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Osteoporosis (OP) is a systemic metabolic skeletal disorder characterized 
by a decline in bone mass, bone mineral density, and deterioration of bone 
microstructure. It is prevalent among the elderly, particularly postmenopausal 
women, and poses a substantial burden to patients and society due to the high 
incidence of fragility fractures. Kidney-tonifying Traditional Chinese medicine 
(TCM) has long been utilized for OP prevention and treatment. In contrast to 
conventional approaches such as hormone replacement therapy, TCM offers 
distinct advantages such as minimal side effects, low toxicity, excellent tolerability, 
and suitability for long-term administration. Extensive experimental evidence 
supports the efficacy of kidney-tonifying TCM, exemplified by formulations based 
on the renowned herb Cornus officinalis and its bioactive constituents, including 
morroniside, sweroside, flavonol kaempferol, Cornuside I, in OP treatment. In this 
review, we provide a comprehensive elucidation of the underlying pathological 
principles governing OP, with particular emphasis on bone marrow mesenchymal 
stem cells, the homeostasis of osteogenic and osteoclastic, and the regulation of 
vascular and immune systems, all of which critically influence bone homeostasis. 
Furthermore, the therapeutic mechanisms of Cornus officinalis-based TCM 
formulations and Cornus officinalis-derived active constituents are discussed. In 
conclusion, this review aims to enhance understanding of the pharmacological 
mechanisms responsible for the anti-OP effects of kidney-tonifying TCM, 
specifically focusing on Cornus officinalis, and seeks to explore more efficacious 
and safer treatment strategies for OP.
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Introduction

Osteoporosis (OP), a global skeletal disorder often referred to as the “silent disease,” is 
characterized by bone mass loss and microstructure degeneration, leading to an increase in the 
risk of fractures and imposing a substantial socioeconomic burden (1, 2). It is estimated that the 
number of fractures causing by OP will reach 2.6 million in 2025, double the total number in 
1990, and will reach 4.5 million by 2050 in the world (3). Moreover, increasing evidence indicates 
that women and older individuals are particularly vulnerable to OP and its consequences, with 
1/3 of women and 1/5 of men aged 50 and above experiencing osteoporotic fractures globally 
(1). However, prolonged use of anti-OP medication such as denosumab, teriparatide, 
bisphosphonates, calcitonin, and estrogen, can result in undesirable side effects, including an 
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increased risk of malignancy, atypical femur fractures, osteonecrosis 
of the jaw, and cardiovascular issues (4). The concern over these side 
effects and the uncertain long-term efficacy of pharmacological 
treatments has prompted the search for alternative medications with 
fewer adverse events, low toxicity, high efficacy, and good tolerability.

An increasing number of researchers are exploring Traditional 
Chinese Medicine (TCM) as an alternative treatment for OP due to its 
fewer adverse events and long-term safety profile (5). Cornus officinalis 
(known as Shanzhuyu in Chinese), an ingredient commonly found in 
TCM formulas for bone-related diseases such as Zuo Gui Pill (ZGP) 
(6, 7), You Gui Pill (YGP) (7), and Liuwei Dihuang Pill (LWDHP) (8), 
all of which are known for its kidney-nourishing properties, exerts 
beneficial effects in the prevention and treatment of OP by alleviating 
common symptoms experienced by individuals with OP such as 
lumbar and knee discomfort (9, 10). Furthermore, recent research has 
highlighted the therapeutic potential of certain monomeric 
components derived from Cornus officinalis, independent of its 
inclusion in TCM formulations including flavonoids, tannins, iridoids, 
organic acids, polysaccharides, and lignans (11). Among them, gallic 
acid, morroniside, loganin, sweroside, quercetin, notoginsenoside R1, 
cornuside I, kaempferol, and 5-HMF, extracted from Cornus officinalis, 
may play a crucial role in OP treatment (12).

In this review, we comprehensively summarize the research on 
Cornus officinalis in the context of OP, focusing primarily on its 
mechanisms of action involving bone homeostasis, 
immunomodulation, vascularity, and bone microarchitecture, thus 
providing a better understanding of the therapeutic role played by 
Cornus officinalis in the pathological process of OP and its potential 
clinical application.

