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Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly 
defined as non-alcoholic fatty liver disease (NAFLD), is a disorder marked by 
the excessive deposition of lipids in the liver, giving rise to a spectrum of liver 
pathologies encompassing steatohepatitis, fibrosis/cirrhosis, and hepatocellular 
carcinoma. Despite the alarming increase in its prevalence, the US Food and Drug 
Administration has yet to approve effective pharmacological therapeutics for 
clinical use. MASLD is characterized by the accretion of lipids within the hepatic 
system, arising from a disarray in lipid provision (whether through the absorption 
of circulating lipids or de novo lipogenesis) and lipid elimination (via free fatty 
acid oxidation or the secretion of triglyceride-rich lipoproteins). This disarray 
leads to the accumulation of lipotoxic substances, cellular pressure, damage, and 
fibrosis. Indeed, the regulation of the lipid metabolism pathway is intricate and 
multifaceted, involving a myriad of factors, such as membrane transport proteins, 
metabolic enzymes, and transcription factors. Here, we will review the existing 
literature on the key process of lipid metabolism in MASLD to understand the 
latest progress in this molecular mechanism. Notably, de novo lipogenesis and 
the roles of its two main transcription factors and other key metabolic enzymes 
are highlighted. Furthermore, we  will delve into the realm of drug research, 
examining the recent progress made in understanding lipid metabolism in 
MASLD. Additionally, we will outline prospective avenues for future drug research 
on MASLD based on our unique perspectives.
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Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD), 
previously known as non-alcoholic fatty liver disease (NAFLD), is a 
significant and rapidly increasing health concern in developed nations, 
becoming a leading cause of liver-related mortality. Its prevalence is 
also soaring in developing regions, highlighting the global impact of 
this condition (1). Albeit the alteration in nomenclature, the 
discernments pertaining to NAFLD remain pertinent to MASLD (2). 
In 2020, the epidemiological inquiry revealed that approximately 1.7 
billion individuals worldwide have MASLD (3), and it is estimated 
that by 2030, approximately one third of the global population will 
be  impacted by this disease (4). The prevalence of MASLD in the 
general population is around 6.3%–33% (5), 65% in obese people, 
55.5% in people with diabetes, and as high as 72% in patients with 
dyslipidemia (4, 6, 7). Notably, the prevalence of MASLD tends to 
increase with advancing age, with less than 20% of cases observed in 
individuals below 20 years old and over 40% observed in those above 
60 years old. Older patients diagnosed with MASLD exhibit a 
heightened vulnerability to liver fibrosis and cirrhosis (8). 
Furthermore, males exhibit a higher propensity for progression to 
metabolic dysfunction-associated steatohepatitis (MASH) and 
cirrhosis compared to females (8). In China, the rate of MASLD 
prevalence is escalating at an alarming pace, reaching more than twice 
that of western countries. In the general population of China, the 
prevalence of MASLD is close to 30%, which is the primary cause of 
chronic liver disease, and there are also differences among individuals 
in different provinces and regions, age groups, sexes, and metabolic 
situations (9). In the past two decades, the high prevalence of MASLD, 
along with the associated mortality rates for liver and extrahepatic 
disorders, has posed significant threats to human well-being, imposing 
substantial social and economic burdens on affected families and 
nations (10).

Overview of MASLD

Excessive fat accumulation in hepatocytes, excluding alcohol and 
specific liver damage factors, is the defining feature of MASLD, a 
clinicopathological syndrome caused by the buildup of triglycerides 
(TG). MASLD comprises various types, initially presenting as simple 
steatosis, which may progress to MASH. As fat accumulates in the 
liver, it triggers hepatocyte injury and subsequently activates an 
inflammatory response. This inflammation involves the infiltration of 
immune cells into the liver, contributing to the progression of 
MASH. If left unaddressed, the persistent inflammation can lead to 
further liver damage, fibrosis, and ultimately the development of more 
severe conditions like cirrhosis and hepatocellular carcinoma (HCC), 
resulting in elevated all-cause mortality and liver-related mortality 
rates (11–13). The disease progression from steatosis to MASH, 
fibrosis, and HCC is heterogeneous, which occurs after several years 
or even decades, and is influenced by some unchangeable (such as age, 
gender, race/nationality, heredity) and changeable factors (including 
diet, lifestyle, drugs). Hence, the intricate mechanism governing the 
progression of MASLD remains largely enigmatic. Numerous pieces 
of evidence indicate that alterations in lipid metabolism in the liver 
are the primary driving force (14). For instance, the susceptibility to 
simple steatosis or MASH is heightened by mutations in various genes 

responsible for governing lipid metabolism, such as patatin-like 
phospholipase domain 3 (PNPLA3), transmembrane 6 superfamily 
member 2 (transmembrane 6 superfamily member 2, TM6SF2), 
farnesyl diphosphate farnesyl transferase 1 (FDFT1), and membrane-
bound o-acyl transferase domain containing 7 (MBOAT7) (15) 
(Figure 1).

Disordered lipid metabolism stands as the fundamental 
hallmark of MASLD, propelling the advancement of the disease. 
MASLD develops from an abnormal accumulation of lipids in 
hepatocytes, which are a type of parenchymal cell in the liver. 
Steatosis is a histopathological designation denoting the 
manifestation of lipids in over 5% of hepatocytes (12). Aberrant 
elevations in intracellular lipids instigate mitochondrial dysfunction 
and heighten oxidative stress, typically accompanied by augmented 
de novo lipogenesis (DNL) and diminished fatty acid oxidation. 
Prolonged exposure of hepatocytes to heightened levels of lipid 
peroxidation and oxidative stress culminates in cell demise 
orchestrated by lipotoxicity. On the other hand, the macrophages 
and infiltrating inflammatory cells in the tissue are activated after 
the damaged liver cells release dangerous signals, which leads to the 
secretion of pro-inflammatory cytokines, further aggravating the 
damage and death of liver cells and leading to steatohepatitis (12). 
In addition, organ cross-talk with the liver and hereditary 
predisposition can also play an important role in the progression of 
MASLD (16). Furthermore, in response to this accelerated 
hepatocyte death, hepatic stellate cells become activated and play a 
significant role in compensating for the loss of liver tissue (17). 
Activated hepatic stellate cells undergo a transformation from a 
quiescent state to a myofibroblast-like phenotype. This activated 
state enables them to produce and release excessive amounts of 
extracellular matrix molecules, particularly collagen. The 
accumulation of collagen and other extracellular matrix components 
within the liver parenchyma leads to the development of liver 
fibrosis. Over time, if fibrosis persists, it can progress to advanced 
stages, ultimately increasing the risk of developing HCC (Figure 2).

