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A response to

Commentary: Modeling mortality risk in patients with severe COVID-19

from Mexico

by Sanjari, E., Toosizadeh, S., and Raeisi Shahraki, H. (2023). Front. Med. 10:1247741.

doi: 10.3389/fmed.2023.1247741

We appreciate the commentary from Sanjari et al. (1) about our recent work (2). We

want to respond:

A. Large odds ratios are not necessarily the best predictors

They mention that sizable odds ratios don’t always pinpoint the top predictor,

suggesting that we should be reporting the area under the receiver operating

characteristic curve (AUC). We concur that a variable with the highest odds ratio

in regression can indicate a strong association but might not be the most important

predictor. To gauge how the model fits to the outcome (1 = death, 0 = alive at

discharge), we can separately assess the Bayesian Information Criterion (BIC) for

each predictor. These predictors can be arranged in order of significance based on

the BIC: the lowest BIC is the most important, while the highest BIC points to the

least important in the model.

In our study, the predictor boasting the largest odds ratio, which was the

requirement for mechanical ventilation (1 meaning yes, 0 meaning no), was also

the one with the smallest BIC (BIC = 153.7; log-likelihood = −71.4) when stacked

against the other four predictors in our model. Following that, the second most

vital predictor when analyzed individually was the pulse oximetry saturation upon

admission (BIC = 258.8; log-likelihood = −123.9), succeeded by the logarithm of

the derived neutrophil-to-lymphocyte ratio (dNLR; BIC = 296.9; log-likelihood =

−142.9), age (BIC = 307.9; log-likelihood = −148.4), and lastly, the logarithm

of platelet counts upon admission (BIC = 340.9 and log-likelihood = −164.9).

Additionally, a “random forests” visualization (3) demonstrated that the need for

mechanical ventilation emerged as the paramount predictor among the five. This

conclusion was drawn from the marked decrease in accuracy in our model presented

in Table 3 of our publication when this predictor was switched out randomly. The

significance rank of the subsequent four variables aligned with their BIC rankings.
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In the discussion segment of our paper (2), we

highlight that the AUC of a receiver operating characteristic

should no longer be used as an indicator for screening

performance (4). The AUC’s value isn’t intuitive for many;

for instance, an AUC of 0.70 doesn’t immediately provide

insights into the detection rate (also known as sensitivity)

for a given rate of false positives (which is the inverse of

specificity), or the other way around. Furthermore, when

standard deviations of screening markers vary between

affected and unaffected subjects, the AUC can become

ambiguous or even give a false impression. Matthew’s

correlation coefficient offers a more accurate approach for

classification (5–7).

B. LASSO is not appropriate for explanation modeling

In our paper’s methods section (2), we employed LASSO

for pinpointing the key predictors linked to mortality.

LASSO not only selects essential variables but also reduces

other coefficients to zero, effectively guarding against

model overfitting. This approach melds both variable

selection and regularization into a robust regression

methodology. After applying LASSO logistic regression,

we transitioned to standard logistic regression for the

identified predictors. This step was taken to offer readers

clear coefficient estimates, enabling them to assess the

predictors without the influence of the L1 penalty. Indeed,

as seen in Table 3 of our study (2), all five predictors

had a Variance Inflation Factor under 2.0, indicative of

minimal multicollinearity.

C. The presence of sparse data bias

Our study encompassed 247 participants (2). Out of

these, 138 (or 56%) had to undergo mechanical ventilation.

Furthermore, 101 out of the 247 individuals, accounting

for 40%, unfortunately passed away. Notably, there wasn’t

any instance of variables with scant observations, ensuring

data robustness.

Sanjari et al. (1) state that due to the exponentiation

of some of our coefficients, there were enormous odds

ratios, specifically for baseline platelet counts and dNLR.

Due to the evident skewness in these values (1.6 and 4.5

respectively), we employed logarithmic transformations

on these predictors to mitigate the impact of potential

outliers. As a result, this adjustment offered a more

harmonized model fit, as indicated by the Bayesian

Information Criterion (BIC). When comparing our chosen

model showcased in Table 3 of our publication (2) to

its counterpart without the logarithmic adjustments on

platelets and dNLR, the evidence ratio stands at 1.44. This

suggests that the data backs our presented model in Table 3

approximately 1.44 times more than the alternative model.

It’s an indication that our model choice is on the right track.

Yet, in the spirit of complete disclosure, when we

exhibit the model analogous to what’s in Table 3 of our

paper (2) but without logarithmic adjustments for the

baseline platelet counts or dNLR, the odds ratios for age

(1.07, 95% CI = 1.03–1.12), pulse oximetry saturation

during admission (0.96, 95% CI = 0.92–0.997), and the

need for mechanical ventilation (164, 95% CI = 39–700)

hold steady. Breaking it down: each yearly increase in

age increases the odds of death by 3% to 12%; each 1%

elevation in pulse oximetry saturation at the point of

admission curtails the odds of death by 0.3%−8%; and the

necessity for mechanical ventilation amplifies the odds of

death from 39 to as much as 700 times. When it comes

to baseline platelet counts (expressed as ×109 cells/L),

the odds ratio was 0.99 (95% CI = 0.985–0.997), and for

the baseline dNLR, it was 1.21 (95% CI = 1.04–1.39).

Hence, with every increment of 1 × 109 cell per liter in

platelets, mortality odds are reduced by 0.3%−1.5%. On the

flip side, every unit hike in dNLR pushes the death odds

up by 4%−39%.

Firth’s bias-reduced regression (8) is a nice thought, but

implementing this statistical technique resulted in coefficients like

our model presented in Table 3. We used the R “logistic” package

(version 1.26.0), and there was no practical difference between the

model result from Firth’s biased reduced regression and our model

in Table 3.

We appreciate the commentary by Sanjari et al. (1) concerning

our paper highlighting our contribution to the field.
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