Pathomechanism of OP

OP is a common metabolic bone disease associated with a variety 
of factors such as bone homeostasis, immune mechanisms, vascular 
changes, estrogen deficiency, mechanical stress, and the nervous 
system. In this section, we will discuss the pathological of OP related 
to these factors.

Bone homeostasis

Several key cells in bone tissue, such as bone mesenchymal stem 
cells (BMSC), osteoblast (OB), and osteoclast (OC), play critical 
roles in bone remodeling, including bone formation and bone 
resorption (13). Particularly, BMSC can mainly differentiate into 
adipocytes and OB in bone, to play an important role in the 
regulation of normal bone homeostasis (14). The capacity of BMSC 
from OP patients to differentiate into OB is lower than that in 
healthy individuals (14). The shift in preferential differentiation of 
MSCs from OB to adipocytes accompanied by reduced bone mineral 
density (BMD) can contribute to OP progression (15). OB secrete 
various components of osteoid, such as collagen I, alkaline 
phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN), 
which then mineralize to form mature bone (16, 17). Additionally, 
precursor OC are enlisted and attached to the bone matrix, 
subsequently undergoing further differentiation into mature OC, 
which can release acids and lytic enzymes that facilitate the 

degradation of the bone matrix and absorption of aging and 
damaged bone tissue (18, 19). As evidenced by disturbed bone 
homeostasis, altered bone microstructure, and reduced bone 
strength, OP arises from the imbalance of bone formation and bone 
resorption, resulting from excessive absorption by OC or impaired 
generation of OB (17, 20).

Moreover, various regulatory factors and signaling pathways 
impact the activity of BMSC, OB, and OC, thus governing the process 
of bone resorption and formation processes. Significant roles are 
played by signaling pathways such as Wnt/β-catenin, bone 
morphogenetic proteins (BMP)-Smad, Hedgehog, receptor activator 
of nuclear factor-B ligand (RANKL)/receptor activator of nuclear 
factor-B (RANK)/osteoprotegerin (OPG), along with several 
regulatory factors. Notably, the canonical Wnt/β-catenin signaling 
pathway has emerged as a crucial regulator of bone formation, 
promoting the osteogenic process, preventing apoptosis of OB 
precursors, facilitating OB differentiation and inhibiting BMSC 
differentiation into adipocytes (21, 22). Conversely, inhibiting Wnt 
pathway impedes bone formation, rendering individuals more 
susceptible to early-onset OP and osteogenesis imperfecta (13). 
Similarly, activation of Hedgehog signaling pathway promotes the 
differentiation of BMSC into OB rather than adipocytes by 
upregulating Runx-2 expression, thereby enhancing bone formation 
(23, 24). Moreover, specific BMP and canonical TGF-β positively 
regulate osteogenic activity by phosphorylating downstream Smad 
proteins, thereby influencing the balance between OB-mediated bone 
formation and OC-mediated bone resorption (23, 25, 26).

Furthermore, the RANKL/RANK/OPG signaling pathway 
represents the most extensively studied pathway concerning OC 
differentiation and activity. OB release RANKL, which binds to 
RANK, a specific receptor on the surface of OC, triggering the 
transcription of downstream factors, such as c-FOS, NFATc1, tartrate-
resistant acid phosphatase (TRAP), and cathepsin K (CTSK), 
ultimately leading to the differentiation and activation of OC (27). 
Meanwhile, OPG, which is also secreted by OB, competitively binds 
to RANK, suppressing OC activity and safeguarding bones against 
excessive resorption (28, 29).

The role of Notch signaling pathway in bone remodeling relies on 
the type of Notch receptor involved: Notch 1 fosters increased OPG 
production and decreased sclerostin, exerting osteoprotective effects 
by inhibiting OC formation and bone resorption, while Notch2 
promotes osteoclastogenesis and enhances bone resorption by 
stimulating RANKL expression (30). In summary, OP arises from an 
imbalance between bone formation and bone resorption within bone 
homeostasis, stemming from the dysregulation of multiple 
signaling pathways.

In summary, BMSC and OB play roles in bone formation, while 
OC affect bone resorption. Together, they mediate OP through 
different factors (Figure 1).