MASLD is closely related to various metabolic complications such 
as obesity, insulin resistance, type 2 diabetes, hyperlipidemia, 
hypertension, and other cardiovascular diseases due to the significant 
role of hepatic lipid metabolism in the overall energy balance of the 
body (18–20). At the same time, studies have demonstrated that the 
seriousness of MASLD is positively correlated with the heightened 
possibility of acquiring one or more aspects of metabolic syndrome, 
indicating that MASLD could be  a significant factor in systemic 
metabolic dysfunction (12, 21, 22). The only reliable and safe approach 
to managing MASLD lies in the modification of one’s lifestyle, which 
encompasses weight loss, dietary restrictions, and regular physical 
activity (23). Currently, no specific pharmacological treatment has 
been approved for MASLD, either due to limited efficacy or concerns 
regarding the safety associated with available medications. Therefore, 
identifying novel therapeutic objectives and creating efficient and 
secure medication interventions are imperative. The development of 
MASLD is significantly influenced by the rise in free fatty acids (FFAs) 
in both blood and hepatocytes. Clinical research is currently focused 
on reducing the accumulation of fatty acids (FAs) and TG in the liver, 
as well as reversing or managing the development of simple steatosis 
and preventing it from advancing to the final stage of MASLD. Hence, 
this review focuses on the latest advancements in lipid metabolism 
research, providing a comprehensive overview of the key objectives 
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and pharmaceutical investigations pertaining to lipid metabolism in 
the context of MASLD (see Figure 3).

The disturbance of lipid metabolism in 
MASLD

The liver is the key organ to maintain the energy balance of the 
human body because it controls the metabolism of different nutrients 
such as lipids, glucose, and protein. The processing of lipids and FAs 
from food and adipose tissue by lipid metabolism is crucial in 
providing a constant supply of energy sources to other organs. During 
the process of consuming food, lipids from the diet are taken in by the 
intestine and transported to the liver. In the liver, they undergo 
metabolism, storage, and circulation throughout the body as TG and 
cholesterol, which serve as a source of energy for various peripheral 
tissues. Likewise, when there is limited dietary energy intake during 
fasting, the liver obtains FAs from adipose tissue to generate ketone 
bodies. These ketone bodies are then released into the bloodstream 
and carried to the brain or heart as a substitute for glucose as an 
energy source (24). Various molecular mechanisms, such as FAs 
uptake, transport, output, DNL, and fat acid oxidation, are utilized by 
the liver to regulate FAs metabolism. Altering the equilibrium of these 
pathways leads to the accumulation of lipids in the liver, resulting in 
organelle malfunction, cellular injury, apoptosis, inflammation, and 
persistent activation of fibrosis pathways, all of which exacerbate liver 
function and advance the development of MASLD (12, 25, 26) (as 
shown in Figure 2).

The uptake and transport of FAs increased

A part of the FAs ingested in the liver come from the lipolysis of 
adipose tissue. Enlargement, contraction, and chronic low-grade 
inflammation of adipocytes characterize adipose tissue dysfunction in 
MASLD patients, which can result in increased lipolysis and FFAs 
production. According to the results of isotope tracing, FFAs from 
adipose tissue decomposition account for 59% of the accumulation of 
liver TG (27). Neutral lipolysis is initiated by adipose triacylglycerol 
lipase (ATGL), which cuts the initial FFAs from TG in lipid droplets, 
followed by hormone-sensitive lipase, which acts on diacylglycerol, a 
hydrolysate molecule, releasing two more FAs and one glycerol 
molecule. The experiment conducted on ABHD15-deficient mice 
provided evidence for the pathogenic role of FFAs leaked from adipose 
tissue in the development of MASLD and systemic insulin 
resistance (28).

FFAs present in the circulation can also be produced from dietary 
absorption. When we consume dietary fats, they are broken down into 
FFAs during the process of digestion and absorption in the 
gastrointestinal tract (29). It’s worth noting that the contribution of 
dietary absorption to the overall pool of FFAs in circulation depends 
on factors such as the amount and composition of dietary fats 
consumed, individual metabolism, and other physiological factors. 
Some studies have found that the development of MASLD is 
frequently related to western dietary patterns, particularly the 
overconsumption of dietary fat (25, 30). Meanwhile, in cases of 
obesity, the majority of lipids in MASLD originate from the circulating 
pool of FFAs.

FIGURE 1

MASLD spectrum. According to different clinical conditions, a healthy liver can develop into simple steatosis and metabolically associated 
steatohepatitis (MASH), which is still reversible. If MASH develops into cirrhosis, the histopathology becomes irreversible and may develop into 
hepatocellular carcinoma (HCC). At the same time, genetic, environmental factors and combined diseases can affect the occurrence and development 
of MASLD.
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FIGURE 2

Conceptual diagram of the pathogenesis of MASLD. Under the influence of environmental risk factors and genetic factors, the crosstalk between 
multiple organs and the liver leads to an increase in fatty acids transported by the liver and the production of new fat. The change in metabolic 
environment leads to the formation of lipotoxicity, which promotes cell stress and then stimulates inflammation, tissue regeneration, and fibrosis.

