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Background: Diabetic retinopathy-related (DR-related) diseases are posing an 
increasing threat to eye health as the number of patients with diabetes mellitus that 
are young increases significantly. The automatic diagnosis of DR-related diseases 
has benefited from the rapid development of image semantic segmentation and 
other deep learning technology.

Methods: Inspired by the architecture of U-Net family, a neighbored attention 
U-Net (NAU-Net) is designed to balance the identification performance and 
computational cost for DR fundus image segmentation. In the new network, 
only the neighboring high- and low-dimensional feature maps of the encoder 
and decoder are fused by using four attention gates. With the help of this 
improvement, the common target features in the high-dimensional feature maps 
of encoder are enhanced, and they are also fused with the low-dimensional 
feature map of decoder. Moreover, this network fuses only neighboring layers 
and does not include the inner layers commonly used in U-Net++. Consequently, 
the proposed network incurs a better identification performance with a lower 
computational cost.

Results: The experimental results of three open datasets of DR fundus images, 
including DRIVE, HRF, and CHASEDB, indicate that the NAU-Net outperforms FCN, 
SegNet, attention U-Net, and U-Net++ in terms of Dice score, IoU, accuracy, and 
precision, while its computation cost is between attention U-Net and U-Net++.

Conclusion: The proposed NAU-Net exhibits better performance at a relatively 
low computational cost and provides an efficient novel approach for DR fundus 
image segmentation and a new automatic tool for DR-related eye disease 
diagnosis.
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1 Introduction

Recently, as the number of patients with diabetes mellitus (DM) has increased greatly and 
they tend to be younger, an increasing number of people suffer from diabetic retinopathy (DR) 
(1, 2). As an eye disease, DR may cause visual impairment or even blindness if not diagnosed 
and treated in a timely manner (3). DR typically results in optic disc (OD) lesions. These lesions 
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involve abnormal changes in retinal blood flow, and the abnormalities 
primarily include microaneurysms (MA), hard exudates, soft 
exudates, hemorrhages (HA), neovascularization (NV), and macular 
edema (ME) (4). These changes in the OD can be  captured and 
recorded in images using a DR screening device, and OD abnormalities 
can be easily distinguished by experienced doctors by analyzing the 
fundus images. However, the manual diagnosis of DR requires doctors 
to check numerous images, which is time-consuming, resource-
intensive, and expensive.

Owing to the increasing development of computer vision 
technologies, deep learning methods, especially image identification 
technology including image classification and image semantic 
segmentation method, have been introduced for automatic diagnosis 
of DR. As a method of image identification technologies based on 
computer vision, image classification algorithms typically preprocess 
the images first using image processing technologies and then enhance 
or extract some features from the preprocessed images, including 
histograms of oriented gradients (HOG), higher-order spectra (HOS), 
and speeded-up robust features (SURF). The extracted features are 
input into an intelligent classifier model with a category or label. After 
the classifier is trained, it is used to predict a new DR fundus or other 
medical images. It outputs a category or label that represents the type 
of disease (5, 6). The commonly used classifiers include support vector 
machine (SVM), genetic algorithm (GA), and convolutional neural 
networks (CNN) (4, 7). Orfao and Haar (8) compared the performance 
of different classifiers, and their experimental results indicated that the 
radial basis function SVM (RBF-SVM) model obtained a higher 
accuracy and F1-score using the HOG feature of the green channel. 
Ghoushchi et  al. (9) combined fuzzy C-mean (FCM) and GA 
algorithms to identify diabetic and nondiabetic eye images with a 
relatively high recognition rate. Li et al. (10) obtained the features of 
the DR1 and Messidor datasets using a fine-tuning CNN and used an 
SVM model to classify the images. Le et al. (11) first selected the 
feature using an adaptive particle-grey wolf optimization method and 
classified the image using a multilayer perceptron (MLP). Their 
comparative results showed that the new algorithm predicted the 
images with a higher accuracy.

