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Background: The relative prognostic importance of handgrip strength (HGS) in 
comparison with other risk factors for mortality remains to be  further clarified, 
and thresholds used for best identify high-risk individuals in health screening are 
not yet established. Using machine learning and nationally representative data 
from the China Health and Retirement Longitudinal Study (CHARLS), the study 
aimed to investigate the prognostic importance of HGS and establish sex-specific 
thresholds for health screening.

Methods: A total of 6,762 participants from CHARLS were enrolled. A random 
forest model was built using 30 variables with all-cause mortality as outcome. 
SHapley Additive exPlanation values were applied to explain the model. Cox 
proportional hazard models and Harrell’s C index change were used to validate 
the clinical importance of the thresholds.

Results: Among the participants, 3,102 (45.9%) were men, and 622 (9.1%) case 
of death were documented follow-up period of 6.78  years. The random forest 
model identified HGS as the fifth important prognostic variable, with thresholds 
for identifying high-risk individuals were  <  32  kg in men and  <  19  kg in women. 
Low HGS were associated with all-cause mortality [HR (95% CI): 1.77 (1.49–2.11), 
p  <  0.001]. The addition of HGS thresholds improved the predictive ability of an 
established office-based risk score (C-index change: 0.022, p  <  0.001).

Conclusion: On the basis of our thresholds, low HGS predicted all-cause mortality 
better than other risk factors and improved prediction of a traditional office-based 
risk score. These results reinforced the clinical utility of measurement of HGS in 
health screening.
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1 Introduction

Despite remarkable progress achieved in recent decades, low- and 
middle-income countries still faces numerous health challenges, 
particularly in the context of population aging. The number of older 
adults individuals is expected to rise from 524 million in 2010 to 
nearly 1.5 billion in 2050, with most of the increase in low- and 
middle-income countries (1). Due to the rising prevalence of 
non-communicable diseases, environmental pollution and unhealthy 
lifestyles, many vulnerable adults are at high risk of death (2). 
However, owing to shortage of medical resources, implementing 
comprehensive health screening programs to identify high-risk 
individuals is of great difficulty in low- and middle-income countries 
(3). As a result, it is necessary to develop both affordable and easy 
methods to improve the effectiveness and coverage of screening.

Handgrip strength (HGS) is an important indicator of physical 
function, and a biological marker of aging throughout the lifespan (4). 
Extensive studies have consistently demonstrated a robust correlation 
between low HGS and a range of adverse health outcomes, including 
hip fracture, nutrition deficiencies, new-onset chronic diseases and 
mortality risk (5–9). The measurement of HGS involves a simple and 
highly reproducible procedure utilizing a portable and relatively 
low-cost dynamometer, so it can be easily implemented in regions 
with limited advanced medical equipment (10). Therefore, the 
measurement of HGS may be particularly relevant in low-resource 
setting to identify high-risk individuals.

However, the clinical utility of HGS as a screening tool is limited 
due to the lack of clarity regarding its predictive importance in 
comparison with other risk factors and the absence of data-driven 
thresholds for risk discrimination. Traditional regression analysis 
faces challenges in addressing this issue, mainly attributed to 
multicollinearity, which hampers the interpretability of results (11). In 
contrast, machine learning can handle multicollinearity, capture 
intricate relationships among variables, and pinpoint crucial variables 
contributing to the prediction models, with random forest is 
particularly useful in this context (12). Random forest allows for 
insights into the relative contribution of different variables towards the 
outcome by constructing an ensemble of decision trees and combines 
their predictions (13).

Utilizing the nationally representative data from the China Health 
and Retirement Longitudinal Study (CHARLS), The purpose of this 
study was to investigate the clinical utility of HGS in screening setting. 
We hypothesized that machine learning would provide novel insights 
into the relative importance of this data-driven approach HGS and 
establish clinically relevant thresholds for health screening.