FIGURE 3

Lipid metabolism disorder in MASLD. Lipid content in the liver is controlled by the balance between lipid input and output, which is mediated by four 
main pathways. (1) Lipid uptake and transport; (2) de novo lipogenesis (DNL); (3) fatty acid oxidation (FAO); and (4) lipoprotein secretion.
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The concentration of FFAs in the plasma influences the rate 
of fatty acid uptake by hepatocytes. Fatty acid transport proteins 
(FATPs) and cluster of differentiation 36 (CD36) play key roles in 
this process. They bind to FFAs present in the plasma and 
transport them across the hepatocyte membrane. The regulation 
of FATPs and CD36 expression and activity can be influenced by 
factors such as hormonal signals (e.g., insulin), dietary 
composition, and metabolic conditions (31). The dysregulation of 
these transport proteins can contribute to disruptions in lipid 
metabolism and the onset of metabolic disorders. Extensive 
research has been conducted to investigate the role of CD36 in the 
development of MASLD, as its expression in the liver directly 
influences the occurrence of hepatic steatosis. A study (32) 
investigating the involvement of CD36  in lipid metabolism 
revealed noteworthy findings. In the livers of MASH mice, it was 
observed that the presence of CD36 on the plasma membrane of 
hepatocytes, as well as the process of palmitoylation of CD36, 
exhibited significant augmentation. This, in turn, facilitated the 
uptake of FFAs by hepatocytes while impeding fatty acid 
oxidation. Consequently, intracellular lipid accumulation ensued, 
accompanied by an upsurge in inflammatory responses. 
Preventing the palmitoylation of CD36 in mice with MASLD can 
decrease its presence on the hepatocyte plasma membrane and 
impair its role as a transporter of FFAs. This compelling evidence 
implies that CD36, along with its regulatory factors, holds promise 
as a prospective therapeutic avenue for the prevention and 
treatment of MASLD. In addition, CD36 has the ability to engage 
with insulin-induced gene-2, enhance the production of sterol 
regulatory element-binding protein 1c (SREBP1c), stimulate the 
DNL, and trigger hepatic steatosis (33). FATP isomers 2 and 5 are 
the primary isomers found in the liver among the six FATP 
isomers present in mammals. In the mouse model that was fed a 
high-fat diet, it was found that the removal or reduction of FATP2 
and FATP5 genes can decrease the absorption of FAs by 
hepatocytes, lower the level of TG deposition in the liver, and 
prevent diet-induced obesity in mice. This suggests that FATP-
mediated lipid absorption is a contributing factor to hepatic 
steatosis (34–36). After FFAs are ingested by the hepatocyte 
membrane, hydrophobic FAs cannot diffuse freely on the cell 
membrane, which should be  mediated by specific fatty acid 
binding proteins (FABP) to shuttle between different organelles. 
FABP1, also known as hepatic FABP or L-FABP, is predominantly 
expressed in the liver. Its primary function involves facilitating the 
intracellular transportation of long-chain FAs and regulating FA 
absorption as well as lipid metabolism. Previous research has 
indicated that patients with MASLD exhibit a notable rise in 
FABP1 levels, which can accelerate the progression of the disease 
and the onset of insulin resistance (37). Emerging research has 
unveiled that MASLD patients exhibit a notably heightened 
expression of FABP1 in the intestinal tract. This up-regulation 
plays a pivotal role in regulating the absorption of dietary FAs and 
synergistically promotes the initiation of MASH in conjunction 
with peroxisome proliferator-activated receptor α (PPARα) (38). 
Consequently, the intracellular uptake and transport of FAs within 
the liver of MASLD patients are enhanced, leading to the 
accumulation of detrimental FAs within the hepatic system. This, 
in turn, fosters the development of fatty degeneration and the 
progressive advancement of the disease.

DNL enhancement in MASLD

The conversion of non-fatty acid substrates like glucose, lactate, 
and amino acids into FAs is known as DNL. DNL relies primarily on 
glucose as its main carbon source, but fructose can also serve as an 
additional substrate by bypassing the rate-limiting step of glycolysis 
catalyzed by phosphofructokinase in the liver (39). The synthetic 
sources of FAs mainly include endogenous and exogenous FAs. Diet 
is the primary origin of exogenous FAs, whereas acetyl-CoA, which is 
discharged during glucose, lipid, and amino acid metabolism, is the 
fundamental component of endogenous FA synthesis. Acetyl-CoA is 
converted into malonyl-CoA by acetyl CoA carboxylase (ACC), which 
is one of the most critical speed-limiting steps in DNL. Malonyl-CoA 
is the donor of FAs in the process of lipid biosynthesis, which prolongs 
the FAs chain by two carbon units, inhibits the activity of carnitine 
palmitoyl transferase 1α (CPT1α), and prevents the β-oxidation 
process. Within the realm of DNL, several rate-limiting enzymes play 
prominent roles. ACC and fatty acid synthase (FASN) are involved in 
the synthesis of FAs, while stearoyl-CoA desaturase-1 (SCD1) 
significantly contributes to the production of monounsaturated FAs. 
Additionally, diacylglycerol acyltransferase (DGAT) is involved in the 
synthesis of triglycerides (TG). Comprehensive isotope tracing 
investigations have shown that DNL accounts for 26% of FFAs in 
individuals with MASLD and 10% in those without steatosis (27). 
Similar studies have further indicated that the contribution of hepatic 
DNL to intrahepatic TG is even more prominent in obese individuals 
with MASLD. In contrast, in both obese and lean individuals without 
MASLD, the contribution of liver TG is 19% and 11%, respectively 
(40–42). Based on these findings, it is evident that the main difference 
in nutritional homeostasis between MASLD patients and non-MASLD 
patients depends largely on the changes in DNL.

The precise mechanism of driving DNL in MASLD is still 
unknown, but under the background of systemic insulin resistance, 
due to the increase of circulating insulin and glucose, the activation of 
two main transcription factors, SREBP-1c and carbohydrate-
responsive element binding protein (ChREBP), has been considered 
a core driving factor (43). In turn, the activation of transcription 
factors will increase the level of some key enzyme genes in the DNL 
pathway, including ACC, FASN, and SCD1 (44). The subsequent 
discussion provides a concise exploration of the roles played by 
SREBP-1c and ChREBP in MASLD, particularly in relation to DNL.

