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The gut-liver axis refers to the intimate relationship and rigorous interaction 
between the gut and the liver. The intestinal barrier’s integrity is critical for 
maintaining liver homeostasis. The liver operates as a second firewall in this 
interaction, limiting the movement of potentially dangerous compounds from 
the gut and, as a result, contributing in barrier management. An increasing 
amount of evidence shows that increased intestinal permeability and subsequent 
bacterial translocation play a role in liver damage development. The major 
pathogenic causes in cirrhotic individuals include poor intestinal permeability, 
nutrition, and intestinal flora dysbiosis. Portal hypertension promotes intestinal 
permeability and bacterial translocation in advanced liver disease, increasing liver 
damage. Bacterial dysbiosis is closely related to the development of cirrhosis 
and its related complications. This article describes the potential mechanisms 
of dysbiosis in liver cirrhosis and related complications, such as spontaneous 
bacterial peritonitis, hepatorenal syndrome, portal vein thrombosis, hepatic 
encephalopathy, and hepatocellular carcinoma, using dysbiosis of the intestinal 
flora as an entry point.
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1 Introduction

Liver cirrhosis is a primary cause of morbidity and mortality worldwide. The mortality 
rate of patients with compensated liver cirrhosis increased five-fold and increased 10-fold in 
patients with decompensated liver cirrhosis compared with the general population (1). Liver 
cirrhosis is an advanced chronic liver disease caused by various etiologies, including alcohol 
abuse, obesity, and hepatitis virus infection, and prevalence of cirrhosis is increasing worldwide 
(2). Although there are many etiologies of liver cirrhosis, alcoholic liver disease (ALD), 
nonalcoholic fatty liver disease (NAFLD), and viral hepatitis are the prevalent etiologies of 
chronic liver disease globally (3, 4). Liver cirrhosis is the end-stage pathological manifestation 
of chronic liver disease charactered by chronic inflammation, hepatic lobe reconstruction, and 
the formation of pseudolobule and tubercle (5). The bidirectional interactions of the liver and 
the intestinal microbiota provide a new perspective for the occurrence and development of 
liver cirrhosis and its complications (6).

Microbes inhabit specific locations of the body, such as the skin, mouth, respiratory tract, 
gastrointestinal tract, genitourinary system, etc., and the highest density residing in the 
gastrointestinal tract (7, 8). The exact time of gut microbial colonization is not known, but 
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intestinal microbial colonization does not occur before birth (9). A 
variety of internal and external factors will affect the intestinal flora 
after birth, such as dietary, disease and sleep, etc. (10–13). 
Metagenomics, metatranscriptomic, and metaproteomic of the human 
intestinal microbiota show that the intestinal microbiota is an 
important constituent of the organism and plays a crucial role in 
human health and disease (14). The portal vein is an important 
channel for the interaction between the liver and the intestinal 
microbiota. The portal vein can transport intestinal nutrients, bacteria, 
and microbial products to the liver (15). Under normal physiological 
conditions, the intestinal microbiota is essential for liver metabolic 
functions, maturation and maintenance of immune homeostasis (16), 
and in turn, the liver regulates the intestinal microbiota and metabolic 
functions mainly through secreting bile acids (BA) (17).

We review clinical studies on cirrhosis and dysbiosis, and then 
turn to the topic of cirrhosis-related complications and dysbiosis. 
Dysbiosis may provide new perspectives on cirrhosis 
and complications.

2 Liver cirrhosis and dysbiosis

Liver cirrhosis affects the intestinal microbiota mainly through 
two aspects: on the one hand, liver cirrhosis can reduce the synthesis 
of BA, and resulting in the composition and function of the intestinal 
microbiota (18, 19). On the other hand, liver cirrhosis can cause portal 
hypertension, gastrointestinal blood stasis, impair intestinal barrier, 
and gut dysbiosis. Bacteria and metabolites can enter the portal vein 
and systemic circulation through translocation of the damaged 
intestinal barrier, causing an inflammatory state in the body and 
endotoxemia (20), which have different effects on both cirrhosis and 
cirrhosis-related complications (21).