Moreover, because the CNN model shows a powerful ability for 
image enhancement, various CNN models have been introduced 
into image feature selection. CNN models are typically connected 
by a series of convolutional, activation, pooling, dropping, and fully 
connected layers, and based on the architecture of the backbones of 
the CNN, various CNN models, including AlexNet, VGG, 
DenseNet, ResNet, MobileNet, are used for DR and other medical 
image segmentation. Shanthi and Sabeenian (12) used an AlexNet 
with four convolution layers and three pooling layers to augment 
the fundus images of the Messidor dataset and classified the severity 
using filtered data. Khan et al. (13) modified the architecture of 
VGG16 to improve the performance of DR image diagnosis and 
tested the identification performance using the Kaggle dataset. 
Kobat et al. (14) first separated the DR image into parts by resizing 
and dividing the original image and then trained DenseNet201 and 
SVM classifiers to augment and estimate the DR images, 
respectively. Al-Moosawi and Khudeyer (15) diagnosed four 
different categories of DR using a trained ResNet34 and compared 
the performances of different DL architectures. The identification 
results of the fundus images from APTOS 2019 and IDRiD showed 
that ResNet34 performed better in image feature enhancement. 

Moreover, considering its powerful target detection ability, the 
popular Yolo V3 model was introduced for automatic DR fundus 
image identification by Pal et al. (16). Similar studies have been 
conducted by Wang et al. (17), Das et al. (18), Mohamed et al. (19), 
and Santos et al. (20).

In contrast to the aforementioned image classification methods, 
image semantic segmentation methods detect and classify images at 
each pixel (21, 22). Therefore, after semantic image segmentation, the 
retinal blood vessels or other important structures of the DR or other 
medical images are augmented, and the lesion area is directly detected 
and located. Image semantic segmentation algorithms are derived 
from or based on CNN, and typical image semantic segmentation 
architectures are fully convolutional networks (FCN), SegNet, 
pyramid scene parsing networks (PSPNet), DeepLab, Unet, etc. (23, 
24). To achieve a tradeoff between semantic and location information, 
Wang et  al. (25) improved the original R-FCN by adding an 
upsampling unit in the common ResNet101 and used a feature 
pyramid network to generate a feature map with different feature map 
levels. Using the modified R-FCN, higher sensitivity and specificity 
for DR image segmentation were obtained. To increase the feature 
map resolution, the original SegNet used an encoder to obtain the 
feature maps and employed a decoder to up-sample the feature maps 
(26). SegNet was first proposed by Saha et al. (27) for road and indoor 
scene segmentation, and Ananda et al. (28) introduced SegNet for DR 
image segmentation. To make optimal use of the global feature in 
image segmentation tasks, a global pyramid pooling layer and certain 
new strategies were proposed in PSPNet and compared with FCN 
(29). Fang et al. (30) combined a phase-up-sampling module and 
PSPNet for fundus image segmentation. This improved model 
obtained higher intersection over union (IoU) and pixel accuracy 
than the native PSPNet. Chen et  al. (31) introduced arouse 
convolution and a conditional random field (32) to strengthen the 
boundary details and finally obtained a better image segmentation 
effect. This architecture is known as DeepLab v1. To further improve 
the identification accuracy of the boundary, DeepLab v2 (33), 
DeepLab v3 (34), and DeepLab v3+ (35) were developed by 
modifying certain modules of the DeepLab v1 network. Some 
researchers have reviewed and compared the performances of other 
networks (36).

However, the performance of these image segmentation 
algorithms is affected by the number of training samples. In addition, 
datasets of medical images, particularly images of rare cases, are 
typically insufficient. Therefore, the U-Net was first reported by 
Ronneberger et al. (37) to improve the performance of small-sample 
image segmentation. U-Net uses a symmetric architecture to suppress 
the key image features by down-sampling and to extract low-level 
features by skip connection and up-sampling. It finally exhibits 
excellent performance by fusing all the features. Moreover, various 
variants of U-Net have been developed by modifying or adding 
modules to improve their accuracy. However, these variants typically 
achieve excellent performance by fusing multi-scale feature maps with 
dense links between the encoder and decoder, and as a result, they 
usually need the expense of computational and time costs. Therefore, 
to balance the identification performance and computational of the 
algorithm, a novel U-Net named neighboring attention U-Net is 
designed for DR fundus image semantic segmentation.