SREBP1c
Through an atypical tyrosine residue in its basic domain named 

EKRY, SREBP1c has the ability to bind to both sterol regulatory 
elements and E-box, exhibiting a unique dual DNA binding specificity. 
SREBPs are immobilized on the endoplasmic reticulum (ER) 
membrane and translocated into the nucleus after translation to 
induce the expression of the target gene. In detail, the transportation 
of the SREBP precursor to the Golgi complex on the ER membrane is 
facilitated by the SREBP cleavage activating protein (SCAP), which is 
hindered by the insulin-induced gene (INSIG). The Golgi apparatus 
cleaves SREBPs using two protein-cleaving enzymes, namely site 1 and 
site 2 proteases (S1P and S2P). Following the cleavage of proteins, 
SREBP’s mature version is transported to the nucleus, where it 
stimulates the activation of lipogenic genes such as FASN and SCD 
(45). MASLD patients have been confirmed to exhibit elevated levels 
of SREBP1c expression (46). Selective insulin resistance is also 
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associated with DNL activation induced by SREBP1c, which allows 
insulin to sustain the elevated DNL level (47). Moreover, SREBP1c 
plays a direct role in controlling enzymes that are encoded by genes 
associated with genetic susceptibility to MASLD, including PNPLA3 
(48). Simultaneously, the regulation of SREBP1c expression is affected 
by fat mass and obesity-related genes, as well as its methylation level, 
indicating that genetic risk factors also play a role in mediating the 
impact of SREBP1c on MASLD (49).

ChREBP
DNL primarily depends on glucose as its main carbon source, and 

ChREBP plays a role in enhancing fat synthesis in response to glucose. 
The expression of lipogenesis-related genes is regulated by a complex 
formed by ChREBP and max-like protein X, which binds to 
carbohydrate response elements (50). It is reported that there has been 
an increase in the expression of ChREBP in the liver biopsies of 
patients with MASH. And a positive correlation exists between the 
decrease in lipid toxicity and insulin sensitivity and the rise in 
ChREBP protein content (51). Meanwhile, research has indicated that 
individuals with liver steatosis exceeding 50% exhibit the greatest 
levels of ChREBP mRNA expression (52). In ob/ob mice, liver-specific 
silencing of ChREBP can prevent hepatic steatosis and improve 
peripheral insulin sensitivity, and its mechanism involves the 
reduction of hepatic DNL (50, 53). Moreover, the overexpression of 
ChREBP induced by adenovirus, especially in C57BL/6 J mice fed a 
high-fat diet, promoted fatty degeneration of the liver (52). Of 
particular note in the context of MASLD is the fact that fructose 
consumption is on the rise worldwide, coinciding with the increase in 
the prevalence of MASLD, and more importantly, fructose is an 
effective activator of ChREBP (30). Fructose metabolism involves the 
participation of the liver and small intestine. Glucose transporter 5 is 
responsible for absorbing and metabolizing the majority (90%) of 
fructose into glucose and lactic acid in the small intestine, with only a 
small amount reaching the liver for further processing (54). Preclinical 
experiments showed that the expression and activity of ChREBP in 
the liver were improved in mice fed a high fructose diet (39, 55). In 
the case of excessive fructose, the fructose absorbed by the intestine 
reaches saturation, and fructose turns into liver metabolism. ChREBP 
in the liver senses the fructose signal, which is activated by the increase 
of DNA binding and acetylation (39), which increases DNL and 
further leads to liver toxicity (56).

In addition, ChREBP plays a direct role in regulating the enzymes 
encoded by genes carrying genetic risk variations associated with 
MASLD, such as TM6SF2 (57). TM6SF2 plays a crucial role in the 
synthesis of very low-density lipoprotein (VLDL) and has been 
identified as a target of ChREBP in the mouse liver. Moreover, the 
interaction between the genetic variation of the ChREBP locus and 
the consumption level of sugar-sweetened beverages (SSB) is related 
to the plasma concentrations of high-density lipoprotein cholesterol 
(HDL-C) and TG. Three single nucleotide polymorphisms (SNPs) 
were found to be positively correlated with the low HDL concentration 
caused by SSB, and it was found that one of the SNPs might aggravate 
the high TG concentration caused by SSB (58). Furthermore, it has 
been observed that in individuals with MASLD, there is an 
upregulation in the protein expression of the epigenetic regulatory 
factor known as plant homeodomain finger 2 (PHF2). This factor 
plays a pivotal role in governing the chromatin assembly of SCD 
through direct interaction with ChREBP (51). Notably, the expression 

of host cell factor 1 (HCF-1) is elevated in patients with MASH. HCF-1 
binds to the promoter region of lipogenic genes in a ChREBP-
dependent manner, thereby creating a necessary condition for the 
recruitment of PHF2 (59). The regulation of DNL by ChREBP is also 
influenced by epigenetic factors, as evidenced by the aforementioned 
research. Thus, the inability to effectively regulate the DNL process 
constitutes a fundamental characteristic of hepatic lipid accumulation 
in MASLD patients. The upsurge in DNL serves as a significant 
mechanism driving the accumulation of TG in individuals 
with MASLD.

Damaged fatty acid β-oxidation

The liver possesses a pre-established ability to buffer lipids, 
allowing it to accumulate surplus FFAs generated by food and 
adipose tissue and providing a level of defense against lipotoxicity 
that affects both the local and systemic environment. Mechanisms 
to counteract lipid toxicity involve enhancing fatty acid β-oxidation 
and/or converting FFAs into lipids that are metabolically benign 
and can be  securely stored in the liver (60). During fasting or 
obesity, the circulating FFAs released from adipose tissue increase 
and reach the liver, which activates PPARα, thus promoting fatty 
acid β-oxidation. In patients with MASLD, the reduction of fatty 
acid β-oxidation in the liver is not enough to combat the lipotoxicity 
caused by toxic lipids (61). For instance, Naguib et al. reported that, 
compared with healthy individuals, MASLD patients had reduced 
oxidation of 13C-labeled palmitate orally (62). Another study also 
found that liver fatty acid β-oxidation in patients with MASLD 
decreased (63). PPARα is the main transcription regulator of liver 
lipid catabolism and is involved in the regulation of lipid oxidation-
related enzymes in the peroxisome, mitochondria, and microsomes 
(64). In contrast to individuals with simple steatosis, PPARα is 
down-regulated in patients with MASH, and the expression of 
PPARα is negatively correlated with the severity of MASLD. A 
hepatocyte-specific PPARα gene knockout mouse model also shows 
hepatic steatosis during fasting (65). At the same time, the use of 
the β3-adrenoceptor agonist CL316243 promotes lipolysis of 
adipocytes, resulting in an excessive FFA load in the plasma, which 
cannot be eliminated without sufficient PPARα-mediated fatty acid 
β-oxidation. Furthermore, PPARβ/δ is highly expressed in the liver, 
and the lack of PPARβ/δ has been proven to aggravate steatosis in 
mice (66). Tong’s et al. (67) research found that PPARδ-mediated 
autophagy activation through the AMPK/mTOR pathway reduced 
the number of lipid droplets, increased the fatty acid β-oxidation 
rate, and finally reduced the fatty degeneration of the liver in obese 
mice. CPT1α, another rate-limiting enzyme in fatty acid 
β-oxidation, is also confirmed to be down-regulated in MASLD 
patients (68). CPT1α is an essential transferase for FAs to enter 
mitochondria, which is also inhibited by malonyl coenzyme A, an 
intermediate product of DNL. CPT1α is regulated by PPARα and 
peroxisome proliferator-activated receptor-gamma co-activator α. 
Recent studies have shown that gene therapy to increase CPT1α 
activity and fatty acid β-oxidation in the liver has been proven to 
be  effective in reducing steatosis in mice (69). These studies 
collectively indicate that MASLD patients have decreased fatty acid 
β-oxidation, and reviving this process could be a viable approach to 
treating MASLD.
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Decreased lipid transport

