
Frontiers in Medicine 01 frontiersin.org

Inflammasome pathway in kidney 
transplantation
Simona Granata 1†, Daniele La Russa 2†, Giovanni Stallone 1, 
Anna Perri 3 and Gianluigi Zaza 1*
1 Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University 
of Foggia, Foggia, Italy, 2 Department of Biology, Ecology and Earth Sciences, University of Calabria, 
Rende, Italy, 3 Department of Experimental and Clinical Medicine, University of Catanzaro "Magna 
Græcia", Catanzaro, Italy

Kidney transplantation is the best available renal replacement therapy for patients 
with end-stage kidney disease and is associated with better quality of life and 
patient survival compared with dialysis. However, despite the significant technical 
and pharmaceutical advances in this field, kidney transplant recipients are still 
characterized by reduced long-term graft survival. In fact, almost half of the patients 
lose their allograft after 15–20  years. Most of the conditions leading to graft loss 
are triggered by the activation of a large immune-inflammatory machinery. In this 
context, several inflammatory markers have been identified, and the deregulation 
of the inflammasome (NLRP3, NLRP1, NLRC4, AIM2), a multiprotein complex 
activated by either whole pathogens (including fungi, bacteria, and viruses) or 
host-derived molecules, seems to play a pivotal pathogenetic role. However, the 
biological mechanisms leading to inflammasome activation in patients developing 
post-transplant complications (including, ischemia-reperfusion injury, rejections, 
infections) are still largely unrecognized, and only a few research reports, reviewed 
in this manuscript, have addressed the association between abnormal activation 
of this pathway and the onset/development of major clinical effects. Finally, the 
regulation of the inflammasome machinery could represent in future a valuable 
therapeutic target in kidney transplantation.
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1. Introduction

Kidney transplantation is the best treatment for patients with end-stage kidney disease 
(ESKD), a clinical condition characterized by severe alterations in body homeostasis that require 
the initiation of renal replacement therapy to ensure patient survival. It is associated with a better 
quality of life and survival compared with dialysis treatment (1).

In addition, during the last two decades, the significant advancement of surgical and organ 
preservation techniques and the optimization of immunosuppressive drug management has led 
to an important improvement in short-term graft survival (more than 90% after 1 year) (2). 
However, despite this clinical success, the long-term allograft outcome remains unsatisfactory. 
The 10-year graft survival rate is 65.5% among living donor transplant recipients and 49.5% 
among kidney transplant recipients from deceased donors (3).

Several demographic and clinical factors have been considered responsible for this condition 
(e.g., donor/recipient age, marginality of the kidney, delayed graft function (DGF), acute 
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rejection, infections, and glomerulonephritis recurrence), but the 
entire biological machinery involved in graft loss is still only 
partially defined.

Numerous biological elements have been associated with 
pathogenetic alterations leading to post-transplant complications, 
but inflammation seems to play a pivotal role in almost all clinical 
allograft alterations. In addition, several reports have recently 
suggested that the inflammasome, a multiprotein complex 
activated by either whole pathogens (including fungi, bacteria, 
and viruses) or host-derived molecules as in chronic kidney 
disease (4–6), could be  involved in these post-transplant 
complications (7).

In this review, which focuses only on kidney transplantation, 
we provide a brief overview of the potential role of inflammasomes 
in the pathogenesis of major acute and chronic allograft complications 
(including ischemia/reperfusion injury, graft rejections, post-
transplant infections and recurrent glomerulonephritis) (Figure 1).

2. Structure and molecular 
components of the inflammasome

The inflammasome is a multiprotein complex comprising three 
classes of molecules: receptor/sensor, adaptor, and effector. 
Inflammasome sensors (or pattern recognition receptors, PRR) belong 
to two classes: nucleotide oligomerization domain (NOD)-like 
receptors (NLRs), and absent in melanoma-2 (AIM2)-like receptors 
(ALRs) (8). The adaptor molecule used in most inflammasomes is 
apoptosis-associated speck-like protein (ASC) that enables the 
recruitment of pro-caspase 1, an effector molecule that mediates 

maturation of pro-interleukin (IL)-1β and pro-IL-18 to fully active 
interleukins that are crucial for host defense responses to infection 
and injury (9). In addition, inflammasomes trigger the pyroptosis (10) 
a programmed pro-inflammatory cell death mediated by gasdermin 
D (GSDMD), which forms pores in the plasma membrane, inducing 
the release of IL-1β and IL-18, water influx, cell swelling, and 
consequent osmotic lysis (11–14).

The assembly of inflammasomes begins with the activation of 
PRRs (15, 16). These molecules are capable of recognizing various 
pathogen-associated molecular patterns (PAMPs) (such as 
lipopolysaccharide (LPS) and flagellin) and danger-associated 
molecular patterns (DAMPs) such as uric acid, ATP, DNA, and High 
Mobility Group 1 (HMGB1) which arise during microbial infections 
and sterile injury, respectively (15).