2 Method

2.1 Study population

The CHARLS is a nationwide study aimed at analyzing the aging 
process and promoting interdisciplinary research in China. 
Representing samples aged 45 or older were selected from 450 villages 
and 150 districts in 28 provinces using multistage stratified Probability 
Proportionate to Size Sampling (14). Participants in the CHARLS 
completed a structured questionnaire about sociodemographic status, 
health status, physical function, and retirement information. 13 physical 

measurements and blood sample collection were also conducted. The 
baseline survey, referred to as wave 1, was conducted in 2011, with a 
response rate of 73.1%, and follow-ups were conducted every 2 years 
(wave 2 in 2013, wave 3 in 2015 and wave 4 in 2018). Ethical approval 
was obtained from the ethical review committee at Peking University 
(No. IRB 00001052-11,014), and all participants provided written 
informed consent before being surveyed. Detailed information on the 
CHARLS is available on the website: http://charls.Pku.edu.cn/.

In this study, we used baseline data from wave 1 and follow-up 
information from wave 2, 3 and 4. The exclusion criteria for the study 
were: missing baseline data of HGS, blood pressure (systolic or 
diastolic), or blood measurements in wave 1; and non-available 
follow-up information in wave 2,3 and 4. Of the total 17,705 
participants in wave 1, 5,958 individuals were excluded because of 
missing data on HGS (n = 4,132), blood pressure (n = 3,827), or blood 
measurement (n = 2,960); 24 participants lost to follow-up were also 
excluded. As a result, a total of 6,762 participants were included in this 
study, with 622 experiencing death events during the follow-up 
period. The flow chart of the participant selection process is presented 
in Figure 1.

2.2 Measurement of HGS

HGS was measured by trained interviewers using a YuejianTM 
WL-1000 dynamometer with an accuracy of 0.1 kg. Before the 
measurement, interviewers would make sure that participants did not 
report any surgery, pain, inflammation, or severe injury to either of 
their hands. After interviewer providing a demonstration of how to 
use the dynamometer, participants were than instructed to squeeze 
the dynamometer as hard as possible for several seconds, with 
participants seated upright with their elbow by their side and flexed at 
a 90-degree angle. The measurement was repeated for participants’ 
right and left hands separately in two alternative turns, and the 
maximum value achieved during the process was recorded. For this 
study, the HGS value of dominant hand was used for analysis.

2.3 Assessment of outcome

The primary outcome of the study was all-cause mortality. The 
determination of death was based on the interview status (alive or 
dead) of participants during waves 2, 3, and 4 of the follow-up surveys. 
For participants who survived throughout the observation period, the 
survival time was determined as the interval between wave 1 and wave 
4. In cases where death occurred, the survival time was calculated as 
the interval from the date of the baseline survey to the date of 
participants’ death. Because the exact death time was only available in 
wave 2, the death date of wave 3 and 4 was estimated based on the 
median time between the two waves when death recorded.

2.4 Variables used for the analysis

A total of 30 variables were included in the analysis (HGS, 6 
demographic, 13 health-related, and 10 from blood measurements). 
Demographic characteristics included age, gender, residential area 
(rural or urban), education (no formal education, primary school, 
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middle or high school, college or above), marital status (married or 
others) and medical insurance (yes or no). Health-related factors 
included body mass index (BMI), smoking and drinking (yes or no), 
systolic blood pressure (SBP), diastolic blood pressure (DBP), and self-
reported physician-diagnosed chronic diseases (hypertension, 
diabetes, cardiovascular diseases, stroke, chronic lung diseases, 
chronic kidney diseases, liver disease, and cancers). Blood 
measurements included hemoglobin (Hb), hematocrit, mean 
corpuscular volume (MCV), total cholesterol, triglycerides, 
low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 
cholesterol (HDL-C), estimated glomerular filtration rate (eGFR), 
HbA1c, C-reactive protein (CRP). eGFR was calculated according to 
the Chronic Kidney Disease Epidemiology Collaboration’s 2009 
creatinine equation (15).