The paper is structured as follows: Section 2 summarizes and 
discusses the studies on U-Net and its variants. Section 3 introduces 
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the architecture and workflow of the proposed network. Section 4 
provides the details of the datasets and compares the testing 
performances of the different networks. Section 5 summarizes the 
whole study.

2 Related previous works of U-Net 
family

Since the U-Net was first reported by Ronneberger et al. (37) 
in 2015, various variants of the U-Net have been developed and 

have displayed a wide and strong applicability for DR fundus, cell, 
lung, skin cancer, colorectal adenocarcinoma gland, and coronary 
artery image segmentation in the field of medicine. Figure  1 
shows the structure of U-Net and its variants. Apart from the 
original U-Net, the U-Net family primarily includes attention 
U-Net, residual U-Net, residual-attention U-Net, recurrent 
residual convolutional neural network (RRCN) based on U-Net 
(R2U-Net), U-Net++, Nested U-Net, etc. As shown in Figure 1, in 
these variants, some modules are modified or added to further 
focus on their ability for image feature extraction and fusion at 
different levels.

FIGURE 1

Architectures of some variants of U-Net: (A) U-Net, (B) Attention U-Net, (C) R2U-Net, and (D) CE-Net; (E) U-Net++.
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Inspired by the concept of FCN, a new network with an encoder 
and decoder was designed in 2015, and it was called “U-Net” because 
of its symmetric architecture. As shown in Figure 1A, the U-Net 
encoder primarily consists of convolution, ReLU activation, and max 
pooling modules, whereas the decoder primarily consists of 
up-convolution, convolution, ReLU activation, and max pooling 
modules. Moreover, to join the features of the encoder, a cropping 
operation is performed at the corresponding levels in the decoding 
process. Owing to its innovation in image feature extraction and 
fusion at different levels, U-Net has displayed outstanding 
performance in medical image segmentation with a small sample 
size. Çiçek et  al. (38) transformed a 2D U-Net model into a 3D 
U-Net for volumetric segmentation of biomedical images using 3D 
modules. To be more sensitive to the local region, Oktay et al. (39) 
added three attention gates before the copy and cropping operations 
in attention U-Net as shown in Figure 1B. The attention U-Net had 
a higher Dice score and a lower surface distance in the CT abdominal 
image segmentation. To simplify training and decrease the 
degradation of the U-Net model, Zhang et  al. (40) introduced a 
residual mechanism into the architecture and designed a deep 
residual U-Net model for road image segmentation. The residual 
U-Net inherits the depth of the residual network and feature fusion 
ability at different levels. Combining the advantages of the residual, 
recurrent, and U-Net modules, Alom et al. (41) designed R2U-Net 
in 2019. In R2U-Net of Figure  1C, the introduction of RRCN 
modules further enhances the feature extraction ability at each pixel 
and increases its depth. Owing to the powerful abilities of the 
modules, R2U-Net displayed a better response than U-Net in various 
medical image segmentations. Considering that the pooling and 
convolution operations of U-Net typically result in a loss of feature 
resolution and spatial information, Gu et al. (42) designed a network 
called CE-Net shown in Figure 1D, based on U-Net. In addition to 
the encoder and decoder, CE-Net has a context extractor for dense 
atrous convolution and residual modules. The advantages of the 
proposed context extractor in CE-Net are compared and proven by 
segmenting different types of images. Moreover, to achieve high 
accuracy in medical image segmentation, Zhou et al. (43) nested 
different layers of U-Net by adding new skip pathways; therefore, this 
network is called U-Net++ or Nested U-Net. As shown in Figure 1E, 
in U-Net ++, the redesigned pathways mapped the feature maps of 
the encoder to the decoder; consequently, the feature maps of the 
two networks were fused. As the number of pathways increased 
significantly, the parameters of the model expanded, and the 
computational cost increased. The experimental test of CT image 
segmentation showed that it achieved an average IoU improvement 
of approximately 3%, and its total parameters increased by 
approximately 16.5% compared with U-Net. To balance the 
computational cost and segmentation performance, the AdaBoosted 
supervision mechanism was added to U-Net, and this architecture 
was called ADS_U-Net (44). In this model, deep supervision and 
performance-weighted combination were conducted to reduce the 
correlations between different feature maps and obtain excellent 
comprehensive performance in image segmentation and 
computation costs. Inspired by U-Net++, Li et al. (45) proposed a 
residual-attention U-Net++ in which the residual and attention 
modules were embedded into U-Net++. With the assistance of these 
two modules, the degradation was weakened and irrelevant features 