The human genome encodes for 23 NLRs; however, only a few 
NLR proteins, such as NLRP1, NLRP3, NLRP6, NLRP7, NLRP9, 
NLRP12, and NLRC4, have been found to form inflammasomes and 
activate caspase-1 (8). These NLRs share some similar structures: 
C-terminal leucine-rich repeat (LRR) domains, which are responsible 
for ligand sensing, and central nucleotide binding domains 
(NACHT), which elicit ATP-induced oligomerization. The 
N-terminal region contains the pyrin domain (PYD) in NLRP and 
one or more caspase recruitment (CARD) domains in NLRC proteins 
(17, 18).

The AIM2 protein consists of two domains: (1) a C-terminal HIN 
domain, which allows for the detection of double-stranded DNA in 
the cytoplasm, and (2) a PYD domain for the recruitment of ASCs and 
formation of the inflammasome complex (19, 20).

NLRP1, NLRP3, NLRP6, NLRP7, NLRP9, NLRP12, and NLRC4 
belong to the group of “canonical inflammasomes” that induce the 

FIGURE 1

List of the main activators and inflammasomes involved in post-transplant complications. NLRC4, NLRP3, and AIM2 are activated in IRI/DGF, and their 
persistent over-expression was associated with tubular maladaptive repair, large inflammatory cell infiltration, and organ fibrosis. Up-regulation of AIM2 
inflammasome has been found in acute rejection, particularly TCMR. NLRP3, AIM2, and NLRP1 are involved in viral and bacterial infection. The 
pharmacological inhibitors Remdesivir, MCC950, dexmedetomidine, and H2S suppress NLRP3 inflammasome activation, whereas Roxadustat 
downregulates AIM2 inflammasome activation.

https://doi.org/10.3389/fmed.2023.1303110
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Granata et al. 10.3389/fmed.2023.1303110

Frontiers in Medicine 03 frontiersin.org

activation of IL-1β and IL-18 through caspase-1, whereas caspase-11 
(in mouse) and caspase-4 and -5 (in humans) are defined 
“non-canonical” (21). These non-canonical inflammasomes consist 
of three main domains: an N-terminal CARD, a p20, and a 
C-terminal p10 (22). Although activated by different types of PAMPs 
and DAMPs, they have similar downstream effector functions, 
including the activation of GSDMD-mediated pyroptosis and the 
activation of caspase-1, leading to subsequent proteolytic maturation 
of IL-1β and IL-18 and their secretion through GSDMD-mediated 
pores (23–26).

Among the canonical inflammasomes, NLRP3 is the most studied, 
being largely involved in both innate and adaptive immunity after 
activation by either whole pathogens, including fungi, bacteria, and 
viruses, or by host-derived molecules, such as fibrillar amyloid-β (Aβ) 
peptide, as well as extracellular ATP and glucose (27–31).

The NLRP3 inflammasome may be activated by both canonical 
and noncanonical pathways.

3. The canonical activation of NLRP3 
inflammasome

This pathway consists of two steps: priming and activation. 
Priming signals include microbial components or endogenous 
cytokines that bind to the Toll-like receptor (TLR), FAS-associated 
death domain protein (FADD) or IL-1R ligands (32–34) and, through 
the activation of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) (35), may induce the expression of genes that 
encode pro-IL-1β, pro-IL-18, and NLRP3 (36, 37).

After this phase, in the activation step, a second signal, such as 
ATP, ion fluxes (K+, Ca++, Cl−) (28), β-amyloids, particles (such as 
uric acid, silica, aluminum), reactive oxygen species (ROS), and 
dysfunctional organelles, is required to form and assembly the 
inflammasome (10, 38–40).

Inflammasome activation may be regulated by post-translational 
modifications. For example, ATP and TLR-4 may activate the 
deubiquitination of NLRP3  in macrophages (41) by the enzyme 
BRCA1/BRCA2-containing complex subunit 3 (BRCC3) (42) and 
c-Jun N-terminal kinase (JNK1)-mediated NLRP3 S194 
phosphorylation may induce NLRP3 deubiquitination with a 
subsequent inflammasome assembly (43).

Direct and indirect mechanisms of epigenetic regulation may 
activate the inflammasome. Wang et al. reported that overexpression 
of miR-377, through activation of the p38 MAPK/TXNIP/NLRP3 
inflammasome pathway, was able to promote oxidative stress in 
diabetic nephropathy and prevent a severe glomerular podocyte 
inflammation (44). Other authors, reported that miR-711 suppressed 
NLRP3 expression by inhibiting FADD and NFkB (45), whereas 
miR-22, miR-30e and miR-223 by targeting directly the 3’UTR of 
NLRP3 gene (46–48).