The output of water-soluble VLDL particles represents a way to 
clear excessive liver TG. Although the secretion of VLDL increases in 
MASLD patients, when the accumulation of liver lipids exceeds 10%, 
the secretion of VLDL tends to be stable (70). Microsomal triglyceride 
transfer protein (MTTP) catalyzes the lipidation of apolipoprotein 
B100 (apoB100) in the ER, leading to the formation of VLDL particles. 
Evidence indicates that individuals with MASH exhibit a decrease in 
the production of apoB100 compared to those who are obese or lean 
without MASH (71). The hepatic gene expression of apoB100, MTTP, 
and serum levels of VLDL-TG are lower in patients with MASH 
compared to those without MASH. This suggests that the reduction 
in VLDL-TG secretion may potentially contribute to the progression 
of MASLD (72). In addition, the VLDL-TG molecules found in obese 
individuals are of considerable size, rendering them incapable of 
penetrating the hepatic vascular sinus and subsequently being 
discharged into the bloodstream, ultimately resulting in the 
accumulation of lipids in the liver (70). Increased oxidative stress is 
another cause of fat accumulation in the liver, as it breaks down 
apoB100 through the proteasome or nonproteasome and decreases the 
MTTP transcription level in hepatocytes. Furthermore, the assembly 
and secretion of VLDL depend on the availability of 
phosphatidylcholine (PC). Phosphatidyl ethanolamine 
N-methyltransferase (PEMT) is an enzyme that plays a crucial role in 
maintaining the availability of PC in the liver. PEMT-mediated 
synthesis of PC ensures an adequate supply of this lipid for VLDL 
formation and secretion. Thus, PEMT plays a critical role in 
maintaining the balance of PC availability in the liver, which in turn 
affects the synthesis of bile acids and VLDL. Dysregulation or 
deficiency of PEMT can lead to disruptions in these processes, 
affecting lipid metabolism and potentially contributing to liver-related 
disorders such as MASLD and dyslipidemia (73). These events 
ultimately lead to a decrease in the secretion of VLDL, an increase in 
lipid accumulation, and the development of hepatic steatosis.

Medications aimed at regulating lipid 
metabolism in MASLD

The accumulation of TG in the liver can be promoted by an excess 
of FFAs in the circulation from either the diet or adipose tissue. FFAs 
are also produced by DNL. Alternatively, TG can serve as a source of 
energy or be discharged from the liver in the form of VLDL. The 
accumulation of TG in the liver, which drives the development and 
progress of MASLD, is a result of the imbalance between the output 
(β-oxidation of FFAs and secretion of VLDL-TG) and the input of 
FFAs (re-esterification of DNL and FFAs from glucose/fructose in the 
liver). To alleviate the disease burden of MASLD, it would be beneficial 
to examine the drugs associated with lipid metabolism and 
molecular mechanisms.

SREBP1

The ER membrane hosts immature SREBP1 along with SCAP and 
INSIG, as we have learned from the mature processing of SREBP1. For 
maturation to occur, SREBP1 must be  transported to the Golgi 

complex along with the capsid protein complex II vesicles. Once there, 
it is cleaved by S1P and S2P proteases. Several inhibitors have been 
created to disrupt the processing, maturation, and activity of 
SREBP1 in light of the aforementioned process, demonstrating that 
SREBP-controlled lipogenesis is crucial to the advancement of 
MASH. For example, 25-hydroxysitosterol (25-HL) binds to the 
INSIG protein, stimulates the interaction between INSIG and SCAP, 
and keeps them in the ER, thus inhibiting the activation of SREBP and 
inhibiting lipogenesis (47). 25-HL also shows the dual effects of 
prevention and treatment, i.e., reducing MASH and atherosclerosis in 
LDL-R−/− mice induced by diet, reducing the formation of cholesterol 
crystals, and inhibiting the activation of Kupffer cells. 25-HL exhibits 
a greater capacity to decrease lipid levels in both the serum and liver 
compared to lovastatin or obertan cilexetil. Furthermore, it 
demonstrates favorable safety profiles and pharmacokinetic 
properties. Fatostatin acts by impeding the exit of SCAP from the ER, 
inhibiting the weight gain and liver fat accumulation of genetically ob/
ob mice (74, 75). Additionally, PF-429242 impedes the functioning of 
S1P, diminishes the expression of the SREBP target gene within the 
liver, and attenuates the synthesis rate of cholesterol and fatty acids 
(76). Furthermore, the boron-containing compound BF175 hinders 
the transcriptional activity of SREBP1 by impeding the recruitment of 
SREBP1 to the regulatory complex, consequently reducing the 
expression of the target gene of SREBP1. And this, in turn, ameliorates 
the lipid homeostasis of diet-induced obese mice (77).