2.5 Machine learning

Participants were randomly divided into a training cohort 
(70%; n = 4,733) and a validation cohort (30%; n = 2029), with a 
fixed random seed to ensure the repeatability of the experiment. 
The random forest model for predicting mortality was built with 
30 variables using the training cohort. The model was evaluated 
and optimized using a 5-fold cross-validation method. The 

analysis involved using grid search to optimize the model and 
evaluating all available predictor variables for each split. In the 
optimal model of female population, a total of 10 independent 
trees were employed, with a maximum depth of 9, a minimum 
number of samples required for an internal node split equal to 2, 
and a minimum leaf size of 1. In the optimal model of male 
population, a total of 200 independent trees were used, with a 
maximum depth of 9, a minimum number of samples required 
for an internal node split equal to 2, and a minimum leaf size of 
2. Models derived from the training cohort were then applied to 
the validation cohort to assess the predictive performance. The 
feature importance score from the random forest models were 
obtained to identify the predictive value of HGS on mortality. 
Accuracy and precision of each HGS value were calculated to 
determine optimal sex-specific thresholds with models. In 
addition, SHapley Additive exPlanation (SHAP) were used to 
provide attribution values of HGS within the random forest 
model (16). The SHAP summary plot illustrated the effect of 
different variables on the prediction, which displays the positive 
(red) and negative (blue) influences; the SHapley Additive 
exPlanation (SHAP) dependence plots, depicting HGS values on 
the horizontal axis and SHAp values (indicating influence) on the 
vertical axis, could reveal the impact of different HGS values on 
the mortality and discover linear or non-linear relationships.

FIGURE 1

Flow diagram for participants included in the study.
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TABLE 1 Baseline characteristics of the alive and dead participants.

Characteristics Total (n =  6,762) Alive (n =  6,140) Dead (n =  622) p-value

Age, y 58.8 (9.7) 57.9 (9.2) 67.4 (10.4) <0.001

Female, n (%) 3,660 (54.1) 3,415 (55.6) 245 (39.4) <0.001

Married (vs others) 5,683 (84.0) 5,245 (85.4) 438 (70.4) <0.001

Rural (vs urban) 2,482 (36.7) 2,299 (37.4) 183 (29.4) <0.001

Medical insurance, n (%) 6,327 (93.6) 5,750 (93.6) 577 (92.8) 0.442

Education <0.001

  No formal education 3,071 (45.4) 2,696 (43.9) 375 (60.3)

  Primary school 1,508 (22.3) 1,368 (22.3) 140 (22.5)

  Middle or high school 2098 (31.0) 1995 (32.5) 103 (16.6)

  College or above 85 (1.3) 81 (1.3) 4 (0.6)

Smoking 2,660 (39.3) 2,316 (37.7) 344 (55.3) <0.001

Drinking 1812 (26.8) 1,620 (26.9) 162 (26.0) 0.010

BMI 24.2 (31.3) 24.4 (32.2) 23.2 (21.2) 0.204

Blood pressure, mmHg

  Systolic 132.1 (31.8) 131.2 (30.4) 141.0 (42.7) <0.001

  Diastolic 75.8 (12.0) 75.8 (11.9) 75.9 (13.0) 0.840

Comorbidities, n (%)