Bile acids are the major functional components of bile and are 
generated by a classical and alternative pathway in the liver (22). BA 
primarily promote the emulsification of fats and aid the absorption of 
lipid and fat-soluble vitamins (23, 24). BA and the intestinal 
microbiota can interact with each other, and BA play an important 
role in regulating the diversity of intestinal flora and small intestine 
bacterial overgrowth (25). BA can not only directly affect the integrity 
of the intestinal barrier via regulating the composition of intestinal 
flora but promoting the synthesis and antimicrobial peptides secretion 
of the intestinal epithelial cells (26). Moreover, BA regulate metabolic 
function, energy consumption, and inflammation through interaction 
with its receptors, such as farnesoid-X-receptor (FXR) and the vitamin 
D receptor (VDR) as well as the Takeda G-protein coupled BA 
receptor (TGR5) (27). The activation of FXR can protect the integrity 
of the intestinal barrier, reduce bacterial translocation and intestinal 
inflammation (28, 29).

The intestinal microbiota plays a unique role in BA metabolism 
and homeostasis in the host (19). The metabolites of the intestinal 
microbiota with a variety of biological functions, also known as 
postbiotics, such as short-chain fatty acids, secondary BA, choline 
metabolites, indole derivatives, vitamins, polyamines, lipids, 
neurotransmitters, neuroactive compounds, and thalamic-pituitary-
adrenal axis hormones play an important role in the body (30). ALD, 
NAFLD, and viral hepatitis are the leading associated causes of liver 
cirrhosis worldwide, we have mainly summarized the clinical studies 
related to dysbiosis in these diseases.

In general, the 16S rRNA gene sequencing analysis showed a 
significant decrease in the levels of Lachnospiraceae and 
Ruminococcaceae in patients with liver cirrhosis, while the whole-
metagenome shotgun sequencing analysis showed that the level of 
Faecalibacterium prausnitzii from the Ruminococcaceae and of 
Coprococcus spp. from the Lachnospiraceae are significantly reduced 
(31, 32). Dysbiosis of intestinal flora further aggravates liver injury. 
Studies have shown that the severity of liver injury is closely related to 
the severity of intestinal flora dysbiosis (33). Changes in the fecal 
bacterial flora are manifested by changes in the composition of the 
major Bacteroidetes and Sclerotiniaceae, which produce short-chain 
fatty acids (SCFA) that are a source of energy for intestinal epithelial 
cells, and also regulate BA metabolism and induce modulation of the 
immune function of the intestinal barrier (34). Dysbiosis of the 
intestinal flora affects changes in intestinal permeability and intestinal 
metabolites that may be involved in the progression of cirrhosis and 
its associated complications (35).

