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in predicting the prognosis of 
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Purpose: Early judgment of the progress of acute pancreatitis (AP) and timely 
intervention are crucial to the prognosis of patients. The purpose of this study 
was to investigate the application value of CT-based radiomics of pancreatic 
parenchyma in predicting the prognosis of early AP.

Materials and methods: This retrospective study enrolled 137 patients diagnosed 
with AP (95 cases in the progressive group and 42 cases in the non-progressive 
group) who underwent CT scans. Patients were randomly divided into a training 
set (n  =  95) and a validation set (n  =  42) in a ratio of 7: 3. The region of interest 
(ROI) was outlined along the inner edge of the pancreatic parenchyma manually, 
and the Modified CT Severity Index (MCTSI) was assessed. After resampling and 
normalizing the CT image, a total of 2,264 radiomics features were extracted from 
the ROI. The radiomics features were downscaled and filtered using minimum 
redundancy maximum correlation (mRMR) and the least absolute shrinkage and 
selection operator algorithm (LASSO) regression, in turn, and the more optimal 
subset of radiomics features was selected. In addition, the radiomics score (rad-
score) was calculated for each patient by the LASSO method. Clinical data were 
also analyzed to predict the prognosis of AP. Three prediction models, including 
clinical model, radiomics model, and combined clinical–radiomics model, are 
constructed. The effectiveness of each model was evaluated using receiver 
operating characteristic (ROC) curve analysis. The DeLong test was employed to 
compare the differences between the ROC curves. The decision curve analysis 
(DCA) is used to assess the net benefit of the model.

Results: The mRMR algorithm and LASSO regression were used to select 
13 radiomics features with high values. The rad-score of each texture feature 
was calculated to fuse MCTSI to establish the radiomics model, and both the 
clinical model and clinical–radiomics model were established. The clinical–
radiomics model showed the best performance, the AUC and 95% confidence 
interval, accuracy, sensitivity, and specificity of the clinical–radiomics model in 
the training set were 0.984 (0.964–1.000), 0.947, 0.955, and 0.931, respectively. 
In the validation set, they were 0.942 (0.870–1.000), 0.929, 0.966, and 0.846, 
respectively. The Delong test showed that the predictive efficacy of the clinical–
radiomics model was higher than that of the clinical model (Z  =  2.767, p  =  0.005) 
and the radiomics model (Z  =  2.033, p  =  0.042) in the validation set. Decision 
curve analysis demonstrated higher net clinical benefit for the clinical–radiomics 
model.

Conclusion: The pancreatic parenchymal CT clinical–radiomics model has high 
diagnostic efficacy in predicting the progression of early AP patients, which is 
significantly better than the clinical or radiomics model. The combined model 
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can help identify and determine the progression trend of patients with AP and 
improve the prognosis and survival of patients as early as possible.
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acute pancreatitis, computed tomography, modified CT severity index, radiomics, 
prognosis

Introduction

Acute pancreatitis (AP) is an inflammatory disease of the exocrine 
pancreas with a complex and variable clinical course. It is a common 
acute abdomen of the digestive system. The pathogenesis is due to the 
abnormal activation of pancreatic enzymes that destroy the pancreas 
itself and surrounding tissues and organs, with the local inflammatory 
infiltration of the pancreas as the main feature. The etiology of AP is 
diverse, mainly biliary tract diseases, alcoholism, hypertriglyceridemia, 
and less commonly drugs, endoscopic retrograde 
cholangiopancreatography, postoperative period, metabolic factors, 
infections, heredity, autoimmune disorders, and trauma (1). 
According to the pathology, AP is classified into interstitial edematous 
pancreatitis (EEP) and acute necrotizing pancreatitis (ANP) (2).

Patients can feel severe abdominal pain and often trigger systemic 
inflammatory response syndrome (SIRS) and multiple organ 
dysfunction syndrome (MODS) and other severe complications. 
Then, this triggers pancreatic necrosis and persistent organ failure, 
which in severe cases can even lead to death with a mortality rate of 
1–5% (3). Numerous studies have shown that controlling 
inflammation within 72 h of onset is crucial for reducing the incidence 
of complications and mortality in patients (4, 5).

