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Snake venom contains many toxic proteins that can destroy the circulatory 
system or nervous system of prey. Studies have found that these snake venom 
proteins have the potential to treat cardiovascular and nervous system diseases. 
Therefore, the study of snake venom protein is conducive to the development 
of related drugs. The research technologies based on traditional biochemistry 
can accurately identify these proteins, but the experimental cost is high and 
the time is long. Artificial intelligence technology provides a new means and 
strategy for large-scale screening of snake venom proteins from the perspective 
of computing. In this paper, we developed a sequence-based computational 
method to recognize snake toxin proteins. Specially, we utilized three different 
feature descriptors, namely g-gap, natural vector and word 2 vector, to encode 
snake toxin protein sequences. The analysis of variance (ANOVA), gradient-boost 
decision tree algorithm (GBDT) combined with incremental feature selection 
(IFS) were used to optimize the features, and then the optimized features were 
input into the deep learning model for model training. The results show that 
our model can achieve a prediction performance with an accuracy of 82.00% in 
10-fold cross-validation. The model is further verified on independent data, and 
the accuracy rate reaches to 81.14%, which demonstrated that our model has 
excellent prediction performance and robustness.
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1 Introduction

Snake venom is a mixture of toxin proteins and other chemical molecules, which acts on 
the blood circulation system, nervous system or motion system of prey. It can make the prey 
lose resistance, and then achieve the purpose of predation. Many toxin enzymes have been 
isolated from snake venoms, such as serine proteinases, metalloproteinase and L-amino acid 
oxidases, which can interrupt the blood circulatory system, leading to blood clotting and heart 
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failure. Moreover, the scientists found that the primary toxins of 
Pseudechis australis venom with antibacterial activity were 
phospholipases A2 and L-amino acid oxidases. The L-amino acid 
oxidase discovered in the venom of Crotalus adamanteus was the first 
pure toxin tested against bacteria. Since then, crude snake venom, 
portions of it, or refined components have all shown antibacterial 
activity. The mechanism of anti-microbial activity of snake toxin 
proteins is shown in Figure 1.

Many toxin proteins were found in snake venom, such as 
phospholipases A2, cysteine-rich secretory proteins (CRISP), 
α-dendrotoxins, β-dendrotoxins and γ-dendrotoxins which could 
interact with nervous system or molecules in nervous system (1, 
2). Scientists have also obtained some venomous proteins, for 
example, three finger α-neurotoxins (α-3FNTx) and acetylcholine 
esterase proteins, which target motion system of prey and cause 
paralysis (3). Surprisingly, the components extracted from snakes 
can be  used as drugs to cure various diseases (4). At present, 
scientists have extracted several drugs from snake toxin proteins 
for the treatment of heart related syndromes. For example, 
captopril is now used to treat hypertension and reduce the risk of 
heart failure after the heart attack (5). Therefore, the correct 
identification of snake venom protein is very important for the 
study of drug development based on snake venom. Biochemical 
technologies are complicated, tedious and expensive. Thus, there is 
an urgent need to develop bioinformatic tools that can precisely 
identify snake toxins in a short time. Current bioinformatic tools, 
such as FASTA (6), HAlign (7, 8) and BLAST (9) can search for 
similar sequences with the help of known protein databases. 
However, in the absence of homologous sequences in benchmark 
dataset, these computational tools cannot correctly recognize snake 
toxin proteins. Therefore, it is essential to establish a computational 
tool to recognize snake toxin proteins.

To fill the gap, we proposed the first predictor named Deep-STP 
based on deep learning to recognize snake toxin proteins. The 

graphical illustration of the entire study was shown in Figure 2. First, 
the snake toxin protein sequences were encoded by three different 
kinds of descriptors, namely, word to vector (10), g-gap and natural 
vector (11). Subsequently, the feature set was optimized by combining 
ANOVA (11) and GBDT (12) with IFS procedure. By inputting the 
optimal feature into deep learning, the snake toxin proteins can 
be  recognized. The performance of the anticipated model was 
evaluated by 10-fold CV and independent data.

2 Materials and methods

A real and reliable data is crucial for the establishment of 
prediction model. In this work, positive and negative samples were 
collected from open-source database UniProt (13) and RefSeq (14). 
We  have excluded the similar sequences using 80% as cutoff of 
sequence identity (15). After the elimination process, we  finally 
obtained the dataset of 270 positive and 339 negative sequences of the 
prominent protein families of snake toxin. Subsequently, the data were 
separated into 80% training data and 20% independent data to 
objectively estimate the efficiencies and performances of the models, 
as shown in Supplementary Table S1.

2.1 Feature descriptors

It is an important step for protein function prediction to express 
the sequence information with effective mathematical descriptors 
(16). Here, three kinds of feature descriptors were used to encode the 
snake toxin protein sequences.