were filtered; therefore, the target feature was enhanced. As a result, 
the modified U-Net++ obtained higher IoU and Dice scores.

As shown in Figure 1, compared with the original architecture of 
U-Net, attention U-Net, U-Net++, and residual-attention U-Net++ 
have more links between the low- and high-dimensional feature maps, 
and these features of different levels are well combined, which filters 
the low-relevance features and boosts the target features. More 
complicated nested layers assist in improving the performance; 
however, they introduce a larger number of parameters and increase 
the computational cost. Therefore, to balance computational 
performance and cost, neighbored attention U-Net (NAU-Net) is 
proposed for DR and other medical image segmentation. In this new 
network, neighboring high- and low-dimensional feature maps are 
fused by an attention gate to filter the target features at a relatively 
low cost.

3 Methodology

3.1 Whole architecture of NAU-Net

Figure 2 shows the NAU-Net’s structure. As shown in Figure 2, the 
NAU-Net adds four attention gates to map the feature maps of the 
encoder to the decoder at different levels. The inputs to the attention 
gate are the two neighboring feature maps of the encoder and decoder 
at the same level. Using these attention gates, similar feature maps are 
fused, and the target features are enhanced. Moreover, this network 
only uses neighboring layers and does not include the inner layers 
commonly used in U-Net++ and residual attention U-Net++. 
Consequently, the proposed network incurs a lower 
computational cost.

To fuse the feature maps conveniently and make the output size 
similar to the input image, the conventional kernel size is 3 × 3, and 
its stride and padding are one. After the convolution operation, the 
ReLU, batch normalization, and max pooling operations are 
performed. The maximum pooling is 2 × 2, and the stride is two. The 
up-convolution operation included up-sampling, 2 × 2 convolution 
with a stride and padding of one, batch normalization, and ReLU 
operations. Finally, a 3 × 3 convolution operation transfers the filtered 
image to one channel.

3.2 Neighbored feature maps fusion

As the convolutional layers of encoder increase, more and more 
detailed features of the target get loss. However, there is some 
similarity between the two-neighboring high-dimensional feature 
maps in the encoder, and this connection between the maps faraway 
gets weaker. Therefore, to enhance the common features in the maps 
with a relative low computation cost, only the two neighboring feature 
maps of the encoder are fused by an attention in NAU-Net.

Before the feature maps of the encoder and decoder are 
combined, the two neighboring feature maps of the encoder are 
fused. Because the dimensions of the two neighbored feature maps of 
the encoder are different, the lower-dimensional feature map is first 
filtered by an up-convolution operation and then fused by a 
concatenation operation. The entire fusion operation is shown in 
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Figure 3. As shown in Figure 3, after the feature map of the L + 1 level 
with dimensions W × B × 2 × ch is processed by up-sampling, 
convolution, batch normalization, and ReLU sequentially, a new 
feature map with the same dimensions as the Lth feature map is 
obtained. Subsequently, the new feature map is concatenated with the 
Lth feature map.