Therefore, early prediction of the development of acute 
pancreatitis and taking reasonable measures timely are essential for 
the prognosis of patients. The occurrence of complications can be used 
as a valid indicator for prognostic assessment of pancreatitis (6). 
Complications include both immediate and long-term complications. 
Immediate complications include bleeding, pancreatic leakage, and 
gastrointestinal perforation (7). However, long-term complications are 
symptoms that lead to long-term weakness, disease recurrence, and 
endocrine and exocrine pancreatic insufficiency in some cases.

Clinicians diagnose AP mainly by observing patients’ symptoms, 
signs, and changes in laboratory indicators. However, early clinical 
symptoms and signs of AP are not specific. Serum amylase and lipase 
levels do not fully reflect the severity and progression of AP (8, 9). 
CRP > 150 mg/L suggests a complex course of acute pancreatitis. It has 
a sensitivity of 85%, but it is not specific. Procalcitonin (PCT) is also 
considered as a marker to evaluate the prognosis of acute pancreatitis. 
It is more responsive in the acute phase and can respond to bacterial 
and/or fungal infections or sepsis (10). Several scoring systems are 
now clinically available to assess the severity and prognosis of AP, such 
as the Bedside Index for Severity in Acute Pancreatitis (BISAP) and 
MCTSI (11). BISAP can identify patients early with a high risk of 
complications and death, including five indicators: BUN, impaired 
mental status, SIRS, age, and pleural effusion (12). The MCTSI has a 
high value in predicting severe acute pancreatitis, pancreatic necrosis, 
and organ failure (13). They have similar predictive efficacy for AP 
severity (14, 15). Except for the MCTSI system, all clinical scoring 

systems are based on clinical information and laboratory data. 
Although they reflect the pathologic and physiologic status of the 
patient, they may overlook both the pathoanatomical changes and 
local complications of AP. Imaging diagnosis is the basis for accurate 
clinical treatment, and CT is the main method to assess AP 
complications (16). In the early stage of AP, some patients’ pancreatic 
parenchymal changes are not significant on CT plain scan. Radiomics 
is the more novel technology of the moment. It applies high-
throughput computation to rapidly extract features from tomograms 
and quantify them. It converts digital medical images into high-
dimensional data with the aim of revealing biomedical images that 
reflect underlying pathophysiological information that cannot 
be observed by the naked eye through quantitative image analysis 
(17). A large number of studies have confirmed that a single radiomics 
model has great value in predicting the severity and recurrence of 
acute pancreatitis (18, 19). However, there is currently no research 
exploring the value of clinical–radiomics models in predicting the 
prognosis of AP patients.

This study is based on pancreatic CT plain scan images for 
radiomics analysis and fusion of clinical data. Exploring the prediction 
of complications in pancreatitis based on clinical–radiomics models 
to determine the prognosis of early AP.

Materials and methods

Patients

A total of 137 patients from April 2021 to November 2022 at the 
First Affiliated Hospital of Harbin Medical University were 
retrospectively collected, and imaging data and relevant clinical 
laboratory data of patients with a clinical diagnosis of AP were 
enrolled. Ethics committee approval was granted for this retrospective 
study, and the requirement for written informed consent was waived. 
The diagnostic criteria of AP were based on the 2012 revised Atlanta 
Classification of AP (2).

Inclusion criteria: ① Patients with the first onset of pancreatitis; ② 
the time interval between the onset and the examination was not more 
than 1 week; ③ good CT imaging quality.

Exclusion criteria: ① Patients with incomplete images, poor quality, 
or incomplete patient case information data; ② autoimmune 
pancreatitis, trauma, or recurrent pancreatitis and AP due to pancreatic 
tumor; ③ difficulty in outlining pancreatic parenchymal ROI.

Patients were divided into progressive and non-progressive groups 
according to the presence or absence of new local or systemic 
complications or exacerbation of complications. Patients were 
randomly divided into a training set and a validation set in a 
ratio of 7:3.
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Clinical information

The medical records were reviewed to collect baseline clinical and 
imaging information, including sex, age, BISAP, CPR, PCT, and 
MCTSI. The BISAP and MCTSI criteria are shown in Tables 1, 2.