Vasculature

The vascular system in bones contributes to the supply of oxygen, 
nutrients, hormones, growth factors, and neurotransmitters necessary 
for the normal growth, development, regeneration, and remodeling of 
bone. Emerging evidence reveals that the metabolic imbalance in the 
bone microenvironment caused by blood vessel supply impairment, 
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along with the imbalance of vascular calcium, phosphorus and glucose 
metabolism, is intricately associated with the pathological mechanisms 
of OP (31). For instance, adjustment of the number and size of blood 
vessels along the flow has confirmed that the skeletal system occupies 
10 and 15% of the total cardiac output, which is crucial for skeletal 
system health. And insufficient blood flow can lead to delayed bone 
repair and other low bone mass diseases due to impaired osteogenesis 
(32, 33). Moreover, a female patient with a rare Hajdu-Cheney 
syndrome causing periarticular OP showed reduced the height and 
density of blood vessels in all affected fingers (34). Triggering the 
activation of the HIF signaling pathway in OB could prevent the 
reduction of blood vessels in the bone marrow of postmenopausal OP 
patients to prevent bone loss (35). Another study showed that 
supplementation of ribonuclease-rich lactoferrin promotes new 
vessels formation, achieving a significant reduction in bone resorption 
and an increase in bone formation to restore bone homeostasis (36).

Blood vessels inside bones are generally identified two types: The 
type H vessels with high expression of CD31 and endomucin mainly 
localized in the vicinity of the chondro–osseous junction, and the type 
L vessels with low expression of CD31 and endomucin mainly 
localized in the diaphysis (37). The number of Type L vessels, which 
does not change over time, are basically not involved in bone 
metabolism (37). Contrary to type L vessels, type H vessels maintain 
OB around blood vessels, which has been proved to be an important 
carrier of to induce angiogenesis and bone formation (38–40). 
Researches indicate a corresponding reduction in the number of type 
H blood vessels in aged OP mice, ovariectomized (OVX) induced OP 
mice, as well as in elderly and OP patients, accompanied by loss of 

bone precursor cells (37–40). In turn, promoting the maturation of 
Type H vessels by activating Notch signaling can regulate the 
differentiation of perivascular osteoprogenitor cells and accelerate 
osteogenesis (41).

The levels of calcium, phosphorus, and glucose in blood vessels, 
as well as their metabolic balance, are also closely related to OP. Studies 
have observed significant decreases in BMD, osteoclastic strength, 
serum ALP, and calcium and phosphorus in the OP model after 
ovariectomy (42–46). In addition, abnormal calcium loss of bone 
tissue, accompanied by calcium deposits within blood vessels causing 
vascular calcification, contributes to the pathogenesis of OP, known as 
the “calcium paradox” (47, 48). The aggravation of vascular calcium 
deposition obstructs nutrient supply to bone tissue and further 
promotes the pathogenesis of OP. On the other hand, output venous 
vessels in Haversian and Volkmann ducts allow immune cells to 
migrate from the basement membrane to the deeper layers of dense 
bone, becoming a site for mineral reabsorption during OP (49). 
Furthermore, abnormal blood glucose levels downregulate PI3K-AKT 
signaling pathway to inhibit OB activity and promote OC activity in 
the trabecular bone region with reduced serum level of OCN and ALP 
(50, 51). All these findings underscore the close relationship between 
blood vessels and the pathological process of OP, particularly the 
number of type H vessels and capillaries, bone blood flow and vascular 
calcium deposition besides vascular calcium, phosphorus and glucose 
metabolism (31, 34–36, 48, 49).

In conclusion, activating neovascularization, promoting bone 
blood flow, and balancing calcium level between blood vessels and 
bone tissue are therapeutic strategies for OP management.

FIGURE 1

Schematic working model of OP. In a normal physiological state of healthy bone, BMSC can differentiate into OB, and OB further mature into 
osteocytes. Meanwhile, OB secretes Collagen I, ALP, OPN, Osteonectin, and other substances to constitute bone matrix. Under pathological state, the 
upregulation of Notch 2/RANKU/RANK/OPG signaling pathway promoting OC generation and the downregulation of Wnt/β-catenin/TGF-B/BMP-
Smad/Hedgehog signaling pathway inhibiting osteogenesis, ultimately lead to OP.
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Immune system

Osteoimmunology is an interdisciplinary field arising from 
mounting evidence of the close relationship between the immune 
system and bone metabolism (52–54). Relevant studies have shown 
that many immune cells in the bone system, including T lymphocytes, 
B lymphocytes and macrophages, affect bone cells in the bone system 
directly or indirectly through the secretion of mediators by immune 
cells such as OPG/RANKL, COX-2, interleukins, and tumor necrosis 
factor (TNF) (52, 54–64).