ChREBP

Developing drugs targeting ChREBP in MASLD could be  an 
effective approach to addressing the drug treatment of MASLD, given 
the clinical association between monosaccharide intake (specifically 
fructose intake) and the rising prevalence of MASLD (78), as well as 
the significant regulatory function of ChREBP in lipid metabolism.

A new ketohexokinase inhibitor (PF-06835919) has been 
developed to target the metabolic effects of fructose mediated by 
ChREBP. By lowering ChREBP activity and DNL, PF-06835919 
inhibited ketohexokinase and prevented fructose-induced hepatic 
steatosis and hyperinsulinemia in preclinical studies using primary rat 
hepatocytes and a high fructose diet (79). A 2a clinical study showed 
that PF-06835919 demonstrated favorable safety and tolerance after 
16 weeks of treatment for MASH patients and reduced the fat content 
in the liver (NCT03969719). Another clinical study suggested that 
PF-06835919 was dose-dependent in the treatment of MASLD. The 
high-dose PF-06835919 achieved the main clinical end point (the 
reduction of total liver fat), while the low-dose PF-06835919 (75 mg) 
did not exhibit any significant therapeutic effect (80). The exploration 
of the potential therapeutic range of ketohexokinase inhibitors will 
be extended through continued research on MASH patients (81). 
Notably, there is evidence that the post-translational modification of 
ChREBP is mainly mediated by glycosylation. A recent study showed 
that O-GlcNAc glycosylation increased the stability of ChREBP, 
promoted the expression of regulated lipogenic target genes, and 
aggravated hepatic steatosis in a MASLD mouse model (82). Future 
research on specific drugs should focus on regulating the post-
translational modification of ChREBP to fully explore its therapeutic 
potential in MASLD. In addition, the advantageous impact of 
MondoA (SBI-993), a ChREBP inhibitor analog, on muscle insulin 
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signaling and systemic glucose tolerance has been demonstrated in the 
diet-induced obesity mouse model, and whether it has a therapeutic 
effect in MASLD remains to be further clarified (83).

PPARs

Numerous efforts have been undertaken to create and examine 
drugs for the PPAR family in individuals with MASLD. In a phase 2b 
clinical trial, elafibranor demonstrated positive results as a PPARα/δ 
dual agonist (84). The main end point was not achieved in a phase III 
clinical trial for MASH patients (NCT01694849) using elafibranor, 
resulting in the cessation of further investigation. PPARα/γ can 
be  activated by saroglitaza as a dual agonist. In MASH mice, 
saroglitazar enhanced liver condition by reducing hepatic steatosis, 
inflammation, and ballooning and impeding fibrosis progression. 
Furthermore, it decreased the MASLD disease activity score and liver 
fat content in the MASH model (85). Saroglitazar (4 mg) was shown 
to dramatically lower the blood alanine amiotransferase level, insulin 
resistance, dyslipidemia, liver fat content, indicators of hepatocyte 
damage, and fibrosis in MASLD patients in a phase II trial (86). In 
2020, the Indian Drug Administration approved the listing of 
saroglitazar magnesium by Zydus Cadila Company for the treatment 
of MASH patients. At present, a phase II clinical study is under way to 
determine the therapeutic effect of saroglitazar in the western MASH 
population (87).

Pemafibrate (K-877), a newly discovered selective PPAR regulator, 
has been shown in animal studies to ameliorate dyslipidemia, plasma 
transaminase levels, and the pathological state of MASH (88). 
Pemafibrate decreases the inflammatory response in the liver of 
MASLD patients and induces the expression of critical target genes 
that regulate glucose oxidation and boost fatty acid oxidation (89, 90). 
At the same time, clinical research indicates that pemafibrate has the 
ability to decrease plasma triglyceride, VLDL cholesterol, residual 
cholesterol, and apoC-III levels in a safe and effective manner (91, 92). 
A previous study showed that, based on magnetic resonance 
elastography, pemafibrate significantly reduced liver stiffness but did 
not reduce the fat content of the liver (93). Although pemafibrate has 
shown gratifying results in reducing triglycerides and cardiovascular 
risk events (91), adverse events such as chronic kidney disease, acute 
kidney injury, and venous thromboembolism have been observed in 
patients (91, 93). Additional investigation is necessary to establish if 
pemafibrate can mitigate the advancement of MASH and restore 
histological harm without any apparent negative drug response.

Recent studies suggest that a new generation of broad-spectrum 
PPAR agonist Lanifibranor (IVA337) shows higher efficacy than single 
or double PPAR agonists in improving insulin sensitivity, macrophage 
activation, and reducing liver fibrosis (94, 95). The results of a phase 
2b trial comparing lanifibranor 1,200 mg (n = 83) or placebo (n = 81) 
for 24 weeks in patients with MASH confirmed by biopsy were 
published in 2021 (94). Patients who received lanifibranor (1,200 mg) 
had a 22% higher success rate in reaching the main endpoint 
compared to the placebo group, as evidenced by a decrease of at least 
2 points in their SAF-activity score (steatosis, disease activity, and 
fibrosis). Lanifibranor (1,200 mg) demonstrated a 48% improvement 
in at least one fibrosis stage without worsening MASH, compared to 
29% with placebo. Meanwhile, in the group receiving lanifibranor 
treatment, fewer than 10% of patients experienced typical side effects 

like diarrhea, weight gain, and peripheral edema. An ongoing phase 
III study (NATiV3) on lanifibranor’s treatment of MASH and F2–F3 
fibrosis is expected to show similar therapeutic outcomes.

