of the same datasets did not substantiate 
the causal genetic relationships observed (18). Consequently, 
we endeavored to verify the causality between OA and the vulnerability 
and severity of COVID-19 with larger datasets.

Mendelian randomization (MR) analysis infers causal 
relationships between exposure factors and disease outcomes by 
taking advantage of the random combinations of genetic variants 
during meiosis and utilizing exposure-related genetic variants as 
instrumental variables (IVs) (19, 20). Due to its reliance on the 
random distribution of alleles, MR analysis is typically less prone to 
common confounding factors, such as lifestyle influences (21). 
Recently, the MR design has been widely utilized to detect causal 
relationships between diseases (22, 23). Here, we  used summary 
GWAS datasets to perform MR analysis of the potentially causal 
relationships between OA and COVID-19. Additionally, 
we established the molecular pathway by employing knowledge-based 
analysis to gain deeper insights into this association.

Materials and methods

GWAS datasets and population

In this research, causal relationships were estimated using publicly 
accessible GWAS summary data. To ensure homogeneity in the 
population, the study participants were exclusively of European 
ancestry. The datasets of COVID-19 were sourced from the COVID-19 
Host Genetics Initiative (HGI) GWAS, with the exclusion of 23 and 
Me data. The datasets covered outcomes of SARS-CoV-2 infection, 
hospitalized COVID-19, and critical COVID-19 (more information 
is available in Table 1) (24). In this study, we collectively described the 
cases of hospitalized COVID-19 and critical COVID-19 as “severe 
COVID-19” (10). The GWAS dataset of OA originated from UKB, 
consisting of knee osteoarthritis, hip osteoarthritis, knee and/or hip 
osteoarthritis, and any osteoarthritis phenotypes (detailed data in 
Table 1) (14).

MR analysis

In our analysis, we utilized the R package TwosampleMR (version 
0.5.6) to employ MR techniques, including inverse variance weighting 
(IVW), weighted median (WM), and MR-Egger methods (25). The 
IVW method, known for its superior statistical power and efficiency 
when utilizing valid instrumental variables (IVs), elucidates the 

diversity of causal estimates for particular variables (26). Therefore, 
we employed IVW as the main approach to calculate the results. To 
enhance the robustness of our findings, we also employed weighted 
median (WM) and MR-Egger methods in conjunction with IVW and 
adjusted the significance level with the false discovery rate (FDR). The 
instrumental variables (IVs) used for MR analysis must satisfy three 
core assumptions: (1) the IV is associated with the exposure; (2) the 
IV is not associated with any confounders; (3) the IV affects the 
outcome only through the exposure and not through any other 
pathways (27) (Figure 1).

Single nucleotide polymorphisms (SNPs) were selected as 
instrumental variables (IVs) from the exposure of interest based on 
the genome-wide significance threshold (p < 5 × 10−8), encompassing 
all variants associated with the exposure. The clumping criterion was 
set at r2 < 0.01, within 10 Mb. In sensitivity analysis, we applied the 
MR-Egger regression test (28) and MR pleiotropy residual sum and 
outlier test (MR-PRESSO) to assess horizontal pleiotropy and 
Cochran’s Q test (p < 0.05) (29) to detect heterogeneity. Furthermore, 
to test the strong association of a single SNP with exposure and its 
predominant influence on estimating causal effects, we conducted a 
leave-one-out analysis (30).

Knowledge-based analysis

To investigate the molecular links between OA and COVID-19, 
we  conducted large-scale data mining using the PathwayStudio 
platform1 (31) and constructed molecular pathways connecting OA 
and COVID-19. Initially, we hypothesized that both conditions might 
share regulatory factors. To validate it, we  thoroughly examined 
relevant references and statements while also ensuring the quality of 
the extracted relationships by eliminating any irrelevant or indirect 
connections. Finally, we constructed a network connecting OA and 
COVID-19 based on the obtained correlations.