Wu et al., showed that the NLRP3 inflammasome enhanced 
the chronic deleterious effect of hypoxia on proximal tubular cells 
and that miR-155, a positive-regulator of NLRP3 signals by 
inhibiting the targeted FOXO3a gene, could facilitate this 
biological effect (49).

These findings confirm previous results which showed that in 
tubular renal cells, the overexpression of miR-155 promotes 

upregulation of caspase-1, IL-1β, and IL-18, whereas knockdown of 
miR-155 attenuated the inflammatory cell death, suggested a potential 
use of the anti-miR-155 as preventive strategy against pyroptosis (50).

However, all these findings should be  further studied and 
validated before being translated in the clinic.

4. Non-canonical activation of the 
NLRP3 inflammasome

The non-canonical activation of the NLRP3 inflammasome is 
caspase-1 independent and is mediated by caspase-4 and caspase-5 in 
humans and caspase-11 in mice (24).

These non-canonical caspases interact directly with LPS (51) and 
can activate both the NLRP3 inflammasome for cytokine production 
and GSDMD to mediate pyroptosis (11, 52–55).

Caspase-4, like caspase-1, may cleave GSDMD and pro-IL-18, but 
it seems not able to cleave IL-1β. Instead, caspase-5 cleaves GSDMD, 
but it has a very weak pro-cytokine activity (56), and caspase-11 has 
a proteolytic activity limited to GSDMD only (57).

In addition, caspase-8 may activate both canonical and 
non-canonical NLRP3 inflammasome pathways (33), but this effect 
needs to be better elucidated.

5. Inflammasomes in ischemia/
reperfusion injury during kidney 
transplantation

Ischemia–reperfusion injury (IRI) is an almost inevitable process 
occurring after kidney transplantation, which includes a wide range 
of biological insults caused by the initial transient surgical warm 
ischemia followed by the cold ischemic period due to hypothermal 
maintenance/preservation of the organ (58).

In many recipients (approximately 15–25%), this process may lead 
to delayed graft function (DGF), a condition of no post-transplant 
recovery of renal function that requires the maintenance of dialysis 
treatment to ensure patient survival. Moreover, IRI activates a complex 
and multi-factorial biological network that may trigger acute allograft 
rejection and the early onset of interstitial fibrosis and tubular atrophy 
(IFTA). All these events may accelerate graft loss (58, 59).

In this process, activation of the inflammatory and innate immune 
system, including the inflammasome pathway, has a primary role (60). 
NLRP1, caspase-1, and NLRP3 expression appeared significantly 
up-regulated in renal tubular epithelial cells after IRI (61–63) and their 
persistent over-expression was associated with tubular maladaptive 
repair, large inflammatory cell infiltration, and organ fibrosis (64). 
Moreover, NLRP3−/− mice but not Asc−/− or caspase-1−/− mice were 
protected from IRI, suggesting a direct effect of NLRP3 on tubular 
epithelial cells leading to IRI, but independent of inflammasome 
formation (65). However, during IRI, other pathways may be involved 
in this large biological networking (63). Recently, Lavallard et  al. 
clearly demonstrated a direct activation of the NLRP3 inflammasome 
by ROS in rat islets undergoing IRI and that this effect was not 
prevented by N-acetyl-L-cysteine or caspase-1 inhibitors (66).

RNA-sequencing analysis in human kidney tissues obtained 
before ischemia (considered as a normal condition), 15 min after 
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hypoxia (ischemia), and 10 min of reperfusion revealed significant 
up-regulation of the inflammasome (NLRC4) and immune response-
related pathways after reperfusion (67, 68) with high urinary IL-18 
content (69, 70).

IRI may be aggravated by a long cold storage time and may have 
a further negative impact on “fragile” organs from Extended Criteria 
Donors (ECD), which include donors over the age of 60 years or 
donors over the age of 50 years with 2 of the following 3 items: (1) 
history of high blood pressure, (2) serum creatinine ≥1.5 mg/dL, and 
(3) death due to stroke, with increased risk for allograft outcome (71, 
72). These marginal organs, under specific stimulations, are often 
prone to release higher levels of pro-inflammatory cytokines and 
DAMPS compared to those from the Standard Criteria Donor 
(SDC). This may accelerate inflammatory-related allograft 
alterations (73).

In rat model of kidney transplantation, prolonged cold storage 
(18 h) induced a higher decline in renal function and a significant 
increment of IL-1β and NLRP3 protein levels compared with 2 h cold 
storage (this effect was similar in both deceased cardiac death (DCD) 
and living donor models) (74).