Th2 lymphocytes, through the release of IL-4 and IL-13, act to 
prevent the formation of OC by downregulating prostaglandin 
dependent on COX-2, thereby suppressing bone resorption (54, 56). 
Conversely, Th17 lymphocytes, as the main source of IL-17, promote 
osteoclastic differentiation in vitro and the generation of RANKL, 
resulting in bone loss in mice with primary hyperparathyroidism 
(57–59). Meanwhile, IL-17 also promotes the early differentiation of 
OB by increasing the expression of ALP, RUNX2, OCN, and OPG 
(61–63). Besides, the upregulation of TNF-α expression in 
T-lymphocytes, under the regulation of RANKL, promotes the 
apoptosis of OB (60, 64).

The B lymphocytes, on the other hand, reduce OB differentiation 
by acting through CCL3 and TNF, which target ERK and NF-κB 
signaling pathways (65). In addition, B lymphocytes secrete various 
cytokines that play a dual role in OC: On one hand, they produce IL-7 
(66), RANK (67), and approximately half of the total OPG (68) in the 
bone marrow, suppressing OC activation; On the other hand, B 
lymphocytes secrete G-CSF and RANKL under inflammatory 
conditions, promoting the differentiation and proliferation of OC, 
thus leading to bone resorption (69). Surprisingly, IL-18, initially 
considered an up-regulator of OPG that inhibits osteoclastogenesis, 
was subsequently found to increase the expression of RANKL on T 
lymphocytes, ultimately promoting bone mass loss (70).

Macrophages presented in bones are known as various 
populations: bone marrow macrophages (BMMs), OC, and osteal 
macrophages (71), all of which can categorized into two phenotypes—
M1 (inflammatory phenotype) and M2 (reparative phenotype)—
playing different roles in bone homeostasis. M1 macrophages, 
considered as precursors of OC (72), polarize after stimulation by 
pro-inflammatory cytokines IL-6, TNF-α, and IFN-γ (73), triggering 
osteoclastogenesis and subsequent bone destruction (74). Interestingly, 
RANKL-induced M1 macrophages contribute to the expression of 
OPN and RUNX2 in BMSC, inducing osteogenesis as a contrary effect 
(75). Conversely, M2 macrophages polarize under stimulation by anti-
inflammatory cytokines such as IL-4 and IL-13, and stimulate MSCs 
or pre-osteoblastic cells to differentiate into OB, promoting bone 
formation. Moreover, increased transition from M1 to M2 
macrophages enhances this trend (53, 73, 76). Hence, regulating the 
ratio of M1/M2 macrophages holds the potential therapeutic effect of 
anti-OP.

Other factors

Many other factors, including nervous system, mechanical 
stress, estrogen, and oxidative stress, contributing to OP based on 
available data. To maintain proper bone balance, the nervous system 
enters mature bones, regulates blood flow and metabolism, and 

secretes neurotransmitters (77). Neuropeptide-Y (NPY), a classic 
neuronal regulator of energy homeostasis, directly inhibits BMSC 
proliferation and OB differentiation through the Y1 receptor on the 
surface of BMSC or OB and the Y2 receptor in hypothalamus, 
thereby suppressing bone formation and leading to OP (78–81). 
Moreover, mechanical stress also impacts OP, preventing 
osteoporotic bone loss through the Pl3k/Akt signaling and 
erythropoiesis (82). Estrogen, in order to protect the bones, inhibits 
OB apoptosis and OC formation by reducing the expression of 
RANKL, which also promotes the apoptosis of OC (83), which 
contributes to an increase in the incidence of OP among 
postmenopausal women. Furthermore, increased oxidative stress 
raises TNF-α levels in serum while reducing Sirtuin 6 (Sirt6) 
expression in long bones, promoting NF-κB acetylation as well as 
CTSK over-expression and activation (84), consequently leading to 
bone destruction (85, 86).