Results

MR analysis

In MR analysis, to verify the causality of OA on the three outcomes 
of COVID-19, a total of 33 genetic variants were obtained as IVs from 
the OA dataset. According to the IVW method, genetic susceptibility 
to OA exerts causal influences on hospitalized COVID-19 (odds ratio 
(OR): 1.21, 95% confidence interval (CI): 1.02–1.43, p = 0.026) and 
critical COVID-19 (OR: 1.35, 95% CI: 1.09–1.68, p = 0.006) but not on 
SARS-CoV-2 infection (OR: 1.00, 95% CI: 0.92–1.08, p = 0.969; Table 2 
and Figure 2).

In sensitivity analyses, MR-PRESSO detected horizontal 
pleiotropy (p < 0.001), while the MR-Egger regression test, which 
estimates the average horizontal pleiotropy across all SNPs, showed 
no significant evidence of horizontal pleiotropy (MR-Egger intercept 
<0.02, p > 0.05). Additionally, the FDR test supported the validity of 
MR results, and Cochran’s Q test pointed towards the heterogeneity 

1 www.pathwaystudio.com
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(p < 0.05). On the other hand, the leave-one-out analysis demonstrated 
that none of the individual SNPs significantly influenced the MR 
outcomes for severe COVID-19 (Figure  3), which indicates the 
robustness of the results.

Knowledge-based analysis

After inquiring into the molecular relationship between OA and 
COVID-19, a total of 22 molecular entities were highlighted as 
candidate mediators of the effect of OA on COVID-19 (Figure 4). 
Among them, 19 molecules act as negative regulators (KLF2, SIRT1, 
IL17A, CTSB, TNF, INS, MTOR, FURIN, substance P, plasmin, HIF1A, 

P2RX7, AGTR1, JAK2, IL6, CCL2, CXCL8, CXCL10, and CRP), two 
genes serve as positive regulators (CALCA and HGF), and one gene, 
ACE, displays bidirectional effects. These 22 molecular players form a 
network that likely bridges OA and COVID-19.

Discussion

In contrast to previous studies that mainly reported an 
intersection of gene sets underpinning susceptibilities to OA and 
COVID-19 (16–18), our study further elucidated causal genetic 
associations between these two conditions. The results from our MR 
analysis show that individuals with OA have a 21% higher probability 

FIGURE 1

The illustration for the three core assumptions of MR. (1) The IV is associated with the exposure; (2) The IV is not associated with any confounders; (3) 
The IV affects the outcome only through the exposure and not through any other pathways.

TABLE 2 Causal relationships between osteoarthritis and COVID-19 outcomes.

Outcome Method B (se) OR (95%CI) N_IV Q_P P_pleiotropy p FDR

Critical COVID-19 IVW 0.303 (0.110) 1.35 [1.09–1.68] 33 1.52E-04 NA 0.006 0.036

MR–Egger 0.729 (0.401) 2.07 [0.94–4.55] 33 1.06E-04 0.278 0.079 0.113

WM 0.285 (0.120) 1.32 [1.05–1.68] 33 NA NA 0.017 0.051

Hospitalized 

COVID-19

IVW 0.192 (0.086) 1.21 [1.02–1.43] 33 6.24E-08 NA 0.026 0.051

MR–Egger 0.573 (0.333) 1.77 [0.92–3.41] 33 2.62E-08 0.245 0.095 0.114

WM 0.114 (0.085) 1.12 [0.95–1.32] 33 NA NA 0.177 0.177

SARS-CoV-2 

infection

IVW 0.002 (0.040) 1.00 [0.92–1.08] 33 2.19E-08 NA 0.969 0.969

MR–Egger 0.327 (0.153) 1.38 [1.03–1.87] 33 1.07E-06 9.52E-05 0.040 0.120

WM −0.047 (0.039) 0.95 [0.89–1.03] 33 NA NA 0.226 0.339

B, effect size; se, standard error; OR, odds ratio; CI, confidence interval; N_IV, number of instrumental variables; Q_P, Cochran’s p value of heterogeneity analysis; FDR, false discovery rate; 
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; IVW, inverse variance weighted; WM, weighted median; NA, not applicable.

TABLE 1 Information on the GWAS summary datasets.