Moreover, the expression of several genes involved in the TLR-4 
and inflammasome pathways was significantly upregulated in 
pre-implantation biopsies of ECDs compared with SDC, suggesting 
their potential role as therapeutic targets for new pharmacological 
treatments finalized to slow-down the progression of chronic allograft 
damage in marginal organs (75).

A promising therapeutic strategy to minimize IRI in kidney 
transplantation involves multipotent adult progenitor cells (MAPC). 
The addition of these cells to the normothermic machine perfusion 
solution significantly improved urine output, decreased the 
expression of NGAL (a main injury biomarker) and IL-1β, and 
upregulated anti-inflammatory and pro-tolerogenic cytokines 
(including IL-10 and Indolamine-2,3-dioxygenase) compared with 
untreated organs (76).

Activation of the NLRP3 inflammasome in IRI is also mediated 
by the non-canonical pathway. IRI may induce a marked increase in 
the expression of caspase-11 in renal tissue with subsequent pannexin 
1 (panx1) activation by catalytic cleavage. This may facilitate ATP 
release and, through stimulation/activation of the NLRP3 
inflammasome, promote kidney injury (77, 78).

Therefore, pharmacological inhibition of the NLRP3 
inflammasome may represent a valuable therapeutic target to 
antagonize IRI-induced allograft damage.

Early post-transplant administration of MCC950 (50 mg/kg, i.p), 
a specific NLRP3 inhibitor that blocks inflammasome oligomerization, 
reduced the activation of caspase-1 and the release of IL-1β in allograft 
of mice that underwent IRI and ameliorated the post-transplant 
functional recovery of these organs (79).

Remdesivir, a widely employed antiviral nucleotide prodrug 
against COVID-19 (80), appears to antagonize acute kidney 
injury (AKI) by inhibiting NLRP3 inflammasome activation via 
the repression of NFkB and MAPK pathways in LPS-activated 
macrophages (81).

Roxadustat, a hypoxia-inducible factor (HIF) prolyl-
hydroxylase inhibitor, when administered to mice before IRI (at a 
dose of 10 mg/kg for 5 days) alleviated renal damage by down-
regulating AIM2 inflammasome with a consequent enhancement 

of HIF stabilization and activation of CD73/adenosine 
signaling (82).

A protective effect was also demonstrated for hydrogen sulfide 
(H2S), produced by the kidney under physiological conditions to 
promote kidney excretion, regulate renin release, and increase ATP 
production. H2S appears to have a protective role in kidney diseases 
by regulating oxidative stress, inflammation, and the renin–
angiotensin–aldosterone system (83). In an animal model of IRI, the 
administration of H2S prior to surgery exerted this positive effect, at 
least partially, by Nrf2-mediated NLRP3 inflammasome 
inhibition (62).

Another drug with an inhibitory effect on the NLRP3 
inflammasome is dexmedetomidine (DEX), a selective 
a2-adrenoreceptor agonist that regulates hemodynamics by reducing 
sympathetic tone, decreasing inflammatory response, inhibiting renin 
release, increasing glomerular filtration rate, and increasing secretion 
of sodium and water by the kidneys (84). Several animal studies have 
reported antioxidant, anti-apoptosis, and anti-inflammatory effects of 
DEX (85, 86).

Administration of DEX (30 μg/kg) 30 min before intraperitoneal 
injection of LPS in a mouse model of AKI attenuated renal injury by 
enhancing autophagy via the alpha2-adrenoreceptor/AMPK/mTOR 
pathway, which inhibits the NLRP3 inflammasome (87). This 
protective effect could explain the reduced incidence of DGF found in 
patients who received perioperative DEX during kidney 
transplantation (88).

GSK1070806, a humanized IgG1 antibody that binds and 
neutralizes the function of mature IL-18, has also been tested for the 
prevention of DGF in patients with DCD transplantation. However, 
administration of a single dose of this agent (3 mg/kg) just before 
kidney allograft reperfusion did not prevent this complication (89).

6. Inflammasomes in acute graft 
rejection

Acute rejection is a major complication of the allograft that could 
also occur very early post-transplantation and have a significant 
negative impact on graft survival. This condition, which could 
be  triggered by humoral or T cellular immune dysfunctional 
regulation, has a complex and multi-factorial pathogenesis and a large 
involvement of the immune system.

Based on a few literature reports, inflammasomes may be involved 
in the onset and development of T-cell-mediated rejection (TCMR) 
and antibody-mediated rejection (ABMR).

Tejada et al., using a transcriptomics-based approach, revealed 
a significant enhancement of the AIM2 inflammasome in both 
T-cell- and antibody-mediated rejected allografts, even if the 
association was stronger for the former (90). These data were in 
line with those published by Venner et  al. (91), which 
demonstrated only a small association between the AIM2 
transcript and ABMR in a large biopsy transcriptomic analysis 
(703 biopsies) (92).