Anti-OP effects of Cornus officinalis 
and effective ingredients or Chinese 
formulations

BMSC and OB are the therapeutic targets 
of Cornus officinalis and its active 
ingredients or compounds to exert an 
anti-OP role

Cornus officinalis has been traditionally employed in East Asia for 
the treatment of OP. This botanical resource boasts abundant active 
ingredients that exert diverse effects on OP by modulating the 
proliferation and differentiation capacity of BMSC, promoting 
osteogenic differentiation, and ameliorating the OP phenotype.

The aforementioned findings, presented in Table 1, support the 
notion that promoting BMSC proliferation and osteogenic 
differentiation, inhibiting lipogenic differentiation, enhancing 
osteogenesis related protein such as BMP2, Osx, RUNX2, ALP, OPN, 
OCN by regulating Wnt/β-catenin, BMP, PI3K/AKT/mTOR, AMPK, 
JNK, ERK, NF-κB signaling pathways represent promising therapeutic 
strategies for the treatment of OP mediated by the efficacious 
components of Cornus officinalis.

OC is another therapeutic targets of 
Cornus officinalis and its active ingredients 
or compounds to exert an anti-OP role

OC is bone-resorbing cell that degrades bone through acid 
secretion and the release of proteolytic enzymes (107). Cornus 
officinalis processes the ability to restrict the differentiation of bone 
marrow-derived macrophages (BMMs) into OC, and suppress the 
translation and genetic transcription of OC-associated markers. These 
anti-OP effects are achieved via the active ingredients of Cornus 
officinalis (Table 2) (119).

In conclusion, Cornus officinalis and its active constituents 
modulate the function, activity, and quantity of OC by inhibiting 
MAPK, AKT, ERK, JNK signaling pathways to reduce the expression 
of OC-related proteins RANKL, c-Fos, NFATc1 and CTSK, thus 
inhibit bone resorption. These novel findings designate Cornus 
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TABLE 1 Active ingredients of Cornus officinalis for BMSC and OB.

Sorts of 
compounds

Active 
constituents

Results References

Flavonoids Quercetin Enhances osteoblastogenesis while inhibiting adipogenic differentiation through Wnt/β-catenin, BMP, 

AMPK, JNK, and ERK signaling pathways

(87–91)

Restores impaired BMSC function and activity induced by TNF-α by inhibiting NF-κB activation and 

β-catenin degradation

(92)

Kaempferol Reduces apoptosis induced by LPS, stimulates MSCs proliferation, and regulates non-coding RNAs, 

including miR-124-3p and miR-10a-3p, to control MSCs differentiation toward osteogenic lineages, 

promoting bone formation

(93, 94)

Promotes OB autophagy while decreasing OB apoptosis, elevates the expression of osteogenic markers, 

including ALP, OSX, COL-1, OCN, and OPN, and facilitates osteoid mineralization and calcium deposition, 

resulting in an increase in calcium nodules

(95)

Iridoids Sweroside Enhances osteogenic differentiation by activating the mTOR1/PS6 signaling pathway, resulting in 

upregulation of OCN, Runx2, and Osx expression in osteoporotic mice BMSC and increased mineralized 

nodules formulation

(96, 97)

Contributes to considerably higher levels of BMP2, RUNX2, ALP, OPN, and bone sialoprotein-1 (BSPH1) in 

OVX mice, along with increased bone matrix production

(98)

Morroniside Boosts BMSC proliferation in vitro, counteracts BMSC dysfunction and impaired osteogenic differentiation 

and bone loss induced by high glucose via downregulating the AGE-RAGE pathway

(99, 100)

Interacts with sodium-glucose cotransporter 2 and adenosine A2AR to improve precursor cell viability 

(MC3T3) and promote proliferation

(101, 102)

Activates PI3K/AKt/mTOR pathway, leading to Beclin1-and Atg13-dependent autophagy, facilitating the 

transformation of MC3T3-E1 cells into mature OB

(103, 104)

Cornuside I Increases ALP expression and calcium deposition, while stimulating MSCs proliferation through the 

activation of the PI3K/AKT signaling pathway to enhance osteogenic differentiation

(105)

Notoginsenoside 

R1

Enhances migration and differentiation of human adipose-derived MSCs into OB, upregulating osteogenesis 

marker expression, such as ALP and OCN

(106)

TABLE 2 Active ingredients of Cornus officinalis for OC.