  Hypertension 1821 (26.9) 1,595 (26.0) 226 (36.3) <0.001

  Diabetes 451 (6.7) 391 (6.4) 60 (9.6) 0.002

  Cardiovascular disease 885 (13.1) 780 (12.7) 105 (16.9) 0.004

  Stroke 173 (2.6) 136 (2.2) 37 (5.9) <0.001

  Chronic lung disease 645 (9.5) 532 (8.7) 113 (18.2) <0.001

  Chronic kidney disease 382 (5.6) 338 (5.5) 44 (7.1) 0.127

  Liver disease 220 (3.3) 193 (3.1) 27 (4.3) 0.137

  Cancers 58 (0.9) 43 (0.7) 15 (2.4) <0.001

Blood measurements

  Hb, g/L 14.4 (2.1) 14.5 (2.1) 14.3 (2.3) 0.072

  Hematocrit, % 41.8 (6.0) 41.9 (5.9) 41.1 (6.7) 0.004

  MCV, fl 90.8 (8.3) 90.7 (8.2) 92.5 (9.0) <0.001

  Total cholesterol, mg/dL 193.7 (38.8) 194.0 (38.6) 190.2 (40.6) 0.026

  Triglycerides, mg/dL 135.1 (106.1) 136.1 (107.5) 125.6 (89.9) 0.007

  HDL-C, mg/Dl 50.7 (15.3) 50.7 (15.3) 51.6 (15.5) 0.145

  LDL-C, mg/dL 117.2 (35.3) 117.6 (35.1) 114.0 (37.6) 0.023

  eGFR, mL/min/1.73 m2 98.6 (25.1) 99.1 (24.9) 92.7 (26.2) <0.001

  HbA1c, mmol/mol 5.3 (0.8) 5.3 (0.8) 5.4 (1.2) 0.001

  CRP, mg/L 2.7 (7.2) 2.4 (5.9) 6.1 (14.8) <0.001

Handgrip strength, kg 31.8 (10.9) 32.2 (10.8) 28.1 (11.1) <0.001

BMI, body mass index; Hb, hemoglobin; MCV, mean corpuscular volume; HDL, high density cholesterol; LDL, low density cholesterol; eGFR, estimated glomerular filtration rate; HbA1c, 
glycosylated hemoglobin; CRP=C-reactive protein.

2.6 Validation of the thresholds from the 
random forest model

We conducted the following analyzes to validate the clinical utility 
of HGS thresholds obtained from the random forest model: 1) 
conducting Kaplan–Meier survival analysis using the HGS thresholds 
and 2) verifying the incremental predictive information provided by 

the HGS thresholds when added to an established office-based risk 
score for predicting all-cause mortality (17).

2.7 Statistical analysis

Kolmogorov–Smirnov tested continuous variables for normality. 
Continuous variables with normal distribution were presented as 
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mean and standard deviation (SD) and analyzed by the Student’s 
t-test and, while continuous variables with non-normal distribution 
were presented as median and interquartile range (IQR) and analyzed 
by the Mann–Whitney U test. Categorical data were presented as 
frequency and percentage and analyzed by the Chi-square test or 
Fisher exact test. Univariate linear regression analysis was conducted 
for evaluating the relationship between variables. Kaplan–Meier 
survival analysis was conducted to determine the difference of the 
survival rate between individuals above or below the HGS thresholds, 
compared using the log-rank test. The predictability of Cox models 
was calculated as Harrell’s C-index. To validate the predictive ability 
of HGS in different screening setting, we  calculated the Harrell’s 
C-index in rural population and urban population separately. All 
statistical analyzes were performed using Python 3.9.12. A 2-sided p 
value <0.05 was considered statistically significant.

3 Result

3.1 Baseline characteristics of the study 
participants

A total of 6,762 participants were included in this study, and 
baseline characteristics are presented in the Table 1. The mean 
(SD) age of the study population was 58.8 (9.7) years, and 3,102 
(45.9%) were male. The average HGS value was 31.8 (10.9) kg, 

and HGS exhibited a linear decline with increasing age (male: 
r = −0.49, female: r = −0.32), as presented in 
Supplementary Figure S1. Over a median follow-up period of 
6.78 (range 3.49 to 7.25) years, a total of 622 (9.1%) cases of death 
were documented. Participants who died were older, 
predominantly male and not be married, living in an urban area 
and had a smoking habit. The dead participants had a higher 
prevalence of comorbidities, including hypertension, diabetes, 
cardiovascular disease, stroke, chronic lung disease, and cancer. 
Regarding blood measurement, participants who died had worse 
results. Importantly, those who died had lower HGS value than 
alive participants. Participants were randomly divided by a 7:3 
ratio into a training cohort (n = 4,733) and a validation cohort 
(n = 2029). And clinical characteristics were comparable between 
groups (p > 0.05), as presented in (Supplementary Table S1).