2.1 ALD and NAFLD

Liver cirrhosis is the common pathologic of the advanced stage of 
ALD and NAFLD (36). Alcohol and its metabolites can affect the tight 
junction between intestinal epithelial cells, impair intestinal barrier 
function, induce bacterial translocation and endotoxemia (37, 38). 
Gut dysbiosis is closely related to the occurrence and development of 
NAFLD and ALD, but the mechanism is not clear (39, 40). The 
intestinal microbiota can promote the development of human NAFLD 
and ALD into end-stage liver disease (41, 42), indicating that gut 
dysbiosis may be the common changes of these diseases. A higher 
abundance of Enterobacteriaceae and Halomonadaceae, and lower 
Lachnospiraceae, Ruminococcaceae, and Clostridialies XIV in alcoholic-
related liver cirrhosis than non-alcoholic cirrhotics, whereas 
non-alcoholic steatohepatitis-related liver cirrhosis (NASH) had a 
higher level of Porphyromonadaceae, Bacterioidaceae, and lower 
Veillonellaceae compared to those without NASH etiology (43). The 
number of Escherichia coli, anaerobes, Lactobacillus, and streptococci 
in intestinal microflora of patients with NAFLD is higher than that of 
healthy controls (44). Compared to healthy controls, the proportion 
of Bacteroidetes was significantly reduced, whereas Proteobacteria and 
Fusobacteria were highly enriched in the ARLC patients with different 
etiologies (45). The median abundance of Bacteroidetes was lower and 
the median abundance of Proteobacteria was higher in the intestines 
of patients with ALD, and these changes appeared to be associated 
with higher serum endotoxin levels in some of the samples (46). 
Studies have shown that alcohol causes a significant increase in 
Veillonellaceae and a decreasing trend in Bacteroidaceae and 
Porphyromonadaceae (47). 16S rRNA gene sequencing revealed that 
Peptostreptococcacae, Proteobacteria, Pasteurellaceae and Bacillales 
were significantly increased, while Lachnospiraceae, Ruminococcaeae, 
Clostridiales cluster XIV, Prevotellaceae and Bacteroidaceae 
significantly decreased in ARLC patients (48). Metagenomic 
sequencing revealed that Bifidobacterium, Streptococcus and 
Lactobacillusspecies were significantly increased, while Akkermansia, 
Coprococcus, Unclassified and Clostridiales significantly decreased in 
ARLC patients (49).

For NASH patients, there was a significant increase in Clostridium 
coccoides, Porphyromonadaceae and Actioidaceae and a decrease in 
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Veillonellaceae and Bacteroidetes (43, 50). For NAFLD patients, 
ClostridiumXI in the Peptostreptococcaceae, the Anaerobacter in the 
Clostridiaceae, Streptococcus and Lactobacillus were significantly 
increased, while Lentisphaerae, Ruminococcaceae, Oscillibacter, 
Flavonifractor and Bacteroidetes decreased (44). Table 1 summarizes 
the studies about gut dysbiosis in ALD and NAFLD-related 
liver disease.

2.2 Viral hepatitis-related cirrhosis

Infection of hepatitis B and C viruses is the cause of viral hepatitis 
cirrhosis, which Characterized by chronic inflammation, diffuse liver 
fibrosis, and pseudolobular formation (53). Recent works have shown 
that hepatitis virus (mainly hepatitis B virus and hepatitis C virus) 
related cirrhosis has unique bacterial or fungal microbiota profiles, 
which include increased numbers of Enterobacteriaceae, Prevotella, 
Streptococcus, Staphylococcaceae, and Veillonella spp., as well as 
decreased Firmicutes, Bifidobacteria, Lachnospiraceae, Bacteroidetes, 
Ruminococcus, and Clostridium (54, 55). Sequencing of the 16S rRNA 
gene for HBV patients revealed significant increases in Veillonella, 
Megasphaera, Dialister, Atopobium, and Prevotella, and significant 
decreases in Neisseria, Haemophilus, and SR1 genera incertae sedis 
significantly decreased (56). Sequencing of the 16S rRNA gene for 
HCV revealed a significant increase in Prevotella, Succinivibrio, 
Catenibacterium and Megasphaera in the Ruminococcaceae and a 
significant decrease in Enterobacteriaceae, Erysipelotrichaceae and 
Rikenellaceae (57). But whether the direct-acting antivirals could 
affect the intestinal microbiota composition in cirrhotic patients is still 
a matter of controversy (58, 59). Although the gut microbiota varied 
slightly from study to study, small differences were found after treating 
patients. Table 2 summarizes the recent studies about gut dysbiosis in 
viral hepatitis-related disease.

3 Liver cirrhosis-related complications 
and dysbiosis

Liver cirrhosis-related complications severely impact the survival 
rate and mortality of patients with liver cirrhosis, such as portal vein 
thrombosis (PVT), spontaneous bacterial peritonitis (SBP), hepatic 
encephalopathy (HE), portal hypertension (PH), hepatorenal 
syndrome (HRS), hepatopulmonary syndrome (HPS), and 
hepatocellular carcinoma (HCC). Gut dysbiosis, bacterial 
translocation, and intestinal barrier injury in liver cirrhosis patients 
exert crucial roles in liver cirrhosis-related complications (Figure 1).