3.3 Attention mechanism in NAU-Net

The high-dimensional feature maps of the encoder usually contain 
fine-grained features of the target, while the low-dimensional ones of 
the decoder contain coarse texture of the target. Therefore, to increase 
the identification accuracy, the multi-scale features of the target in 
low- and high-dimensional feature maps are extracted and fused by 
the attention mechanism in NAU-Net. Figure  4 shows the entire 
procedure for the attention mechanism in NAU-Net. In Figure 4, the 
low- and high-dimensional feature maps are inputted to a common 
attention gate, and the output dL′  of the attention gate is expressed 
as follows:

 
q w e w dL g L x L= ( ) + ( )( )′σ1  

(1)

 α αL Lw q= ( ) (2)

 d dL L L
′ = α  (3)

where σ1 represents the ReLU operation, dL represents the feature 
map of decoder at the level L, wg and wx represent the plain convolution 
and batch normalization operations of the feature maps eL′  and dL, 
respectively, αL represents the attention coefficient, wα represents the 
combining operation convolution, batch normal, and sigmoid 
activation. It is noteworthy that the kernel size of the attention gate 
convolution is 3 × 3 with a stride of 1.

3.4 Loss function

In this study, binary cross-entropy and Dice loss (BCE-Dice loss) 
are selected as loss functions to evaluate segmentation performance 

FIGURE 2

Structure of the NAU-Net.

FIGURE 3

Neighbored feature maps fusion.
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(46). The ith predicted image and its corresponding ground-truth 
image are pi and gi. The BCE-Dice loss is expressed as follows:
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(4)

where N is the total number of images and TPi, FPi, and FNi are 
the true positives, false positives, and false negatives of the ith 
predicted image, respectively.

4 Experiments and results

To test and compare the performance of NAU-Net, datasets of DR 
fundus images, including digital retinal images for vessel extraction 
(DRIVE), high-resolution fundus (HRF), and CHASEDB, were tested. 
Figure 5 shows the fundus images from the three datasets. Moreover, 
the segmentation performance of NAU-Net was compared with FCN, 
SegNet and two variants of U-Net, namely attention U-Net and 
U-Net++, whose networks are similar to the proposed model. The 
proposed model and a few existing networks were established by using 
the PyTorch framework (version 1.10.0), and all experimental tests 
were conducted at the High-Performance Computing Center at 
Wuhan University of Science and Technology. All the tests were 
conducted on a computer with four NVIDIA Tesla V100S GPUs, and 
the memory capacity of each GPU board was 32 GB.

4.1 Datasets

4.1.1 DRIVE dataset
The total of 40 color DR fundus images from DRIVE were used in 

this study (47). The resolution of the images was 584 × 565 pixels per 
channel, and each image had three channels. The ratio of the training 
and testing split was 20:20. The ground truth of each image was 
manually segmented and marked by one or two different 
ophthalmological experts.

4.1.2 HRF dataset
The HRF (48) included 45 original DR fundus images, including 

15 healthy, 15 DR, and 15 glaucomatous fundus images. All images 

were manually marked by experts. The image resolution was 
3,504 × 2,336 pixels. Moreover, in this study, healthy and DR fundus 
images were imported; among them, 26 images were selected as the 
training set, and the remaining four were selected as the testing set.

4.1.3 CHASEDB dataset
The 28 color fundus images from CHASEDB (49) were also used 

to display the performance of NAU-Net. Each image contained 
999 × 960 pixels and was marked by two independent experts. The 
training and testing sets contained 21 and seven images, respectively.

4.1.4 Evaluation metrics
To display and compare segmentation performance, some 

commonly used evaluation metrics, including the Dice score, IoU, 
accuracy (AC), and precision (PC), were introduced in this study. 
These four metrics are obtained as follows:

 
DC TP

FP FN TP
=

+ +
2

2  
(5)

 
IoU TP

FP FN TP
=

+ +  
(6)

 
AC TP TN

TP TN FP FN
=

+
+ + +  

(7)

 
PC TP

TP FP
=

+  
(8)

where TP, TN, FP, and FN represent the true positives, true 
negatives, false positives, and false negatives, respectively.