Asgari et  al. showed that inflammasome activation could 
be induced by complement pathway mediators over-expressed during 
the rejection episode. In particular, C3a generated during 
inflammation engaged C3aR, increasing extracellular ATP, which, in 
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turn, through P2X7 receptor signaling, activated inflammasome and 
IL-1β production by monocytes (93).

Moreover, donor-derived cell-free DNA (dd-cfDNA), 
deoxyribonucleic acid fragments that are released into the blood 
primarily during allograft rejection (94), could activate the 
inflammasome pathway (95). The binding of cfDNA to DNA  
sensor cyclic guanosine monophosphate (GMP)-adenosine 
monophosphate (AMP) synthase (cGAS) induces the synthesis of 
2′3′ cyclic GMP–AMP (cGAMP), which activates stimulator of 
interferon genes protein (STING) and, in turn, the transcription of 
inflammatory genes via phosphorylation and activation of IRF3 
(96). The cyclic dinucleotides produced by cGAS can also activate 
the NLRP3 inflammasome (97), and dd-cfDNA may directly 
activate the AIM2 inflammasome by binding to the HIN domain. 
However, additional studies are required to assess this important 
biological association.

Dessing et al., then, analyzing several NLRP3 SNPs in >1,200 
matched donors and recipients, revealed that the NLRP3 gain-of-
function SNP rs35829419  in donors was associated with an 
increased risk of acute rejection, whereas the NLRP3 loss-of-
function SNP rs6672995 in recipients was associated with a reduced 
risk of rejection, particularly within the first year after 
transplantation (98). Unfortunately, the authors did not measure 
the specific production of inflammasome-related cytokines and did 
not clearly discriminate between cellular and humoral 
allograft rejection.

Finally, the administration of MCC950 and DEX, as in IRI, also 
demonstrated a significant protective effect against acute allograft 
rejection (79, 88), but with no real impact on short- and long-term 
allograft function (88). Nevertheless, the absence of large prospective 
studies and clinical trials on kidney transplantation makes it difficult 
to draw definitive conclusions.

7. Inflammasomes in viral and bacterial 
infections

Infections are frequent comorbidities in kidney transplant 
recipients that can directly or indirectly impact graft and patient 
survival. Although characterized by specific pathogenetic and 
biological mechanisms, these clinical complications may activate 
inflammation and, in some cases, the inflammasome pathway.

7.1. Viral infections

Epstein–Barr virus (EBV): it belongs to the human gamma 
herpesvirus family, with a seroprevalence of more than 90% in adults, 
and mainly infects B lymphocytes, epithelial cells, T lymphocytes, and 
NK cells (99).

In kidney transplant recipients, acute and reactivation of 
latent EBV infection may induce severe clinical complications, 
including the onset of a post-transplantation lymphoproliferative 
disorder (PTLD) (100–102), which may dramatically impact graft 
and patient survival.

Interestingly, the inflammasome pathway may play a role in 
maintaining the virus in a latent form. In fact, in EBV 

latent-containing B cells, Interferon Gamma Inducible Protein 16 
(IFI16) recognizes the viral genome and, after recruitment of 
ASC and procaspase-1, forms an inflammasome complex, which 
moves into the cytoplasm, activates caspase-1, and cleaves 
pro-IL-1β, pro-IL-18, and pro-IL-33 into their mature forms 
(103). IFI16 and cytokines are subsequently sorted and released 
outside the cells via exosomes, representing a potential strategy 
to facilitate EBV persistence (103).

Another mechanism that continues viral latency in B lymphocytes 
is mediated by a physical interaction between IFI16 and the core 
constitutive heterochromatin machinery (KAP1 and SZF1), which 
silences the key EBV lytic switch protein (104).

Nevertheless, some authors have recently suggested that 
inflammasome pathways may also be involved in the EBV primary 
infection-related biological network. Lytic triggers, such as Histone 
deacetylase inhibitor (HDACi), DNA methyltransferase (DNMT) 
inhibitors, and Ig cross-linking, may induce caspase-1 activation 
through the thioredoxin-interacting protein (TXNIP)-NLRP3 
inflammasome pathway, leading to partial loss of KAP1/TRIM28, a 
barrier to EBV lytic cycle entry (105, 106). However, all these 
observations should be  confirmed in larger research and 
clinical studies.

The Human Herpesvirus-8 (HHV-8), also called Kaposi 
sarcoma Herpesvirus (KSHV), belongs to the family of DNA 
viruses Herpeseviridae and may be  responsible for the onset/
development of post-transplant cancer with single or multiple 
lesions on mucosal surfaces, including the skin, lungs, 
gastrointestinal tract, and lymphoid tissue (107). It can infect 
several different cell types, including endothelial cells, B cells, 
epithelial cells, dendritic cells, monocytes, and fibroblasts 
(108, 109).