ATP-citrate esterase

ATP-citrate esterase (ACLY), a crucial enzyme for lipogenesis, 
transforms citrate from the tricarboxylic acid cycle in the cytoplasm 
into acetyl-CoA in the cytoplasm. ACLY plays a crucial role in 
connecting mitochondrial oxidative phosphorylation with 
cytoplasmic DNL. The absence of ACLY in hepatocytes can protect 
against the occurrence of hepatic steatosis and dyslipidemia (96). 
Hydroxycitric acid isomer (HCA), a derivative of citric acid, was the 
initial ACLY inhibitor found in sweet potatoes (97). It is reported that 
the use of HCA interventions can hinder the process of lipogenesis. 
Sweet potato extract, which contains over 50% HCA, is believed to aid 
in weight loss (98). This has made sweet potato extract a popular 
dietary supplement for those looking to lose weight. However, further 
research and investigation are required to determine the therapeutic 
impact of HCA on MASLD. ETC-1002, also known as lipoic acid, 
competitively inhibits ACLY. To become lipoic acid, ACLY must 
undergo modification by ACSVL1, which is a very long-chain 
acyl-CoA synthetase. Lipoic acid exhibits a liver-specific effect due to 
the exclusive expression of ACSVL1 in the liver (96). According to 
preclinical studies, lipoic acid may reduce abnormal metabolism 
caused by a high-fat diet and alleviate MASLD by decreasing liver 
triglyceride and total cholesterol levels, regulating inflammation and 
fibrosis gene expression, and lowering the MASLD activity score (99). 
In the diet-induced fatty liver model of female rats, lipoic acid also 
improves the fatty liver by activating PPARα (100). Recently, a new 
small molecule, 326E, as an inhibitor of ACLY, showed inhibition of 
DNL and increased the transport of VLDL-TG, which is expected to 
become a new choice for MASLD treatment (101).

ACC

As mentioned above, the conversion of acetyl-CoA to 
malonyl-CoA mediated by ACC represents a crucial step in 
DNL. ACC inhibitors can reduce hepatic steatosis, improve insulin 
sensitivity, and regulate dyslipidemia, making them one of the most 
promising therapeutic targets for MASLD (102). PF-05221304, a dual 
inhibitor of ACC1/2 specifically for the liver, has been found to 
decrease DNL and steatosis in rats fed a western diet. Moreover, it has 
been shown to reduce inflammation and fibrosis markers in MASH 
(103). However, it should be noted that PF-05221304 may activate 
SREBP1c and increase VLDL secretion, potentially leading to 
hypertriglyceridemia (104). To address this concern, a potential 
solution is to administer PF-05221304 together with the DGAT2 
inhibitor PF-06865571 (105). A study conducted on this combination 
revealed that, during a 16 weeks follow-up, a single administration of 
PF-05221304 significantly reduced the accumulation of liver fat and 
liver damage. However, it also led to a notable increase in serum 
triglyceride levels, which was observed as early as 2 weeks after 
administration. Nevertheless, during a subsequent 6-week treatment 
period, co-administration of PF-06865571 effectively mitigated the 
hypertriglyceridemia induced by PF-05221304. Furthermore, it 
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greatly reduced the content of liver fat, demonstrating good safety 
and tolerance.

In addition, arachidonate 12-lipoxygenase (ALOX 12) has the 
ability to safeguard ACC1 from lysosomal deterioration and facilitate 
the development of MASH (106). A recent investigation unveiled a 
novel approach to targeting ALOX12-ACC1. The compound IMA-1 
demonstrated promising potential in the treatment of MASLD by 
stimulating protein degradation and modulating the activity of ACC1. 
However, it did not yield a substantial reduction in polyunsaturated 
fatty acids or an elevation in circulating triglyceride levels (107).

FASN

Cerulenin was first discovered as an antifungal drug in 1976, 
when it was found that it could inhibit the activity of FASN (108). To 
specifically inhibit FASN, a synthetic analog called C75 was developed 
due to the fact that it also inhibits the biosynthesis of sterols by 
inhibiting β-hydroxy-β-methylglutaryl-CoA synthetase, as cerulenin 
does (109). The administration of cerulenin and C75 resulted in a 
decline in food intake and weight in mice (110, 111). This effect is 
likely attributed to the elevation of malonyl-CoA levels within the 
hypothalamus, consequently impeding the appetite signal of the 
hypothalamus that is typically induced by fasting (112). Nonetheless, 
the specific mechanism through which cerulenin and its derivative 
C75 reduce food consumption remains uncertain. An inhibitor of 
FASN that can be taken orally is TVB-2640. Phase I clinical trials on 
obese male individuals showed that TVB-2640 inhibited the DNL and 
reduced the plasma level of lipids (113). In a phase 2a clinical trial 
(NCT03938246), TVB-2640 exhibited noteworthy outcomes. Over a 
period of 12 weeks, TVB-2640 demonstrated a substantial reduction 
in liver fat content and displayed dose-dependent improvements in 
biomarker levels related to biochemistry, inflammation, and fibrosis 
in patients with MASH. Additionally, another phase 2 clinical study 
for MASH patients is currently underway (NCT04906421). FT-4101, 
a potent and selective compound with oral availability, has emerged 
as another promising candidate for inhibiting FASN function by 
precisely targeting specific regions. Its potential efficacy in the 
treatment of MASH is currently being investigated. In two parallel 
studies, FT-4101 demonstrated dose-dependent inhibition of DNL, 
and a dosage of 3 mg of FT-4101 exhibited a significant reduction in 
hepatic steatosis over a 12 weeks period, similar to monotherapy (114). 
These clinical trials collectively underscore the considerable 
therapeutic potential of targeting FASN as a treatment approach 
for MASLD.

SCD1

The activity of SCD1 increased in simple steatosis and MASH 
patients (115), while obese mice with SCD1 gene knockout in the liver 
induced by diet showed a decrease in steatosis and insulin resistance 
(116). 3β-aramcocholic acid (aramchol) is an oral fatty acid-bile acid 
conjugate that can partially inhibit the level of the SCD1 protein in the 
liver and reduce fibrosis in animal models of MASLD (117). In a 
12-week phase 2a clinical trial, compared with placebo, 300 mg of 
aramchol per day significantly reduced liver fat content in a dose-
dependent manner (118). Larger doses of aramchol (400 mg and 

600 mg) also showed good therapeutic effects in another 2b clinical 
trial (triglyceride content in the liver as the main end point), and the 
number of serious adverse events was lower than 5% (117). Based on 
the efficacy, safety, and tolerability of aramchol administration, a 
phase 3 clinical trial (NCT04104321) for MASH patients is currently 
under way.