Moreover, the computational cost was evaluated by comparing the 
total number of parameters and GPU memory demands of the models.

4.2 Results

During the inference process, the Adam optimizer was selected, 
and its learning rate was adjusted using the CosineAnnealinLR 
scheduler. The maximum number of iterations was 10. The minimum 
learning rate of the scheduler was 0.0001. The total number of epochs 
was 140, and the batch size was selected as four. All images were 

FIGURE 4

Attention gate in NAU-Net.
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resized to 576 × 576 pixels before inference. Before the images were put 
into the model, they were preprocessed by normalization with 
parameters mean = [0.485, 0.456, 0.406] and std. = [0.229, 0.224, 
0.225]. Moreover, the information of libraries used in this study is 
available at website https://github.com/Aynor007/MyNAUnet.

4.2.1 Computation cost comparison
To evaluate the computational cost of NAU-Net, the number of 

parameters, total memory demand, and complexity of different 
models, including FCN, SegNet, attention U-Net, U-Net++, and 
NAU-Net, were evaluated and compared. The model complexity was 
evaluated by the number of floating points (FLOPs) and multiple adds 
(MAdds), and it was calculated with the help of Torchstat 0.0.7. Table 1 

lists the total number of parameters, total memory demand, number 
of FLOPs, and number of MAdds. Table  1 shows that the 
computational cos of the U-Net family is higher than other models 
including FCN and SegNet. It should be also noted that FCN and 
SegNet usually need a relative larger number of training samples to 
obtain a satisfactory identification accuracy, which finally results in a 
significant increase of the training cost.

Moreover, Table  1 also demonstrates that the number of 
parameters in NAU-Net is slightly higher than those of attention 
U-Net and U-Net++. The total memory of NAU-Net is 20.63% higher 
than that of attention U-Net and 9.53% lower than that of U-Net++. 
Moreover, the number of FLOPs in NAU-Net is 33.29% higher than 
that of attention U-Net, it is 35.68% lower than U-Net++. The number 

FIGURE 5

Fundus images of open datasets: (A) DRIVE, (B) Ground true image of (A,C) HRF; (D) Ground truth image of (C), (E) CHASEDB, and (F) Ground truth 
image of (E).
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of MAdds in NAU-Net is 33.31% higher than that of attention U-Net, 
which is 35.84% lower than that of U-Net++. To reduce the semantic 
gap between the low- and high-dimensional feature maps, a series of 
nested pathways are designed in the U-Net++, and as a result the 
computational cost accordingly increases. However, in the NAU-Net, 
only the neighboring high- and low-dimensional feature maps are 
linked. Moreover, since only the two feature maps with the same 
dimension are connected by an attention gate in the attention U-Net, 
the attention U-Net has less parameters than NAU-Net. Therefore, the 
computational cost of NAU-Net is between the cost of attention U-Net 
and U-Net++.

4.2.2 DRIVE image segmentation
Figure 6 shows three DR fundus images of the DRIVE dataset, 

their ground-truth images of retinal blood vessels, and the 
identification results of attention U-Net, U-Net++, and NAU-Net. 
Figure 6 clearly demonstrates that the proposed NAU-Net can identify 

some tiny and small retinal blood vessels of the DR fundus while the 
other two models detect less, which indicates that the fusion operation 
of the neighboring feature maps successfully extracts detailed features 
from the encoder, and therefore the proposed NAU-Net displays a 
better performance of tiny and small retinal blood vessel segmentation 
than attention U-Net and U-Net++.