BISAP is an abbreviation for five indicators. They are as follows: 
B: BUN; I: impairment; S: SIRS; A: age; P: pleural effusion. Note: SIRS 
has two or more of the following signs: ① temperature > 38°C 
or < 36°C; ② heart rate > 90 beats/min; ③ respiration >20 breaths/min 
or PaCO2 < 32 mmHg; ④ white blood cell count >12.0 × 109 /L 
or < 4.0 × 109/L or infantile cells >10%.

CT image acquisition and image analysis

Siemens 64-row spiral CT was used to scan the mid-abdomen of 
the AP patient, with the patient in the supine position and hands 
raised flat over the head. Scanning with advanced head. Image 
acquisition parameters: tube voltage of 120 kV, tube current of 220 mA, 
layer thickness of 5 mm, interlayer of 5 mm, DFOV of 32 cm × 32 cm, 
rotation speed of 0.28 s/turn, pitch of 1.7, image layer thickness of 
5 mm, matrix 512 × 512, and reconstructed thin layer of 1-mm image.

The CT plain scan images of all patients were exported in DICOM 
format from the image archiving and communication system PACS 
workstation, and all of them were uploaded to the uAI Research Portal 
(uAI Research Portal version: 20220915, Shanghai United Imaging 
Intelligence, Co., Ltd.). Moreover, the radiomics feature extraction, 
feature selection, and machine learning models building were 
established on the uAI Research Portal (version: 20220915, Shanghai 
United Imaging Intelligence, Co., Ltd.), which was integrated with 
PyRadiomics (version 2.2.0), Scikit-Learn (version 1.2.0), and so on. 
The CT images were analyzed by two radiologists with 10 and 20 years 
of clinical experience blinded to outline the region of interest (ROI) 
along the edge of the pancreatic parenchyma by manual segmentation 
(Figure  1), and MCTSI scoring was performed, and in case of 
disagreement, the decision was made after discussion between the 
two physicians.

Image preprocessing and feature 
extraction

To ensure repeatability, gray intensity normalization and 
resampling were performed to eliminate the heterogeneity between 
different scanners before feature extraction. Images were resampled to 
1 mm × 1 mm × 1 mm voxels using the B-Spline interpolation method 
and normalized by subtracting the window level (WL: 30) and 
dividing by the window width (WW: 300). The extractable feature 
groups include first-order features, shape, and texture features (gray-
level co-occurrence matrix [GLCM], gray-level travel length matrix 
[GLRLM], gray-level size zone matrix [GLSZM], gray-level 
dependence matrix [GLDM], and neighborhood gray-tone difference 
matrix [NGTDM]). The filter transforms include 14 filters, such as the 
Laplace-Gaussian filter, wavelet analysis, and local binary mode 
transform. A total of 2,264 radiomic features were finally extracted 
from the pancreatic parenchyma.

Intraclass correction coefficients (ICCs) were used to calculate 
intra-observer and inter-observer reproducibility (20). Two 
radiologists, A and B, manually delineate ROIs for all patient images. 
Moreover, 2 weeks later, radiologist B performed a second manual 
delineation to select image features with inter-observer and intra-
observer ICCs >0.75.

Filtering and establishment of radiomics 
labels

To avoid overfitting, it is necessary to reduce the dimensionality 
of the image data before the establishment of the radiomics label. The 
obtained radiomic features were reduced and filtered by using mRMR 
algorithm and LASSO regression to obtain the optimal subset of 
features, and the rad-score of each patient was calculated for each 
patient based on feature weights.

Construction of the radiomics model

The obtained rad-score was fused with the MCTSI score to create 
a radiomics model. The baseline data were used to build a clinical 
model. A joint clinical–radiomics model was established by combining 

TABLE 1 Bedside index of severity of acute pancreatitis (BISAP).

Risk factors Scoring criteria Scores

BUN
>25 mg/dL 1

≤25 mg/dL 0

Impaired mental status
2 1

1 0

SIRS
≥2 Criteria 1

<2 Criteria 0

Age
>60 years 1

≤60 years 0

Pleural effusion
Presence 1

Absence 0

TABLE 2 MCTSI scores.