Sorts of 
compounds

Active 
constituents

Results References

Flavonoids Quercetin Reverses increased OC in OVX rats by promoting OC apoptosis and autophagy, involving the MAPK 

pathway activation

(46, 108)

Inhibits osteoclastic progenitor cell differentiation, disrupts the actin ring of mature OC, and exerts anti-OP 

activity while counteracting OC function

(109, 110)

Prevents the increase of OC-promoting factors RANKL, TNF-α, IL-6, and IL-8 in RA-fibroblasts-like 

synoviocytes (RA-FLS) induced by proinflammatory factor IL-17

(109)

Kaempferol Downregulates elevated bone turnover in OVX rats, reduces the number of TRAP-positive multinucleate 

cells, and suppresses the transcriptional expression of OC-related markers such as c-Fos, NFATc1 in 

RANKL-induced RAW264.7 cells (precursor cells of OC), thereby inhibiting osteoclastogenesis

(111–113)

iridoids Loganin Restrains OC precursor cell differentiation in the OB–OC co-culture system, decreases TRAP activity (a 

molecular marker of OC number and bone resorption)

(114, 115)

Morroniside Suppresses TRACP enzyme activity and the expression of OC-related genes, exhibiting therapeutic potential 

in the treatment of OVX-induced OP in rats by inhibiting osteoclastic differentiation.

(116)

Notoginsenoside 

R1

Inhibits RANKL-induced mitogen-activated protein kinases (MAPK) signaling pathway activation and 

subsequent OC production in vitro

(117)

phenolic acid Gallic acid Inhibits AKT, ERK, and JNK signaling pathways to reduce the expression of NFATc1 and CTSK, thus 

suppressing OC differentiation, reducing bone loss in the OVX-induced OP model, demonstrating 

prophylactic and therapeutic effects on OP

(118)
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officinalis and its active constituents as potential therapeutic anti-OC 
targets for the treatment of OP.

The vascular system is one of the 
therapeutic targets of Cornus officinalis 
and its active ingredients or compounds 
exert an anti-OP role

Angiogenesis, nutritional support function, and the metabolism 
of blood calcium, phosphorus, and glucose are directly related to bone 
development and regeneration. In the context of bone diseases, 
vascular function is often impaired, accompanied by metabolic 
imbalances (42–46, 50, 51). An increasing body of evidence 
demonstrates the significant role of Cornus officinalis, its compounds, 
and active ingredients in addressing this issue. The following Table 3 
elaborates a detailed account of their respective targets in the 
prevention of OP.

These findings suggest that Cornus officinalis and its active 
component and compounds hold potential as a therapeutic option for 
OP prevention by promoting angiogenesis, enhancing bone blood 
flow through regulation of HIF-1α, CD31, VEGF and its receptors, 
and balancing calcium, phosphorus and glucose metabolism between 
blood vessels and bone tissues (122). Based on the aforementioned 
experimental data, Cornus officinalis, in conjunction with its formula 
and monomer compounds, offers potential advantages in improving 
blood vessels in bones and thus playing a role in the management of OP.

The immune system is one of the 
therapeutic target of Cornus officinalis and 
its active ingredients or compounds exert 
an anti-OP role

It has been found that several kinds of immune cells can interact 
with OB and OC to combat OP (52). As mentioned above (the 
immune system part), immune cells in bone system, including T 
lymphocytes, B lymphocytes and macrophage, can participate in the 
regulation of differentiation into OB or OC by the secretion of 

inflammatory factors such as interleukins and TNF. Therefore, 
improving the inflammatory microenvironment may have the 
potential to regulate the function of immune cells, promote BMSC 
differentiation into OB and inhibit the mature of OC precursor. 
Previous research has indicated that active ingredients in Cornus 
officinalis, such as 5-HMF, Cornuside, loganin, and sweroside, 
possess anti-inflammatory properties, however, it remains uncertain 
whether these substances also serve as preventatives for OP (123–
126). In this context, a recent study has discovered that kaempferol 
may suppress the upregulation of proinflammatory cytokines 
induced by LPS in BMSC, promote the production of anti-
inflammatory factors, and inhibit the process of osteoclastogenesis 
and bone resorption induced by proinflammatory factor IL-1β (94). 
Other studies also showed that quercetin, loganin or morroniside 
could enhanced the M2 macrophage polarization by targeting 
NF-κB and Nrf2 signaling pathways indicating potential ability to 
promote osteoblastic differentiation and inhibit osteoclastic 
differentiation (127–129). Consequently, we conclude that Cornus 
officinalis and its active ingredients represent a potential therapeutic 
class with anti-inflammatory properties that can inhibit the 
progression of OP.