3.2 Feature importance and thresholds of 
HGS

In the random forest model, the most important variable 
contributing to mortality was age, followed by eGFR, hematocrit and 
LDL-C. Notably, HGS ranked as the fifth important variable and most 
predictive non-invasive variable (Figure  2), outperforming many 
traditional risk factors, including BMI, SBP and most chronic diseases. 
Based on the model performance, the sex-specific HGS thresholds for 

FIGURE 2

Importance matric plot of the random forest model.
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FIGURE 3

(A) SHAP dependence plot for handgrip strength in men. (B) SHAP 
dependence plot for handgrip strength in women.

identifying high-risk individuals were < 19 kg in women (95% CI 
19–20, accuracy = 0.94, precision = 0.94) and < 32 kg in men (95% CI 
28–32, accuracy = 0.88, precision = 0.89). Given that age emerged as 
the most important factor in the random forest model, we  also 
conducted a stratified analysis for different age groups using a moving 
window approach. The findings suggested that HGS thresholds 
manifested a decreasing pattern as the age range increased 
(Supplementary Figure S2).

3.3 Explanation of the random forest 
model

The SHAP summary plot provided insights into the relative 
importance of variables included in the random forest model, and 
HGS exhibited the highest negative impact on the mortality 
(Supplementary Figure S3). SHAP dependence plots of HGS were 
constructed for men and women, respectively (Figure 3). On these 
plots, HGS demonstrated distinct nonlinear behaviors not previously 
apparent with the conventional regression analysis. Specifically, SHAP 
values were higher than zero (indicating higher mortality risk) when 
HGS were < 32 kg in men and < 19 in women, and exhibited decline 
as HGS increased; SHAP values reached a plateau once HGS exceeded 
the thresholds.

3.4 Baseline characteristics stratified by 
sex-specific HGS thresholds

Based on the determined thresholds, 1,281 patients were 
categorized as having low HGS. The comparison of baseline 
characteristics between low HGS and normal HGS groups is 
presented in Table 2. Low HGS was associated with old age, male, 
married status, living in the urban area, lower educational level, 
few medical insurances rate and previous smoking history. 
Participants with low HGS had lower BMI, higher SBP but lower 
SBP, and a high prevalence of most comorbidity. Furthermore, 
HGS showed significant relationships with various indices of 
blood measurement including MCV, serum lipid level, eGFR, 
HbA1c and CRP.

3.5 Verification of the thresholds

Kaplan–Meier survival analysis was performed to investigate the 
relationship between HGS thresholds and all-cause mortality 
(Figure 4). Individuals with low HGS had a worse survival rate than 
those with normal HGS (HR:3.42, 95% CI: 2.92–4.01, p < 0.001). 
Results of additive predictive value provided by HGS thresholds is 
presented in Table 3. It is indicated that the office-based risk score 
(including age, sex, smoking, blood pressure, diabetes and BMI) had 
yielded a C-index of 0.720 (95% CI: 0.701–0.738) for all-cause 
mortality in all participants, and the C-index was 0.742 (95% CI: 
0.725–0.760) after adding HGS thresholds, representing a marginal 
significant increase of 0.022 (95% CI: 0.020–0.024, p < 0.001). Similar 
improvement was observed in urban population and rural population, 
separately.

4 Discussion

By applying machine learning methods, the study found that HGS 
provided valuable information for mortality that is not captured by 
most traditional risk factors. and identified sex-specific thresholds that 
effectively identify individuals at high risk of mortality (<19 kg in 
women and < 32 kg in men). Moreover, the addition of HGS thresholds 
improved the prediction ability of an established office-based risk 
score, emphasizing its potential as a valid tool for risk discrimination 
in health screening setting.

Machine learning methods are able to handle complex and high-
dimensional data, which allows for the extraction of significant 
features and the identification of novel relationships (12). In 
comparison to previous methods, such as logistic regression or 
traditional decision trees, random forest illustrated the prognostic 
value of HGS and its relative importance compared to other traditional 
risk factors. Furthermore, SHAP values were employed to uncover the 
“black box” of machine learning by quantifying the contribution of 
HGS to the model predictions. In the study, SHAP values plots 
intuitively displayed the nonlinear relationships and illustrated a clear 
threshold effect, which traditional methods like logistic regression 
might struggle to represent effectively.