Index MCTSI

Pancreatic inflammation Normal pancreas 0

Intrinsic pancreatic abnormalities with 

or without inflammatory changes in 

peripancreatic fat

2

Pancreatic or peripancreatic fluid 

collection or peripancreatic fat 

necrosis

4

Pancreatic necrosis None 0

30% or less 2

More than 30% 4

Extrapancreatic 

complications

one or more of pleural effusion, 

ascites, vascular complications, 

parenchymal complications, and/or 

gastrointestinal involvement

2
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the two. The AUC values of the three models were analyzed using 
ROC curves. Compare the performance of different models in the 
training and validation sets. The performance of the same model is 
also compared in the training and validation sets. The DeLong test was 
used to compare the statistical differences among the three models. 
Evaluate clinical–radiomics characteristics by univariate and 
multivariate logistic regression analyses. The net clinical benefit of the 
models was compared by DCA.

Statistical analysis

Statistical analysis was performed using SPSS (version 25.0, IBM) 
and R statistical software (Version 4.1.0). Clinical data for the training 
set and validation set were analyzed according to the variable type. 
Continuous variables that obeyed normal distribution are presented 
as mean ± standard deviation and analyzed by t-test for comparison of 
differences between groups; continuous variables that did not obey 
normal distribution are presented as median (interquartile range, 
IQR), and Wilcoxon rank sum test was used for comparison of 
differences between groups. Categorical variables were presented as 
frequency, and differences between groups were compared using the 
chi-square test or Fisher’s exact test for comparison of differences 
between groups. p < 0.05 was considered statistically different. The 
AUC and 95% confidence interval, accuracy, sensitivity, and specificity 
were used to evaluate the performance of the models, and the DeLong 
test was used to compare the differences between the ROC curves of 
the three models. DCA is used to compare net clinical benefit.

Results

Clinical characteristics and MCTSI scores

A total of 137 AP patients were enrolled in this study, which 
consisted of 84 male and 53 female cases with a mean age of 43 (35, 
53) years. Patients were divided into progressive (n = 95) and 
non-progressive (n = 42) groups. There were 95 cases in the training 

set (66 cases in the progressive group and 29 cases in the 
non-progressive group) and 42 cases in the validation set (29 cases in 
the progressive group and 13 cases in the non-progressive group).

In both the training set and validation set, the BISAP (Z = −5.19; 
–3.55，P < 0.001) and PCT (Z = –3.92; –2.2，P < 0.001; p = 0.028) in 
the progression group were higher than in the non-progression group, 
while the gender differences were not statistically significant (Z = 2.27; 
0.14, p = 0.707; 0.132). In the training set, the age in the progressive 
group was younger than the non-progressive group (Z = 2.11, 
p = 0.035), and the CRP was higher than the non-progressive group 
(Z = –3.05, p = 0.002) (Table 3).

In both the training set and validation set, the MCTSI scores in 
the progression group were higher than in the non-progression group 
(Z = –5.3; –3.34, P < 0.001).

Radiomics analysis

The meaningful texture features were obtained by extracting the 
texture and filtering the transform by the uAI Research Portal. 
Selection of the best parameters for binomial bias through Z-score, 
ICC, mRMR algorithm, and LASSO regression. Figure 2A shows that 
λ increases the variation of binomial deviation of the model on the 
training set samples. The value with the smallest binomial deviation is 
selected as the best parameter value. Figure 2B shows the variation of 
the coefficients of the variables in the model. Thirteen texture features 
with large values were selected from the CT plain scan images, and 
their corresponding coefficients are shown in Figure 3. Calculate the 
rad-score for each patient based on the following formula: 

Radscore = 1.0661 + 1.0718 × recursiveGaussian_glcm_
ClusterShade+0.4923 × additivegaussiannoise_glrlm_
RunEntropy+0.3503 × boxsigmaimage_glszm_
LowGrayLevelZoneEmphasis+0.2422 × normalize_glszm_
ZoneEntropy-0.0386 × log_ngtdm_log_sigma_2_0_mm_3D_
Strength-0.0424 × wavelet_firstorder_wavelet_LLL_Kurtosis-
0.048 × mean_gldm_DependenceVariance-0.1576 × log_glszm_log_
sigma_2_0_mm_3D_SizeZoneNonUniformity-0.1904 × specklenoise_
glszm_SmallAreaEmphasis-0.1940 × normalize_glszm_
LargeAreaLowGrayLevelEmphasis-0.3478 × wavelet_gldm_wavelet_
HHL_DependenceVariance-0.4221 × log_glcm_log_sigma_0_5_
mm_3D_Correlation-0.5333 × boxmean_glszm_
SmallAreaHighGrayLevelEmphasis.