Other factors are the other therapeutic 
targets of Cornus officinalis and its active 
ingredients or compounds to exert an 
anti-OP role

Oxidative stress and estrogen play important roles in maintaining 
bone balance, and abnormal expression of these factors leads to OP 
(83–86). Numerous reports have confirmed the significant effects of 
the active ingredients and compounds in Cornus officinalis for the 
treatment of OP. Table  4 elaborates on their respective targets in 
treating OP.

These results suggest that Cornus officinalis, along with its 
active components, can inhibit OB apoptosis and OC formation by 
suppressing oxidative stress response and binding estrogen 
receptors, which aids in promoting OB differentiation. Based on 
the above findings, both Cornus officinalis and its active 

TABLE 3 Active ingredients of Cornus officinalis targeting vasculature system.

Sorts of 
compounds

Active 
constituents

Results References

Flavonoids Quercetin Increases blood calcium and phosphorus contents, regulates autophagy and apoptosis of bone cells, thus 

preventing OP

(44, 46)

Improves serum calcium, phosphorus, and other biochemical indexes, as well as the thickness, length, and 

density of the femur, and the tensile strength of the osteoporotic femur

(43)

Increases bone turnover markers (serum ALP, OCN and urinary calcium, phosphorus, creatinine), HIF-1α 

gene expression, and NF-κB levels, while decreasing vascular endothelial growth factor (VEGF) and 

β-catenin expression

(42)

Elevates the levels of OCN expression and ALP activity in serum, as well as urinary deoxypyridine base in 

diabetic rats

(50)

Iridoids Morroniside Upregulates the expression of CD31 and VEGFA in mice with myocardial infarction (120)

Upregulates the expression of Ang-1 and Tie-2 in rats with cerebral ischemia/reperfusion (121)

Phenolic acid Gallic acid Regulates estrogen and improves calcium and phosphorus levels in the blood (45)
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components offer potential advantages in maintaining bone 
balance and thus taking an important part in the treatment and 
prevention of OP.

An anti-OP effect exerted by Cornus 
officinalis-containing formulations

Cornus officinalis is a constituent of many TCM formulations 
such as ZGP, YGP, LWDHP, Bu-Shen-Tong-Luo decoction (BSTLD), 
all of which are known for their kidney-nourishing properties, and 
extensive evidence supports the favorable impact of these 
formulations in the prevention and treatment of OP (Table 5) (33, 51, 
134–138).

These results suggest that Cornus officinalis-containing 
formulations could mainly improve BMD and bone microstructure, 
stimulate osteogenetic process, increases blood perfusion in bone 
marrow by reversing the Th17/Treg ratio or targeting PI3K-AKT and 
Wnt/β-catenin signaling pathway. Based on the above findings, Cornus 
officinalis-containing formulations offer potential advantage in 
promoting osteogenesis in the treatment and prevention of OP.

Conclusion and perspectives

OP is a skeletal condition characterized by reduced BMD and 
compromised trabecular bone structure, which significantly increases 
the likelihood of fractures and imposes substantial physical and 
financial burdens. Within TCM application, Cornus officinalis is 
widely employed for OP treatment. Both preclinical and clinical 
investigations have demonstrated the effectiveness of the chemical 
constituents and associated formulations of Cornus officinalis in 
preventing OP, which efficacy is attributed to various mechanisms, 
including the modulation of bone homeostasis, promotion of 
angiogenesis, anti-inflammatory effects, and regulation of the immune 
system, etc (Figure  2). Therefore, phytochemicals from Cornus 
officinalis possess significant potential for the development of novel 
anti-osteoporotic medications. Herein, we provide a comprehensive 
review of the role of Cornus officinalis in multiple anti-OP mechanisms, 
which aligns with the multifactorial nature of OP’s etiology and 
surpasses the traditional model of single drug targeting single aspects 
of medicine. By thoroughly investigating the therapeutic properties of 
Cornus officinalis in the context of OP treatment, our aim is to enhance 
our understanding of TCM’s underlying mechanisms in addressing 

TABLE 4 The active ingredients of Cornus officinalis for other factors.