Dataset N-case N-control Population URL

Osteoarthritis 77,052 378,169 European https://ega-archive.org/

SARS-CoV-2 infection 122,616 2,475,240 European https://www.covid19hg.org/results/r7/

Hospitalized COVID-19 32,519 2,062,805 European https://www.covid19hg.org/results/r7/

Critical COVID-19 13,769 1,072,442 European https://www.covid19hg.org/results/r7/
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of hospitalization due to COVID-19 and a 35% increased likelihood 
of encountering critical COVID-19. Nevertheless, we  found no 
evidence to support a greater risk of contracting SARS-CoV-2 in OA 
patients. In essence, our findings demonstrate that OA directly 
influences the severity of COVID-19, contributing to an elevated 
chance of developing critical conditions, but does not contribute to 
one’s propropensity of contracting the virus.

The most plausible connection between OA and COVID-19 is 
through disease-driven alterations in the body’s immune response to 
inflammation, either due to the presence of the diseases themselves or 
the effects of medications used to treat them. A majority of the 

molecules overproduced in patients with OA also contribute to the 
progression of COVID-19, with only two molecular entities, HGF and 
CALCA factors (32, 33), noted as potential suppressors of COVID-19 
phenotypes capable of preventing pulmonary fibrosis as well as local 
and systemic inflammation.

In OA patients, there is often a background elevation of 
inflammation characterized by increased secretion of IL-6, IL-8, 
TNF-α, and MCP-1 cytokines, which might, as a group, contribute to 
the observed association between OA and COVID-19 (34). Crucially, 
cytokine-producing neutrophils emerge in the synovium right from 
the initial stages of synovial involvement (35). Consequently, the 

FIGURE 2

Causal effects of osteoarthritis (OA) on COVID-19 outcomes. (A) Causal effects of OA on critical COVID-19 outcome. (B) Causal effects of OA on 
hospitalized COVID-19 outcome. (C) Causal effects of OA on SARS-CoV-2 infection outcome. The trait on the x-axis denotes the exposure, the trait on 
the y-axis denotes the outcomes, and each cross point represents an instrumental variant. The lines denote the effect sizes of an exposure on an 
outcome.

FIGURE 3

Leave-one-out analysis between osteoarthritis (OA) and COVID-19 outcomes. (A) Osteoarthritis on critical COVID-19. (B) Osteoarthritis on hospitalized 
COVID-19.
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cytokines and the release of neutrophil elastase advance OA. The same 
pro-inflammatory proteins secreted by neutrophils are essential for 
the progression of COVID-19 to its severe form (36). In this manner, 
the preactivation of neutrophils that is specific to OA could potentially 
facilitate the progression of COVID-19.

The inflammatory milieux that supports the relationship between 
OA and COVID-19 may also be  further exemplified by related 
conditions, such as depression. Individuals with physical illnesses 
commonly co-experience various mental health issues, and depression 
is one of the frequently observed comorbidities in the aging 
population. Our previous research suggested that OA and major 
depressive disorder (MDD) are in a bidirectional causal relationship, 
which is supported by underlying inflammation and altered estrogen 
signaling (37). Also, MDD may increase one’s susceptibility to 
COVID-19, due to pre-existing inflammation (38). Moreover, the 
close association between MDD and both OA and COVID-19 may 
serve as a foundation for the observed effectiveness of antidepressant 
medications in both alleviating pain in OA patients and relieving 
infection symptoms in individuals with COVID-19 (38, 39). Hence, a 
role of MDD as a contributing comorbidity or pathophysiological 
intermediary between OA on COVID-19 should be explored further.

Alternatively, the reasons behind our observations could 
be attributed to the extended use of NSAIDs and glucocorticosteroids, 
which is prevalent among OA patients. Both medication groups cause 
at least some degree of damage to the gastrointestinal lining, either in 
clinical or subclinical forms (40). In turn, impaired gut barrier 
function is known to exacerbate virus-induced organ injury, especially 
when compounded by endotoxemia (7).

The OA and COVID-19 connecting genetic network 
constructed by a knowledge-based mining approach further 
clarifies the link between two conditions at the molecular level. 
First, soluble inflammatory factors such as IL-6, CRP, TNF, and 

CCL2 are pivotal both for the primary inflammation of OA and for 
cytokine storms generated by COVID-19 (34, 41–44). Pre-existing 
elevations in these OA-induced inflammatory factors could 
exacerbate the cytokine storms of COVID-19, which promotes the 
deterioration of patients’ condition further. Additionally, other 
inflammation-related molecules shared between OA and COVID-
19, such as these encoded by HIF1A, CXCL10, and CTSB (45–47), 
contribute to the same pathophysiological bonfire. Of note, elevated 
levels of IL-17, which is involved in both severe COVID-19 (48) and 
osteoarthritis (49), is being currently explored as a novel therapeutic 
target for both conditions (50).