The rad-score fused MCTSI is derived for each patient by 
calculating the coefficients of each texture feature to build a 
radiomics model.

Based on the texture features of plain scan images, the optimal 
features are selected. By fusing MCTSI scores, establish clinical models, 
radiomics models, and clinical–radiomics models, respectively. 
According to the ROC curve (Table 4), the AUCs in the training set 
were 0.911, 0.933, and 0.984, respectively, and the AUCs in the 
validation set were 0.857, 0.897, and 0.942, respectively. In the training 
set, the clinical–radiomics model has the best predictive performance. 
Its predictive performance is higher than the clinical model (Z = 2.767, 
p = 0.005) and the radiomics model (Z = 2.033, p = 0.042) (Figure 4). 
There was no statistically significant difference in AUC between the 
training and validation sets for clinical models (D = 0.644, p = 0.522), 

FIGURE 1

Manually delineate the ROI of pancreatic parenchyma with the uAI 
Research Portal.
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radiomics models (D = 0.823, p = 0.414), and clinical–radiomics models 
(D = 1.108, p = 0.274). The results of DCA indicate that the clinical–
radiomics model has a higher clinical net benefit (Figure 5).

Assessment of clinical–radiomics features

The results of univariate and multivariate logistic regression 
analysis of clinical–radiomics features predicting the progression of 
acute pancreatitis are shown in Table 5. The results of univariate logistic 
regression analysis showed that BISAP, CRP, PCT, MCTSI, and 
rad-score were significant factors in differentiating the progression of 
acute pancreatitis. The results of multivariate logistic regression analysis 
showed that BISAP (OR = 6.187; 95% CI: 2.259–27.047; p = 0.003), PCT 
(OR = 1.923; 95% CI: 1.040–5.568; p = 0.124), and rad-score (OR = 3.841; 
95% CI: 1.578–13.481; p =  0.013) were independent predictors of 
progression of acute pancreatitis, and two factors, MCTSI (OR = 1.281; 
95% CI: 0.690–2.617; p = 0.455) and CRP (OR = 1.001; 95% CI: 0.992–
1.010; p = 0.872), were not independent factors.

Discussion

The initial diagnosis of AP patients accounts for approximately 
0.3% of the total number of emergency department patients. The 
pathogenesis is due to the abnormal activation of pancreatic 
enzymes. The pancreatic enzyme causes damage to the pancreas 
itself and surrounding organs, which, in turn, triggers related 
inflammatory and immune responses. In severe cases, it can lead to 
organ dysfunction and even death (21). There is evidence that mild 
and acute pancreatitis is associated with hyperperfusion within the 
first few hours of symptom onset, while moderate and severe 
pancreatitis is accompanied by complications, and pancreatic 
parenchyma has progressive tissue ischemia and decreased 
perfusion. It has been suggested that damage to the pancreatic 
parenchyma from microcirculatory disorders is present at an early 
stage, and it is difficult to reflect such changes by conventional CT 
plain scan (22). In this study, we  established and validated a 
clinical–radiomics model based on CT plain scan images to predict 
the progression of AP in a non-invasive and quantitative way.

TABLE 3 Intergroup comparison of clinical indicators and MCTSI Scores in the training set and validation set for patients in the progressive and non-
progressive groups.