Table 2 compares the segmentation performance of the DRIVE 
DR images obtained using the proposed NAU-Net and other 5 existing 
models including FCN, SegNet, attention U-Net and U-Net++. 
Table  2 clearly shows that the proposed NAU-Net obtained the 
maximum values of the Dice score, IoU, and accuracy for DR image 
segmentation of the DRIVE dataset among the five models. Since FCN 
and SegNet usually needs a relative larger number of training samples 
to obtain a satisfactory performance, their evaluation metrics are 
much lower than the models of U-Net family. Moreover, compared to 
attention U-Net and U-Net++, NAU-Net achieves a performance 
improvement from 0.18 to 7.10%, which indicates that the proposed 

FIGURE 6

Image segmentation results of different models for DRIVE dataset.

TABLE 1 Parameters, memory, FLOPs, and Madd of different models.

Models Number of parameters (MB) Total memory (GB) FLOPs (G) MAdds (G)

FCN 15.11 1.07 102.13 203.94

SegNet 29.44 1.14 203.02 405.73

Attention U-Net 34.88 6.06 337.26 673.77

U-Net++ 36.63 8.08 698.94 1,400

NAU-Net 37.25 7.31 449.53 898.19
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NAU-Net has a stronger DR fundus image segmentation ability for the 
DRIVE dataset than the other two U-Net variants.

4.2.3 HRF image segmentation
Figure 7 shows three DR fundus images from the HRF dataset, 

their ground-truth images of retinal blood vessels, and the 
identification results of attention U-Net, U-Net++, and NAU-Net. 
Figure 7 shows that after the training, attention U-Net successfully 
detects most of the large vessels, while U-Net++ identifies some tiny 
retinal blood vessels that are not identified in the original image or 
ground truth. By contrast, the proposed NAU-Net correctly detects 
most of the vessels with the help of the fusion operation of the 
neighboring feature maps, including some tiny ones, which 
demonstrates that the proposed NAU-Net displays a better 
performance in retinal blood vessel segmentation than attention 
U-Net and U-Net++.

Table 3 compares the segmentation performances of the HRF DR 
images obtained using the proposed NAU-Net and other 5 existing 

models including FCN, SegNet, attention U-Net, and U-Net++. 
Similarly, Table 3 demonstrates that FCN and SegNet display a relative 
worse performance than the U-Net family. Table 3 also clearly shows 
that the proposed NAU-Net obtained the maximum values of the 
accuracy and precision for DR image segmentation of the HRF dataset 
among the attention U-Net, U-Net++, and NAU-Net, and its Dice and 
IoU are very close to the ones of U-Net++. Moreover, compared to 
attention U-Net and U-Net++, NAU-Net achieves a performance 
improvement from 0.28 to 9.19%, which indicates that NAU-Net has 
a stronger ability to DR fundus image segmentation for the HRF 
dataset than the other two U-Net variants, and the improvement of 
the proposed model is benefit to feature extraction.

4.2.4 CHASEDB image segmentation
Figure 8 shows three DR fundus images from CHASEDB, their 

ground-truth images of retinal blood vessels, and the identification 
results of attention U-Net, U-Net++, and NAU-Net. Table 4 lists the 
segmentation performance for the CHASEDB DR images obtained 

TABLE 2 DRIVE DR image segmentation performance of NAU-Net and other models.

Models Metrics (Mean  ±  Standard deviation)

Dice IoU Accuracy Precision

FCN 0.614 ± 0.109 0.45 ± 0.095 0.940 ± 0.008 0.704 ± 0.082

SegNet 0.663 ± 0.111 0.505 ± 0.109 0.942 ± 0.028 0.743 ± 0.148

Attention U-Net 0.730 ± 0.145 0.592 ± 0.149 0.950 ± 0.039 0.799 ± 0.16

U-Net++ 0.745 ± 0.147 0.609 ± 0.134 0.960 ± 0.013 0.820 ± 0.068

NAU-Net 0.750 ± 0.133 0.613 ± 0.126 0.962 ± 0.013 0.855 ± 0.055

Improvement (%)
Over Attention U-Net 2.64 3.50 1.21 7.10

Over U-Net++ 0.69 0.71 0.18 4.29

FIGURE 7

Image segmentation results of different models for HRF dataset.
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TABLE 4 CHASEDB DR image segmentation performance of NAU-Net and other models.