2.1.1 g-gap dipeptide composition
The relationship between the two end-to-end 2-D amino acid 

residues can be  expressed using this feature encoding approach. 

FIGURE 1

Schematic diagram of the anti-microbial activities of snake toxin proteins.
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Consequently, important links between two residues are found using 
g-gap dipeptide composition. Thus, a protein ‘F’ can be described as

 
F X X X X Xp p p

i
p p t

= 

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(1)

where ‘t’ is the transposition vector and Xi
p  is the i-th occurrence 

of g-gap dipeptide which is define as

 
X

n
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where ‘p’ is the number of amino acid residues, ni
p  is the i-th value 

number of g-gap and ‘L’ is the length of ‘F’ protein.

2.1.2 Natural vector
As a starting point for phylogenetic and evolutionary study, the 

natural vector scheme (NV) was created by Deng et al. (17). Here, 
we have also used NV to formulate the samples. A 60-dimensional 
vector can be created using this approach to plot biological sequences. 
The NV scheme has a significant ability to classify proteins because it 
has no parameters (18).

Let us say a protein ‘P’ with a length of ‘L’ residues can be expressed as.

 P = … …Q Q Q Qi L1 2  (3)

where Qi (i = (1, 2, … L)) indicates the i-th amino acid of protein 
‘P’. The NV is expressed as.

wk (.): (A, C, D, E…W, Y) → (0,1).where wk (Qi) = 1, if Qi  = k. 
otherwise, wk (Qi) = 0.

In protein ‘P’, mk is the number of k-th amino acid which can 
be computed as
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Let T(k)(i) is the gap between the first and i-th amino acid, ηk is the 
mean of the amino acids k and Sk is the overall distance which is 
shown in equation (5).
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Let ‘Fk2 ’ is the 2nd order regularized moment, which is 
computed as
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Thus, ‘P’ can be termed as
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where ‘T’ is the vector transposition.

2.1.3 Word2Vector
The ‘word2vector’ (W2V) is a NLP (Natural language processing) 

technique which has the ability to utilize neural networks to produce 
illustrations of the distribution of words (19, 20). In this method, 
word embeddings are utilized to illustrate of words. Indeed, the 
vectors which have the ability to encode the words closer in the 
vector space are supposed to be  an identical meaning. The 
‘word2vector’ consists of two different kinds of models, namely, 
continuous bag of words (21) and the other one is continuous skip 
gram (22). The main idea of the continuous skip gram is to utilize 
the words to predict its adjoining words (23). The quantified 
intelligence of continuous bag of words uses context words from a 
nearby booth to predict words. The continuous bag of words model 
structure logically implies the advantage of consistently condensing 
the scattered information in the data. Thus, in this work, 
we employed the continuous bag of words to train the appropriate 
resemblance of protein sequences. The dimension of the word2vector 
embedding is 200.

FIGURE 2

The graphical illustration of the entire study.
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2.2 Feature selection

The redundancy in the feature vectors can produce 
unsatisfactory performance (24). Therefore, selecting the ideal 
features is a significant step to eliminate the irrelevant features and 
enhance the efficiency of the model (25). There are many feature 
selection and ranking methods to optimize the features, such as 
ANOVA (26, 27), F-score (28), mRMR (29), GBDT and LGBM 
(12). ANOVA is a reputable choice to overcome these 
complications, because it takes short time and yield effective 
outcomes. The merging of top-performing features does not 
guarantee that the best outcomes can be achieved. These features 
are conceivably to have a higher level of redundancy, which leads 
to another unnecessary knowledge in the feature. Hence, GBDT is 
an ideal choice to conquer these hitches. In this work, ANOVA and 
GBDT with IFS were employed to achieve the best feature subset 
which could produce the maximum accuracy. The whole procedure 
for feature selection has been already elucidated in our previous 
study (12). The prediction accuracy of models constructed with 
different numbers of features and contribution of feature 
descriptors have been shown in Figures 3A,B.

2.3 Convolutional neural network

Convolutional neural networks (CNN) was first developed by 
LeCun et al. (30) and are now largely used in the developments of 
biology and bioinformatics (31). The core idea behind CNN is to 
use layer-wise convolutions and pooling techniques to build a large 
number of filters that can extract hidden topological properties 
from input. The performance of CNN on 2-D image and matrix 
data has been excellent (32). Moreover, 1-D CNN has been utilized 
to overcome the natural language processing and biomedical 
sequence data recognition problems (33). In this work, we executed 
1-D CNN to recognize snake toxin proteins. We utilized Keras 
2.3.1 (34), Python 3.5.4 and Tensor Flow 2.1.0 to execute 
this experimentation.

2.4 Metrics evaluation

Accuracy, precision, recall and F1-score (35) were used to assess 
the efficiency of the projected model and can be expressed as
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(8)

where ‘TP’ represents the truly predicted snake toxin protein 
sequences and ‘FP’ indicates the non-snake toxin protein sequences 
predicted as snake toxin protein sequence. ‘TN’ symbolizes the truly 
predicted non-snake toxin protein sequences and ‘FN’ demonstrate 
the snake toxin protein sequences which were predicted as non-snake 
toxin protein sequence.