Project Training set (n  =  95) χ2/z P Validation set (n  =  42) χ2/z P

Non-
progressive 

group (n  =  29)

Progressive 
group (n  =  66)

Non-
progressive 

group (n  =  13)

Progressive 
group (n  =  29)

Gender 2.27 0.1322 0.14 0.7066

Male 21 (72.41) 37 (56.06) 7 (53.85) 19 (65.52)

Female 8 (27.59) 29 (43.94) 6 (46.15) 10 (34.48)

Age 47 (40.00,54.00) 39 (32.00,50.75) 2.11 0.0348 45.62 ± 16.83 43.52 ± 15.39 0.40 0.6935

BISAP 1 (1,1) 2 (2,3) –5.19 <0.0001 1 (0,1) 2 (1,3) –3.55 0.0004

CRP 141 (94.4,191.0) 201 (141.8,289.6) –3.05 0.0023 185 (34,250) 220.58 (161,392) −1.80 0.0725

PCT 0.79 (0.46,1.50) 1.93 (0.91,4.24) −3.92 0.0001 1.1 (0.25,1.60) 1.93 (0.87,8.15) −2.20 0.0275

MCTSI 2 (0,2) 4 (2,5.5) −5.3 <0.0001 2 (0,2) 4 (2,6) −3.34 0.0008

FIGURE 2

(A) The binomial deviation of the LASSO model in the training set samples with λ of the binomial deviation, and the binomial deviation with the smallest 
λ value as the best λ value. (B) Change of the coefficients of the variables in the LASSO model withλ.
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Majidi et al. (23) found CRP and PCT in the SAP group were 
higher than in the MAP group (p < 0.05). With the progressing 
pancreatitis, PCT and CRP also increased. BISAP can early identify 
patients with a high risk of complications and death using five simple 
indicators (12). Singh et al. (22) found that the BISAP can effectively 
predict the severity of AP. They found that gender was balanced by 
comparing clinical baseline data. Khanna et al. (10) found that the age 
of AP patients is between 21 and 50 years old. By comparing the 
clinical characteristics of the training set and the validation set, 
we found that the BISAP, CRP, and PCT in the progressive group were 
higher than those in the non-progressive group, and the age in the 
progressive group was smaller than in the non-progressive group.

Balthazar et al. (24–26) established the CT Severity Index (CTSI). 
It grades and scores the degree of pancreatitis and necrosis to predict 
the incidence rate and mortality of AP. Later, Mortele et  al. (27) 
improved its limitations by incorporating numerical scores for 
extrapancreatic complications and establishing MCTSI. Its 
correlation with clinical outcomes and local complications is superior 
to CTSI. Banday et al. (28) found that compared to CTSI, MCTSI is 
simpler and more accurate and has a stronger correlation with 
clinical outcomes, including hospital stay, infection development 
trends, organ failure, mortality rate, and the need for intervention 
treatment. Therefore, we fused MCTSI to the radiomics model to 
improve the predictive performance. Radiomics can reveal 

FIGURE 3

Coefficients of the 13 texture features selected by LASSO.

TABLE 4 Clinical characteristics model, radiomics label, and radiomics prediction model ROC result.

Model Training set (n  =  95) Validation set (n  =  42)

AUC ACC Sensitivity Specificity PPV NPV AUC ACC Sensitivity Specificity PPV NPV

Clinical 

features

0.911 

(0.853–

0.969)

0.853 

(0.765–

0.917)

0.864 0.828 0.919 0.727

0.857 

(0.741–

0.973)

0.81 

(0.659–

0.914)

0.793 0.846 0.920 0.647

Radiomics

0.933 

(0.875–

0.990)

0.895 

(0.815–

0.948)

0.909 0.862 0.938 0.806

0.897 

(0.803–

0.990)

0.81 

(0.659–

0.914)

0.759 0.923 0.957 0.632

Clinical–

radiomics

0.984 

(0.964–

1.000)

0.947 

(0.881–

0.983)

0.955 0.931 0.969 0.900

0.942 

(0.87–

1.000)

0.929 

(0.805–

0.985)

0.966 0.846 0.933 0.917
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FIGURE 4

(A) ROC curves of different models in the training group. (B) ROC curves of different models in the validation group.

FIGURE 5

DCA of the models in the training set and validation set.

TABLE 5 Results of univariate and multivariate logistic regression analysis of clinical–radiomics characteristics.