Sorts of 
compounds

Active 
constituents

Results References

Flavonoids Quercetin Blocks the oxidative stress of chondrocytes, reduces apoptosis, NLRP3-mediated pyroptosis and ECM 

degradation

(130)

Kaempferol Phosphorylates ER, activates downstream ALP, Runx-2, OSX, COL1, OCN, and osteonectin, thus inhibiting 

OC differentiation but inducing OC apoptosis, and preventing OB apoptosis

(131)

Notoginsenoside 

R1

Suppresses oxidative stress of MC3T3-E1 cells by blocking JNK pathway, thereby restoring the ability of 

osteogenic differentiation

(132)

Binds to estrogen receptor as a phytoestrogen, promoting the transcription of COL1, osteonectin, OCN, 

Runx2, and osterix, thereby facilitating osteogenic differentiation and mineralization

(133)

TABLE 5 The Cornus officinalis-containing formulations for anti-OP effect.

TCM 
formula

Model Dosage and duration Results References

LWDHP OVX-treated SD rats 100 g/day for 12 weeks Stimulates osteogenetic process by activating the Wnt/β-catenin 

signaling pathway

(134)

Citrate buffer-induced diabetic 

mice

1.8 or 3.6, or 5.4 g/kg/day for 

12 weeks

Improves BMD, BV, bone microstructure, maximum load, and 

bending resistance in the femurs of osteoporotic rats
(135)

ZGP OVX-treated rats 32 g/kg/day for 12 weeks Reverses the Th17/Treg ratio, leading to increased BMD and 

inhibition of bone loss in OVX mice

(136)

OVX-treated SD rats 2.3 or 4.6 g/kg/day for 12 weeks By combining with anti-OP medicines, ZGP treatment 

significantly reduces bone resorption markers such as TRACP, 

TRACP-5b, urine oxidative deamino acid/creatinine ratio D-Pyr/

Cr, and β-cross-linked C-terminal type 1 collagen

(137)

glucocorticoid-induced SD rats 62.3 g/kg/day for 1 month Modifies the orderly arrangement of bone trabecular compositions 

and bone microarchitecture, intensifies bone mechanics, and 

substantially increases BMD in the lumbar spine

(138)

3.8 g/kg/day for 6 weeks In combination with ED-71, it reduces blood glucose levels in 

diabetic mice and promotes osteogenic differentiation through the 

PI3K-AKT signaling pathway

(51)

BSTLD OVX-treated rats 6 or 12 g/kg/day for 12 weeks Increases blood perfusion in the bone marrow cavity (33)
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this condition. This endeavor is expected to greatly contribute to the 
advancement of more efficacious pharmaceutical interventions for 
OP. Thus, systematic data mining of the existing Cornus officinalis 
database can undoubtedly aid in the drug discovery process by 
identifying safe candidates.

While several compounds, such as quercetin and kaempferol, 
extracted from Cornus officinalis, have been extensively studied in 
relation to OP, further investigation is necessary to explore the 
potential effects of sweroside, notoginsenoside R1, cornuside I, 
morroniside, and loganin. Additionally, it is essential to identify the 
active components of Cornus officinalis through comprehensive 
investigations. Moreover, limitations exist in the current use of animal 
models for OP research. The majority of in vivo studies employ rodent 
models, which possess dissimilar cortical-to-cancellous bone ratios 
compared to humans, and inter-species cellular differences result in 
deficiencies in both in vivo and in vitro experiments, which must 
be further corroborated using in mammalian or primate models (139, 
140). Furthermore, the existing research primarily focuses on the 
efficacy of Cornus officinalis in preclinical experiments, necessitating 
the need for clinical trials to substantiate its effectiveness and safety.
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FIGURE 2

The protective mechanism involved in Cornus officinalis against OP in BMSC, OB and OC, immune system, vasculature, and other factors.
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