A few studies indicated that HGS may provide similar and even 
stronger prognostic value than some traditional risk factors like BMI 
and blood pressure. In a study including 1,142,599 male adolescents 
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followed up over 24 years, HGS was demonstrated to have similar 
predictive value for all-cause mortality to elevated BMI or blood 
pressure; the PURE study, including 139,691 adults followed up for 
4 years, found that HGS was a stronger predictor of death than SBP (9, 
18). The Feature importance plot of our random forest model 
confirmed that HGS as a significant predictor of mortality, providing 
more powerful prognostic information than most traditional risk 

factors. The explanation could be that HGS provides a more holistic 
representation of overall well-being and mortality risk. Firstly, HGS 
reflects multiple dimensions of physical health, including 
neuromuscular function and the level of frailty (19). Secondly, HGS is 
correlated with various age- and disease-related physiological 
processes, such as adiposity, insulin resistance, and elevated 
inflammation (20, 21). Furthermore, HGS can indirectly predict 

TABLE 2 Baseline characteristics of participants stratified by sex-specific HGS thresholds.

Characteristics Low HGS (n =  1,281) Normal HGS (n =  5,481) p value

Age, y 65.7 (9.8) 57.2 (8.9) <0.001

Female, n (%) 548 (42.8) 3,112 (56.8) <0.001

Married (vs others) 285 (22.2) 794 (14.5) <0.001

Rural (vs others) 422 (32.9) 2060 (37.6) 0.002

Medical insurance, n (%) 1,176 (91.8) 5,151 (94.0) 0.005

Education <0.001

  No formal education 747 (58.3) 2,324 (42.4)

  Primary school 291 (22.7) 1,217 (22.2)

  Middle or high school 234 (18.3) 1864 (34.0)

  College or above 9 (0.7) 76 (1.4)

Smoking 622 (48.6) 2038 (37.2) <0.001

Drinking 317 (24.7) 1,495 (27.3) 0.082

BMI 22.4 (3.9) 24.7 (34.7) <0.001

Blood pressure, mmHg

  Systolic 133.7 (27.2) 131.8 (32.8) 0.031

  Diastolic 74.4 (12.2) 76.2 (12.0) <0.001

Comorbidities, n (%)

  Hypertension 400 (31.2) 1,421 (25.9) <0.001

  Diabetes 98 (7.7) 353 (6.4) 0.134

  Cardiovascular disease 206 (16.1) 679 (12.4) <0.001

  Stroke 60 (4.7) 113 (2.1) <0.001

  Chronic lung disease 174 (13.6) 471 (8.6) <0.001

  Chronic kidney disease 94 (7.3) 288 (5.3) 0.005

  Liver disease 53 (4.1) 167 (3.0) 0.058

  Cancers 9 (0.7) 49 (0.9) 0.617

Blood measurements

  Hb, g/L 14.4 (2.2) 14.5 (2.1) 0.095

  Hematocrit, % 41.9 (6.1) 41.8 (6.0) 0.353

  MCV, fl 92.3 (8.4) 90.5 (8.3) <0.001

  Total cholesterol, mg/dL 188.4 (38.0) 194.9 (38.8) <0.001

  Triglycerides, mg/dL 123.6 (81.9) 137.8 (110.8) <0.001

  HDL-C, mg/dL 51.3 (15.5) 50.6 (15.2) 0.147

  LDL-C, mg/dL 113.9 (34.2) 118.0 (35.6) <0.001

  eGFR, mL/min/1.73 m2 96.5 (24.7) 99.0 (25.1) 0.001

  HbA1c, mmol/mol 5.3 (1.0) 5.3 (0.8) 0.004

  CRP, mg/L 3.7 (9.2) 2.5 (6.7) <0.001

HGS, handgrip strength; BMI, body mass index; Hb, hemoglobin; MCV, mean corpuscular volume; HDL, high density lipoprotein; LDL, low density lipoprotein; eGFR, estimated glomerular 
filtration rate; HbA1c, glycosylated hemoglobin; CRP, C-reactive protein.
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FIGURE 4

Kaplan-Meier survival curve based on handgrip strength.