Clinical–radiomics features Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

BISAP 5.167 (2.630–12.094) <0.001 6.187 (2.259–27.047) 0.003

CRP 1.006 (1.002–1.011) 0.014 1.001 (0.992–1.010) 0.872

PCT 2.034 (1.381–3.511) 0.003 1.923 (1.040–5.568) 0.124

MCTSI 2.658 (1.791–4.477) <0.001 1.281 (0.690–2.617) 0.455

age 0.978 (0.949–1.007) 0.139

gender 2.057 (0.819–5.558) 0.136

Rad-score 5.037 (2.799–10.728) <0.001 3.841 (1.578–13.481) 0.013
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information hidden in conventional images to reflect potential 
biological and pathological changes.

In the early stage of a conventional CT plain scan, radiomics may 
reflect damage to the pancreatic parenchyma. In this study, a series of 
radiomics features of the first order, shape, glcm, glrlm, glszm, gldm, 
and ngtdm parameters were extracted with high throughput. They 
provided a comprehensive description of the morphology, 
radiographic attenuation, and texture information of the lesion. After 
the dimensionality reduction and radiomics analysis, the 13 most 
valuable texture features were selected. Then, the rad-score was 
calculated to obtain. The radiomics feature with the maximum 
absolute values in LASSO is recursivegaussian_glcm_ClusterShade. 
Cluster Shade is a measure of the skewness and uniformity of the 
GLCM. It is used to describe the joint distribution of two pixels with 
some spatial relationship. ClusterShade is associated with the 
heterogeneity of voxels in the area of interest. The maximum absolute 
values in LASSO indicate that the internal structure of the pancreatic 
parenchyma varies greatly due to inflammation or necrosis caused by 
leakage of pancreatic fluid. In addition, less first-order feature 
extraction may be related to the exudate parenchymal necrosis of 
inflammation resulting in poorer display of anatomical details. 
Moreover, we  obtain the texture features containing wavelet filter 
decomposition and local binomial transform account for more. The 
image signal can be  decomposed into subbands. Using different 
algorithms for different subbands aims to highlight approximation 
and details at different scales. Wavelet transforms have important 
image analysis capabilities. The wavelet transform coefficients can 
provide us with edge information of the lesion for extracting relevant 
radiomics features. The local binomial transform can extract the 
original feature information and spatial positional relationships of the 
image pixels. This analysis method has the advantages of rotation and 
gray-scale invariance (29). It can effectively reflect the invariance of 
local information in a CT plain scan (30).

Therefore, we establish a radiomics model with rad-score and 
MCTSI. We use clinical baseline data to establish a single predictive 
model. By comparing the AUC, we found that the performances of the 
radiomics model and the clinical model were good and stable. Finally, 
the radiomics model was fused with clinical baseline data to obtain a 
joint clinical–radiomics model. The performance has been further 
improved, with statistically significant differences compared to single 
clinical models or radiomics models. Moreover, the diagnostic 
efficiency of the clinical–radiomics model is the highest in both the 
training and validation sets. Moreover, there is no statistical difference 
between the two sets, which shows that the model obtained through 
further research has the best and stable predictive performance. Early 
prediction of patient progression can be achieved through quantitative 
analysis of several simple clinical data and patient CT plain 
scan images.

Limitations of this study

(1) The analysis of this study was based on radiomics features 
extracted from two-dimensional images of the pancreatic parenchyma 
at the largest level of the diseased pancreas, and it may be  more 
effective to reflect the lesions if three-dimensional images of the entire 
pancreatic parenchyma are extracted; (2) a retrospective single-center 
study was conducted with hospitalized patients. There may 

be significant bias in sample selection; (3) AP patients in our hospital 
undergo routine CT plain scans upon admission. If conducting 
radiomics analysis based on CECT scanning images, a more efficient 
model can be obtained; (4) patients with mild symptoms do not need 
image examinations to diagnose and manage AP. Currently, there are 
few imaging studies on patients with mild symptoms. Moreover, our 
results tend to analyze more severe and complicated pancreatitis.

In summary, the clinical–radiomics model based on pancreatic 
parenchymal CT has good predictive performance in both the training 
and validation sets, helping to identify and judge the progression trend 
of acute pancreatitis patients as soon as possible, and taking timely 
and effective measures to improve the patient’s prognosis.
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