DGAT2

DGAT2 serves as the catalyst for the last step in hepatic 
triglyceride synthesis. By reducing DGAT2 production, it is possible 
to enhance steatosis, serum lipid levels, and triglyceride 
biosynthesis. A randomized controlled trial (NCT04932512) is 
currently investigating the potential of improving MASH through 
the use of magnetic resonance imaging-derived proton density fat 
fraction after a 49 weeks period without exacerbating fibrosis and 
hepatic steatosis. As previously mentioned, the combination of the 
DGAT2 inhibitor PF-06865571 and the ACC1/2 inhibitor 
PF-05221304 can obviously reduce hypertriglyceridemia caused by 
PF-05221304 alone.

ATGL

A potential therapeutic strategy for MASLD involves reducing the 
mobilization of FAs and their corresponding plasma concentrations 
by inhibiting the lipolysis of adipose tissue. The specific inhibition of 
ATGL using the chemical inhibitor atglistatin has shown promising 
results in mice, effectively reducing lipolysis, lipid deposition, weight 
gain, and insulin resistance induced by a high-fat diet (119). It is 
important to note that this inhibition does not lead to lipid 
accumulation in ectopic tissues such as skeletal muscle or the heart, 
even with prolonged treatment. Thus, mice treated with atglistatin do 
not experience the severe heart steatosis and cardiomyopathy 
observed in the genetic mouse model lacking ATGL. These findings 
indicated that pharmacologically inhibiting ATGL could be a viable 
therapeutic approach for MASLD.

In addition, considering that various signals contributing to 
MASLD originate from outside the liver, including the intestine, 
adipose tissue, and endocrine system, interorgan communication 
plays a significant role in the occurrence and development of the 
condition (120). Therefore, the treatment of extrahepatic mediators 
is also under evaluation (Figure  4). For example, resmetirom, a 
thyroxine receptor beta agonist, has emerged as a pioneering 
medication in achieving significant hepatic histologic endpoints in 
a clinical trial (NCT03900429). The analysis showed that resmetirom 
met two primary endpoints and exhibited potentially clinically 
significant effects compared to placebo at both daily oral doses of 
80 mg and 100 mg. These effects encompassed MASH symptom 
remission, a ≥2-point reduction in non-alcoholic fatty liver activity 
score (NAS) without worsening liver fibrosis, at least one stage of 
improvement in liver fibrosis without worsening NAS, and a 
reduction in the key secondary endpoint of LDL-C that significantly 
exceeded that of the placebo group. Furthermore, noteworthy 
attention should be  given to single nucleotide polymorphisms 
(SNPs), such as PNPLA3 and TM6SF2, which are intricately linked 
to the onset and progression of MASLD. Understanding the impact 
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of these SNPs can provide valuable insights into the underlying 
mechanisms and potential therapeutic targets for the disease.

Conclusion and perspectives

Over the last few decades, significant advancements have been 
made in comprehending the pathogenesis of MASLD. Excessive 
energy substrates, especially carbohydrates, cause DNL in the liver, 
while fat in the diet and adipose tissue with metabolic disorders 
provide excessive FFAs. Although the initial storage of liver 
triglycerides may play a buffering role, the production of toxic lipid 
metabolites is the main feature of progressive MASLD, which involves 
the production of cell pressure, mitochondrial dysfunction, the 
increase of reactive oxygen species, and the development of 
endoplasmic reticulum pressure (Figure  2). Reducing liver lipid 
deposition by targeting different pathways, especially key molecules, 
is of great clinical value to help identify key metabolic weaknesses that 
can be  targeted to attenuate hepatic damage, inflammation, and 
fibrosis. This review systematically introduces the causes of liver lipid 
metabolism imbalance and the drug development and research 
progress of key molecules, aiming at a deeper understanding of the 
role of lipid metabolism in MASLD and providing ideas for clinical 
drug development from the molecular mechanism.

As we delve deeper into our research, it is crucial to consider the 
impact of ethnic and individual variances. By integrating genetic and 

metabolic factors, a more comprehensive understanding of the 
pathogenesis of MASLD can be  achieved, and individualized 
therapeutic strategies can be developed. This may include explorations 
in genomic studies, metabolomic analysis, and drug development to 
accelerate therapeutic advances in MASLD. The application of this 
holistic approach is expected to provide more effective treatment 
options for patients with MASLD and improve the feasibility and 
success of treatment.

Additionally, due to the intricate nature of the pathophysiology 
involved in MASLD, it is possible that a solitary medication may not 
suffice to reverse the disease, necessitating the use of a combination 
therapy. The combination therapy of two or more drugs may improve 
the curative effect through complementation or synergy and improve 
tolerance by using a lower dose of candidate drugs. However, it is still 
a challenge to determine the ideal combination of drugs. The ideal 
combination therapy will aim at multiple steps of the pathogenesis, 
from energy balance to fibrosis. In addition to liver-oriented therapy, 
it should also include drugs with significant metabolic effects (such as 
drugs for treating type 2 diabetes). In a randomized phase II trial 
(NCT03987074), the use of a combination therapy consisting of 
semaglutide, farnesoid X receptor agonist cilofexor, and/or ACC 
inhibitor firsocostat was found to be more effective in improving liver 
steatosis, biochemistry biomarkers, and fibrosis compared to using a 
single drug therapy. Another example is the pairing of cilofexor and 
firsocostat, which improves various measures of MASH activity such 
as ballooning, inflammation, and steatosis and potentially exhibits 

FIGURE 4

Main candidate drugs for the treatment of MASLD. Numerous prospective treatments for MASLD and its advanced variants have received extensive 
research over the past years, throwing some light but also raising some questions. They include some medications for lowering blood sugar (such as 
GLP-1 receptor agonists and SGLT-2 inhibitors), antioxidants (like vitamin E), statins or other lipid-lowering medications, bile and non-bile acid FXR 
agonists, and others. FGF, fibroblast growth factors; SGLT, sodium-glucose cotransporter; THR, thyroid hormone receptor; GLP-1R, glucagon-like 
peptide-1 receptor; GIP, gastric inhibitory peptide; GCG, glucagon; FXR, farnesoid X receptor.
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anti-fibrosis properties (NCT03449446). Hence, by identifying and 
refining the most effective combinations, researchers can improve 
treatment outcomes and address the various aspects of the disease. 
Overall, it is anticipated that in the coming years, obstacles to the 
prevention, diagnosis, and treatment of MASLD will be surmounted.
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