TABLE 3 Improvement in prediction when adding HGS thresholds to the 
office-based risk score.

C index (95% 
CI)

C index 
change 
(95% CI)

p value

All participants

Office-based risk score 0.720 (0.701–0.738) 0.022  

(0.020–0.024)

<0.001

Plus HGS 0.742 (0.725–0.760)

Urban population

Office-based risk score 0.716 (0.609–0.738) 0.025  

(0.021–0.029)

<0.001

Plus HGS 0.741 (0.723–0.759)

Rural population

Office-based risk score 0.724 (0.689–0.766) 0.019  

(0.018–0.021)

<0.001

Plus HGS 0.743 (0.712–0.781)

HGS, handgrip strength.

mortality risk by reflecting the presence and progression of chronic 
diseases (22).

For establishing thresholds for low HGS, previous studies have 
largely relied on data distribution. Some studies have defined 
thresholds at 2 or 2.5 standard deviations below the peak mean value 
across the life course; while others studies have established thresholds 
at the lower 20th or 25th percentile in the study population (5, 23–25). 
The utilization of these reference values has led to varying prevalence 
rates of low HGS, ranging from less than 10 to 25%, which could cause 
the underdiagnosis of high-risk individuals or over-recommendation 
of further assessments for patients. Therefore, HGS thresholds based 
on the specific levels of HGS values linked to health outcomes are 
needed to identify high-risk patients and avoid unnecessary waste of 

medical resources. In this study, we generated sex-specific thresholds 
within the random forest model, and used SHAP dependence plots to 
illustrate the nonlinear threshold effect. These HGS thresholds 
obtained from data-driven approaches identified 18.9% of the 
CHARLS population into high-risk group. The significant difference 
in baseline characteristics and mortality risk between groups further 
validated their ability to identify vulnerable people, and they may 
benefit from additional health assessments. Although previous study 
has shown that HGS enhances prediction of mortality based on age 
and sex, HGS thresholds were incorporated into a well-established 
office-based risk score to further validate their utility in screening 
setting (26). The results revealed an significant improvement in risk 
prediction (C index change 0.022), which surpasses the enhancements 
observed when adding HDL-C (C index change 0.007) and 
NT-proBNP (C index change 0.020) (27). This improvement in risk 
prediction suggests that adding HGS into screening would generate 
cost savings in healthcare system by reducing the number of patients 
who are introduced to further assessments.

The strength of this study is that it included a large and nationally 
representative sample size, thereby allowing for broad generalizability. 
Besides, this is the first study used machine learning methods to 
determine the predictive importance of HGS, establish thresholds for 
risk discrimination, and reveal the threshold effect. Significantly, the 
improvement of prediction when adding HGS thresholds into an 
established office-based risk score demonstrated the clinical utility of 
HGS in health screening settings. However, we  also note several 
limitations. Firstly, the HGS data in our study were collected cross-
sectionally, which hinders our ability to evaluate the impact of HGS 
changes on mortality over time. Secondly, the diagnosis of chronic 
diseases was self-reported physician-diagnosed, which may introduce 
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some degree of bias. Thirdly, due to the unavailability of medical 
records and limited access to specific information on causes of death, 
our analysis of the association between HGS and cause-specific 
mortality remains limited in depth. However, these HGS thresholds 
still have clinical value in the large-scale health screening setting and 
may help save medical resources.

5 Conclusion

In conclusion, we  successfully applied the machine learning 
method to illustrate the predictive importance of HGS for mortality 
and established reliable and practical sex-specific thresholds for 
identifying high-risk individuals. Our findings underscore the clinical 
utility of HGS in screening setting, particularly in resource-
constrained regions like rural area and developing country.
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