Models Metrics (Mean  ±  Standard deviation)

Dice IoU Accuracy Precision

FCN 0.625 ± 0.081 0.459 ± 0.082 0.944 ± 0.006 0.584 ± 0.051

SegNet 0.475 ± 0.157 0.325 ± 0.13 0.948 ± 0.004 0.765 ± 0.067

Attention U-Net 0.736 ± 0.104 0.592 ± 0.116 0.967 ± 0.006 0.800 ± 0.059

U-Net++ 0.738 ± 0.085 0.591 ± 0.095 0.968 ± 0.005 0.839 ± 0.051

NAU-Net 0.755 ± 0.052 0.609 ± 0.063 0.969 ± 0.003 0.829 ± 0.058

Improvement (%)
Over Attention U-Net 2.54 2.86 0.19 3.60

Over U-Net++ 2.30 3.02 0.08 −1.18

using the proposed NAU-Net and other 5 existing models including 
FCN, SegNet, attention U-Net, and U-Net++. Table 4 clearly shows 

that the proposed NAU-Net obtains the maximum value of the Dice 
score, IoU, and accuracy for DR image segmentation of the CHASEDB 

TABLE 3 HRF DR image segmentation performance of NAU-Net and other models.

Models Metrics (Mean  ±  Standard deviation)

Dice IoU Accuracy Precision

FCN 0.547 ± 0.013 0.377 ± 0.012 0.924 ± 0.008 0.497 ± 0.047

SegNet 0.592 ± 0.096 0.427 ± 0.1 0.952 ± 0.003 0.78 ± 0.086

Attention U-Net 0.765 ± 0.035 0.621 ± 0.046 0.965 ± 0.003 0.76 ± 0.079

U-Net++ 0.787 ± 0.044 0.651 ± 0.06 0.966 ± 0.006 0.733 ± 0.087

NAU-Net 0.786 ± 0.032 0.649 ± 0.044 0.969 ± 0.004 0.801 ± 0.108

Improvement (%)
Over Attention U-Net 2.74 4.49 0.37 5.39

Over U-Net++ −0.09 −0.29 0.28 9.19

FIGURE 8

Image segmentation results of different models for CHASEDB dataset.
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dataset among the five models, and U-Net++ achieves the highest 
precision. Moreover, compared to attention U-Net and U-Net++, 
NAU-Net improves the segmentation performance with an average 
increase of 0.08 to 3.60%, which demonstrates that NAU-Net has a 
stronger ability for image segmentation for the CHASEDB dataset 
than the other two U-Net variants.

5 Conclusion

In this study, to achieve a balance between identification 
performance and computational cost, a modified U-Net called 
NAU-Net is proposed for image segmentation of the DR fundus. In 
our new network, only the neighboring high- and low-dimensional 
feature maps of both the encoder and decoder are fused using four 
attention gates. With the help of this improvement, the common target 
features in the high-dimensional feature maps of encoder are 
enhanced, and they are also fused with the low-dimensional feature 
map of decoder by using these attention gates. Moreover, this network 
uses only neighboring layers and does not include inner layers 
commonly used in U-Net++. Consequently, the proposed network 
incurs a better identification performance with a lower computational 
cost. The experimental results of three open datasets of DR fundus 
images, including DRIVE, HRF, and CHASEDB, show that the 
proposed NAU-Net obtains higher scores for the Dice score, IoU, 
accuracy, and precision than FCN, SegNet, attention U-Net and 
U-Net++, while its computation cost is between the costs of the two 
models of attention U-Net and U-Net++. Therefore, the proposed 
NAU-Net exhibits better performance with a relatively low 
computational cost and provides an efficient novel method for DR 
fundus image segmentation and a new automatic tool for DR-related 
eye disease diagnosis. In future work, we will develop an end-to-end 
automatic diagnosis model that combines the proposed architecture 
with other classification models. Moreover, the architecture will 
be further improved for multitask image segmentation of DR fundus 
images with multiple types of lesions.
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