Furthermore, several other, non-inflammatory genes have 
captured our attention, with one of particular interest being SIRT1. 
The product of this gene regulates a variety of tissue and cellular 
processes, from apoptosis to muscle differentiation, by catalyzing the 
deacetylation of its protein targets. A significant role of SIRT1 is noted 
in managing oxidative stress and repairing DNA damage (51). 
Observational studies have shown that the severity of OA is associated 
with reduced SIRT1 expression and a decrease in its product in 
chondrocytes (52). In patients with COVID-19, a decrease in SIRT1 
expression is paralleled by elevation of proinflammatory cytokines 
(53). Therefore, when OA patients are infected with COVID-19, a 
preexisting state of reduced SIRT1 activity may worsen inflammation 
and contribute to an increase in mortality risk. It has also been 
demonstrated that SIRT1 activators, such as cytarabine and resveratrol, 
may attenuate the development of cytokine storms and alleviate 
hyperinflammation and neuroinflammation-mediated cognitive 
dysfunction in COVID-19 patients (54). These SIRT1 activators may 
be used as adjuvant therapy suitable for patients with OA, with SARS-
CoV-2 infection, or with OA/SARS-CoV-2 comorbidity.

ACE plays a two-sided role in the molecular pathways connecting 
OA to COVID-19. It is well known that OA is associated with an 

FIGURE 4

Molecular pathways connecting osteoarthritis and COVID-19. Quantitative genetic changes driven by OA exert more negative (highlighted in red) than 
positive (highlighted in green) effects on COVID-19.
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imbalance in ACE/ACE2 expression, with elevation of ACE and 
concomitant reduction of ACE2 expression (55, 56). When ACE/
ACE2 imbalance occurs in the lungs, levels of AngII increase and 
over-activate pulmonary AT1R, leading to pulmonary capillary 
permeability. In turn, leaky capillaries cause pulmonary edema, which, 
when combined with an increased inflammatory response and 
apoptosis, greatly accelerates lung injury (55, 57). Therefore, alteration 
of the ACE/ACE2 ratio may aggravate COVID-19 symptoms. Notably, 
preinfection administration of AT1R blockers significantly lowers 
mortality of patients with COVID-19 (58), which indicates favorable 
implications for the treatment of OA patients during the 
COVID-19 situation.

We have also noticed synergistic OA- and COVID-19-promoting 
effects of MTOR, a major negative regulator of autophagy. MTOR 
contributes to increased chondrocyte apoptosis and cartilage 
degradation (59). Some clinical studies suggest that inhibition of 
MTOR may prevent or delay the induction of senescence in OA (60), 
and that the blocking of MTOR by sirolimus should improve the 
clinical outcome of SARS-CoV-2 infection (61). It seems that 
suppression of MTOR may be  a promising approach for the 
concurrent treatment of OA and COVID-19.

While our study effectively elucidates the causal links between OA 
and COVID-19, certain limitations should be acknowledged. Firstly, 
the datasets used in our MR analysis include only a population of 
European ancestry, and therefore, its conclusions should be applied to 
the overall population with some caution. Secondly, MR studies do 
not account for the potential impact of environmental factors, and, 
therefore, we  should stress the importance of conducting future 
observational studies. As MR-Egger and other sensitivity analyses 
supported the robustness of the results and the IVW method balanced 
the potential heterogeneity, we  deemed our results as reliable. 
Nevertheless, one should keep in mind indications of pleiotropy and 
heterogeneity revealed by the MR-PRESSO and Cochran’s Q tests.

Conclusion

Our study strengthens the evidence that OA is causally associated 
with severe outcomes of COVID-19. This finding informs preventative 
measures in elderly individuals affected by OA and provides some 
novel synergistic options for the treatment of SARS-CoV-2 and OA as 
comorbid conditions.
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