3 Results and discussion

3.1 Performance evaluation

Initially, we converted the sequence data into feature vectors by 
using three types of feature encoding schemes. Then, each feature 
vector was assessed by CNN-based classifier by employing a 10-fold 
CV. Subsequently, ANOVA and GBDT were implemented to select the 
optimal feature. Figure 3A displays the prediction accuracy of models 
constructed with different numbers of features. The maximum 
accuracy of 82.00% was achieved on 167 optimal features. Figure 3B 
shows the contribution of feature descriptors in CNN-based fusion 
model. The optimal model was trained on the data with 167 features 
derived from three kinds of descriptors. In final optimized-fusion 
model, NV, W2V and g-gap dipeptide descriptors account for 35.92, 
43.11, and 20.95%, respectively. We have also visualized the feature 

FIGURE 3

The prediction accuracy of models constructed with different numbers of features (A). Contribution of descriptors in CNN-based fusion model to 
classify snake toxin proteins (B).
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fusions by using t-SNE (t-distributed stochastic neighbor embedding) 
technique. The t-SNE visualization of feature fusion before and after 
the feature selection are shown in Figures 4A,B. Figure 4C shows the 
single-encoding performance on different machine learning-based 
(ML-based) classifiers before the selection of features (36) and 
Figure 4D shows the performance of single-encoding after feature 
selections on different ML-based classifiers. Table 1 also shows the 
performance of feature fusion models before and after the feature 
selection on different ML-based classifiers by utilizing 10-fold CV.

The comparisons of proposed CNN-based fusion model with 
different machine learning-based fusion models on 10-fold CV as well 
as on independent dataset are shown in Figures 4E,F. From these 
comparisons, we may conclude that the best model is based on the 
CNN with 167 optimal features. The model could produce the 
AUROC of 0.926 and 0.917 on training and independent dataset.

3.2 Performance evaluation of different ML 
algorithms

Various single feature and their fusion were inputted into other 
ML-based classifiers, such as long short-term memory (LSTM) and 

random forest (RF), for determining which machine learning method is 
the best for snake toxin prediction. The 10-fold CV and independent 
dataset test were employed to estimate the efficiency of these models. The 
comparison outcomes have been shown in Tables 1, 2. We noticed that 
the AUROC of CNN-based prediction model was 2.5–4.5% higher than 
that of other classifiers on 10-fold CV and 1.7–4.1% higher than that of 
other classifiers on independent test. Figures 5A–D displayed that the 
CNN-based prediction model is best among all classifiers.

4 Conclusion

Snake venom is a mixture of deadly proteins that can anesthetize and 
kill prey. Scientists have found a variety of proteins with potential 
pharmacological uses from snake venom. Further research on snake 
venom protein will contribute to drug development. In this work, an 
innovative computational model was constructed to classify snake toxin 
proteins. NV, W2V, and g-gap were utilized to encode the protein 
sequences. Subsequently, optimal feature subset was obtained by ANOVA 
and GBDT with IFS. By comparing different machine learning-based 
models, the best model was attained by the CNN-based classifier. 

FIGURE 4

Visualization of feature fusion before the feature selection (A). Visualization of feature fusion after the feature selection (B). Performance of single-
encoded features on different classifiers before the feature selection (C). Performance of single-encoded features on different classifiers after the 
feature selection (D). Comparison of proposed CNN-based fusion model with different machine learning-based fusion models on the basis of 10-fold 
CV (E). Comparison of proposed CNN-based fusion model with different machine learning-based fusion models on independent data (F).

TABLE 1 Performance of fusion models by using different algorithms.

Algorithm FS Dimension Accuracy Recall Precision F1 AUROC

RF No 487 77.35 76.84 78.21 78.87 0.863

Yes 189 79.80 80.10 78.88 79.56 0.881

LSTM No 487 79.74 79.68 80.20 78.89 0.895

Yes 227 80.50 80.37 80.08 79.00 0.901

CNN No 487 81.22 83.11 78.01 79.88 0.904

Yes 167 82.00 84.17 79.32 80.73 0.926
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FIGURE 5

AUROC of the best performing model on 10-fold CV (A). AUROC of the best performing model on independent data (B). Comparison of different 
machine learning-based models on 10-fold CV (C). Comparison of different machine learning-based models on independent data (D).

Furthermore, the results showed that the proposed model could provide 
spectacular generalization ability. The dataset and codes are available at 
https://github.com/linDing-groups/Deep-STP. Further studies will focus 
on constructing a web application for the anticipated model. Moreover, 
other advance feature selection techniques and algorithms will 
be employed to further increase the efficiency of classification.
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