The virus binds to several host cell surface receptors, such as 
integrins (including α3β1, αVβ5, and αVβ3), the cystine–glutamate 
transporter xCT, heparan sulfate, and the tyrosine protein kinase 
receptor EPHA2, and induces a signal transduction cascade, which 
results in cellular changes that allow the virus to enter the cell and 
traffic within the cytoplasm (110, 111).

Viral entry results in the delivery of the virion capsid into the 
cytoplasm, followed by its uncoating and the delivery of the HHV-8 
genome into the nucleus, where it remains as an episome after 
circularization. Subsequently, the virus becomes latent or undergoes 
sporadic bouts of lytic reactivation during its lifecycle (108, 109).

Cellular entry or reactivation of virus activates an immune 
response via TLRs (TLR-3, TLR-4, and TLR-9) (112–114), retinoic 
acid-inducible gene I protein (RIG-I)-like receptors (RLRs), NLRs 
(NLRP1 and NLRP3) (115), ALRs and cyclic GMP-AMP synthase 
(cGAS)–STING (116).

The activation of these biological elements leads to the induction 
of type I interferon and NLR-dependent inflammasome pathways. 
However, Orf63, an HHV-8 tegument protein, with high sequence 
similarity to NLRP1, inhibits NLRP1 and NLRP3 inflammasomes by 
disrupting the association of NLRP1 and NLRP3 with ASC or 
procaspase-1 (115). Because Orf63 is a component of the tegument, it 
is released into the cytoplasm at the onset of primary infection, 
inhibiting host immunity.

Likewise, SOX protein, encoded by HHV-8 ORF37, with endo- 
and exo-nuclease activity for degrading cellular mRNA and 
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processing the viral DNA genome, suppresses AIM2 inflammasome 
activation during the HHV-8 lytic cycle by disrupting AIM2: 
dsDNA polymerization and ASC recruitment and 
oligomerization (117).

Thus, targeting viral inhibitors of inflammasomes represents a 
therapeutic strategy for the treatment of viral infection.

BK polyomavirus (BKV): is a double-stranded DNA virus 
belonging to Polyomaviridae family and is highly prevalent in 
humans with an incidence of more than 80% in the general 
population (118). In immunocompetent individuals, primary BK 
virus infection is generally asymptomatic or results in mild 
symptoms, but in kidney transplantation, its reactivation in the 
tubular renal epithelial cells may induce cytotoxicity and allograft 
dysfunction (119).

Ribeiro et al., found that the inflammasome activator TLR-3 was 
upregulated in the tubule-interstitial allograft compartment of patients 
with polyomavirus-associated nephropathy (PVAN) along with IL-1β 
and IL-18 compared with acute rejection and pre-transplant donor 
biopsies (controls) (120, 121). However, surprisingly, the in vitro part 
of the study did not confirm the activation of the NLRP3 or AIM2 
inflammasome pathways (120).

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-
CoV-2): is a positive-sense single-stranded RNA virus belonging to 
the coronavirus family responsible for coronavirus disease 2019 
(COVID-19). This virus, which activates the NLRP3 inflammasome 
through the accessory protein viroporin E (122), could exacerbate the 
inflammatory machinery in infected kidney transplant recipients, 
leading to severe clinical complications and partly justify the positive 
effects of anti-inflammatory therapies in these fragile patients 
(123, 124).

These results, even if they did not allow to draw definitive 
conclusions, underline the necessity to study these pathways in kidney 
transplant patients.

7.2. Bacterial infections

Although inflammation plays a major role in urinary tract 
infections, only one study has clearly described the impact of the 
inflammasome in these common post-transplant complications.

It has been demonstrated that recombinant purified E. coli 
α-hemolysin caused deubiquitination, oligomerization, and activation 
of the NLRP3 inflammasome in response to K+ concentration 
perturbations in THP-1 macrophages. This led to mitochondrial 
dysfunction, and activation of the immune response, resulting in cell 
death (125). Additional studies are required to better address this 
important topic.

8. Inflammasome in recurrence of 
glomerulonephritis after kidney 
transplantation: a target to 
be explored in future

Glomerulonephritis (GNs), the fourth most common cause of 
allograft loss, are major clinical problems occurring in the 

post-transplant period. Most patients affected by these conditions 
may experience a significant reduction in allograft survival and 
develop severe systemic alterations (nephrotic and nephritic 
syndrome, acute allograft dysfunction, accelerated development 
of chronic allograft nephropathy) (126).

However, although no specific studies have been published 
regarding the impact of inflammasomes on the pathogenesis of 
recurrent glomerulonephritis (rGNs) after kidney transplantation, 
we  can postulate their involvement in these disorders (127). In 
particular, hyperactivation of the NLRP3 inflammasome in 
infiltrating macrophages and podocytes (128, 129) and in serum of 
IgAN nephropathy (as demonstrated by high circulating level of 
IL-18 and IL-1β) is associated with a fast progression of this disease 
(127, 130).

In patients with focal segmental glomerulosclerosis (FSGS), 
necroptosis, a pro-inflammatory lytic form of programmed cell death 
activated in podocytes, activates the NLRP3 inflammasome pathway. 
As reported by Hu et al., the inhibition of necroptosis in adriamycin 
(ADR)-induced nephropathy, through the inhibition of this 
inflammasome in podocytes attenuates proteinuria levels and kidney 
histological damage (131).

In patients with ANCA-associated vasculitis (AAV), the serum 
level of IL-18 was elevated (132) and the tissue protein content of 
NOD2, NLRP3, and NLRC5 was higher than that in healthy controls, 
demonstrating the role of the inflammasome in these disorders. In 
addition, kidney tissue expression levels of NOD2 and NLRC5 were 
significantly correlated with the severity of renal lesions in AAV (133).

Therefore, despite the role of the inflammasomes in the 
pathogenesis of GNs in the native kidney, the impact of these 
biological pathways in the post-transplant recurrence should 
be addressed with specific research projects.

9. Conclusion

Our paper reveals the great interest of the transplant 
community in understanding the pathophysiological role of 
inflammasomes in kidney transplantation. Although the role of 
these biological pathways has been well elucidated in several 
native kidney disorders (134), few data regarding their direct 
contribution to allograft and systemic post-transplant 
complications are available (Table 1). Additionally, it underlines 
that a deep comprehension of the contribution of the 
inflammasomes in the biological machinery associated with acute 
and chronic allograft alterations may facilitate the discovery of 
novel previously unrecognized therapeutic targets, the 
identification of early diagnostic and prognostic biomarkers, and 
accelerate the initiation of clinical studies/trials involving 
inflammasome regulators (e.g., MCC950) finalized to slow down 
the progression of chronic allograft alterations and allograft 
functional failure. In this context, innovative biomolecular 
research strategies (including the high-throughput omics 
technologies) and an integrated/multi-disciplinary collaborative 
approach, which facilitate the interaction between different 
professionals (including molecular biologists, clinicians, 
bioinformaticians), could help accelerate this discovery process.
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TABLE 1 Main studies focusing on the role of inflammasome pathways in clinical complications after kidney transplantation.

Clinical 
complication

Experimental model Results References

IRI Murine model of kidney IRI NLRC4 inflammasome was up-regulated in kidney tissue and macrophages of mice 

underwent IRI

(68)

RNA-sequencing in human kidney tissues from normal (pre-ischemia), 

15 min after hypoxia (ischemia), and 10 min of reperfusion

NLRC4 gene expression was up-regulated after reperfusion and not during 

ischemia

(67)

Analysis of expression of genes involved in TRL4 pathway in kidney 

biopsies from Extended-Criteria Donors (ECD) and Standard Criteria 

Donor (SDC)

In pre-implantation kidney biopsies from ECDs the expression of genes involved in 

TLR4 and inflammasome pathways (NLRP3, CASP1, and IL-1β genes) was 

enhanced compared to kidney biopsies from SDC

(75)

Renal tubular cells (RTECs) were subjected to cold storage and rewarming. 

Kidneys from wild-type or Casp1−/− mice were subjected to cold ischemia 

(CI) for 30 min and then transplanted into wild-type recipients (CI + Txp)

NLRP1 and Caspase-1 expression was significantly enhanced in renal tubular 

epithelial cells after IRI and in wild-type kidneys subjected to CI + Txp into wild-

type recipients compared to kidneys transplanted from Casp1−/− donors into wild-

type recipients

(63)

Animal model of IRI in wild-type mice and mice deficient in components 

of the Nlrp3 inflammasome (Nlrp3−/− and Asc−/− mice)

NLRP3−/− mice but not Asc−/− or caspase-1−/− mice were protected from IRI, 

suggesting a direct effect of NLRP3 on tubular epithelial cells leading to IRI, but 

independent of inflammasome formation

(66)

Animal model of IRI in WT and NLRP3−/− mice Damaged mitochondria in renal IRI were a major source of ROS contributing to 

NLRP3 inflammasome activation by direct TXNIP-NLRP3 interactions

(61)

Wild-type and Nrf2-KO mice underwent renal IRI. MCC950 was injected 

intraperitoneally daily for 14 days before surgery (I/R + MCC950 group). 

NaHS (50 μmol/kg) was injected intraperitoneally before surgery 

(I/R + NaHS group)

Renal IRI-induced activation of the NLRP3 inflammasome pathway in WT and 

Nrf2-ko mice. Treatment with MCC950 downregulated NLRP3, ASC, caspase-1 

and IL-1β expression levels following renal IRI. NaHS decreased NLRP3 

inflammasome activation via the Nrf2 signaling pathway

(62)

Animal model of IRI. The mice underwent mild and severe IRI induced by 

15 and 25 min of renal ischemic duration, respectively. Short- and long-

term outcomes were evaluated at 2 and 28 days after surgery

In severe IRI, there was a long-term high level of NLRP3 in serum and urine. 

NLRP3 overexpression was mainly distributed in the abnormal tubules surrounded 

by inflammatory infiltrates and fibrosis, which indicated maladaptive repair. Renal 

NLRP3 overexpression correlates with infiltrating macrophages and fibrosis

(64)

In a cohort of 91 patients serial urine samples were collected for 3 days 

after kidney transplantation

Elevated urinary IL-18 levels predicted the need for dialysis within the first week of 

kidney transplantation and 3-mo recovery of graft function

(69)

Transcriptional analysis of kidney biopsies from patients with DGF Up-regulation of NLRC4, IFNγ and IFNγ-inducible targets OAS2 and CXCL10 

suggested inflammasome activation in allografts with DGF

(70)

Donation of circulatory death (DCD) kidneys and living donor (LD) 

kidneys of male SD rats were preserved in UW solution at 4°C for 2 h or 

18 h and then transplanted into syngeneic recipients

Prolonged cold storage (18 h) induced a higher decline in renal function and a 

significant increment of IL-1β and NLRP3 protein compared to 2 h cold storage 

(this effect was similar in both DCD and LD models)

(74)

Animal model of IRI in Casp-11−/− and wild type mice IRI markedly increased caspase-11 expression and pannexin 1 (panx1) cleavage in 

the kidneys accompanied by NLRP3 inflammasome activation in wild-type mice. In 

Casp-11−/− mice, I/R-induced panx1 cleavage, NLRP3 inflammasome activation, 

renal functional deterioration, and tubular morphological changes were 

significantly attenuated. The cleavage of panx1 by upregulated casp-11 is involved in 

facilitating ATP release and NLRP3 inflammasome activation in IRI

(77)

Rat model of renal IRI Pyroptosis-related proteins (casp-1, casp-11, and IL-1β) were significantly increased 

after 6 h of renal IRI and peaked 12 h after injury. Enhanced pyroptosis was 

accompanied by elevated renal structural and functional injury. Up-regulation of 

endoplasmic reticulum (ER) stress biomarker (CHOP) preceded the incidence of 

pyroptosis showing that the CHOP-casp-11 pathway is crucial for IRI-related renal 

pyroptosis

(78)

Rat model of renal transplantation. MCC950 was injected into animals 

(50 mg/kg, i.p) twice per week after surgery for 7 days

MCC950 reduced the activation of casp-1, alleviated the release of IL-1β, attenuated 

the active form of GSDMD and improved graft functional recovery on the 7th day 

after Tx

(79)

Mice were administered Remdesivir (RDV) (25 mg/kg every 12 h for 

7 days) by subcutaneous injection. After 7 days of continuous 

subcutaneous injection, mice in the LPS and RDV + LPS groups were i.p. 

injected with 10 mg/kg LPS to induce AKI

Remdesivir suppressed NLRP3 inflammasome activation through inhibition of 

NFkB and MAPK pathway, thereby reducing inflammation-induced renal damage 

and improving the recovery of renal function after AKI

(81)

Roxadustat was administered (10 mg/kg/d i.p.) in mice for 5 days before 

IRI

Roxadustat attenuated renal tubular injury in the IRI mice model by suppressing 

the activation of AIM2 inflammasome and the increase in the CD73 pathway

(82)

In a cohort of 780 patients who underwent kidney transplantations, 315 

received intravenous dexmedetomidine (DEX) infusion (0.24–0.6 ug/kg/h) 

during surgery, and 465 did not

DEX use significantly decreased DGF, risk of infection, risk of acute rejection, 

overall complications, and length of hospital stay in patients who underwent kidney 

transplantation

(88)

Rat model of AKI by intraperitoneal injection of 10 mg/kg LPS. The rats 

received intraperitoneal injections of DEX (30 μg/kg) 30 min before an 

intraperitoneal injection of LPS

DEX significantly attenuated renal injury in AKI by decreasing activation of the 

NLRP3 inflammasome and expression of IL-1β and IL-18. In addition, DEX could 

significantly enhance autophagy via the alpha2-adrenoreceptor/AMPK/mTOR 

pathway, which inhibits the NLRP3 inflammasome

(87)

(Continued)
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