3.1 PVT

PVT is a common complication observed in liver cirrhosis and 
occurs in intrahepatic branches of the portal vein, with or without 
superior mesenteric vein and splenic vein thrombosis (67). The 
prevalence of PVT is approximately 1%–26% (68). The pathogenesis 
of liver cirrhosis with PVT is unclear. Slow portal vein blood flow 
caused by liver cirrhosis is the important factor for PVT (69). The 
decrease of symbiotic anaerobes and the increase of pathogen 
abundance after gut dysbiosis, especially the increase of 

Gram-negative Enterobacteriaceae, are closely related to the 
occurrence of PVT (70). Bacterial LPS is the glycolipid on the outer 
membrane of Gram-negative bacteria and is one of the key factors in 
the hypercoagulable state of liver cirrhosis (71, 72). The translocation 
of bacteria and pathogen-associated molecular patterns (PAMPs), 
especially LPS, will cause systemic inflammation, endotoxemia, and 
platelet activation, at the same time, systemic inflammation and 
elevated levels of systemic inflammatory factors exacerbate the risk of 
PVT formation (73, 74). Liver cirrhosis patients usually have higher 
endotoxemia and systemic inflammation due to gut dysbiosis. 
Endotoxin can increase thrombosis through the production of tissue 
factor (TF) (75). With the increase of intestinal permeability and 
bacterial translocation, the level of LPS in the blood of patients with 
liver cirrhosis increased significantly. Due to the immune function of 
the liver, the level of LPS in the portal system was significantly higher 
than that in the systemic circulation (76, 77).

After entering the circulation system, LPS interacts to toll-like 
receptors (TLRs) and initiating a series of pathophysiological changes 
linked to the formation of PVT. On the one hand, LPS binds to TLRs 
expressed on hepatocytes and immune cells. Activation of these cells 
will release a huge amount of inflammatory cytokines, chemokines, 
vasoactive factors, adhesion molecules, and reactive oxygen species 
(ROS) (78–80), resulting in systemic inflammation, the proliferation 
of hepatic stellate cells, and the development of liver cirrhosis (81). On 
the other hand, LPS binds to TLRs receptors expressed on vascular 
endothelial cells, platelet, and neutrophils, promoting blood 
hypercoagulability and PVT in the context of liver cirrhosis (70) 
(Figure 2).

3.1.1 LPS and endothelial cells
LPS binds to TLRs receptors on vascular endothelial cells and 

activates endothelial cells to release von Willebrand factor (vWF) and 
factor VII (43, 82). Animal experiments showed that LPS could also 
bind to toll-like receptor 2 (TLR2) on hepatic endothelial cells to 
promote the synthesis of the vWF precursor and promote platelet 
integrin-dependent thrombus growth, while the synthesis of vWF in 
hepatic endothelial cells decreased and the level of plasma vWF 
decreased significantly in TLR2 knockout mice (83). In vitro studies 
have shown that LPS can stimulate the formation and secretion of 
Weibel–Palade bodies in endothelial cells through toll-like receptor 4 
(TLR4), and promote the release of VIII and vWf into the blood 
resulting in a blood hypercoagulable state. TLR receptor blockers can 
significantly inhibit the release of VIII and vWf, indicating that LPS in 
the intestinal microbiota increases the level of systemic factor VIII by 
stimulating the release of endothelial cells (43). The level of 
Plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen 
activator (TPA), key determinants in thrombosis, were shown to 
be related to the gut microbiota. In vivo and in vitro studies have 
shown that bacterial lipoprotein TLR2 agonists can increase vascular 
endothelial cell permeability, increase plasma PAI-1 and decrease 
TPA (84).

3.1.2 LPS and platelets
Platelet activation in patients with liver cirrhosis may 

be associated with increased levels of circulating LPS (85). TLR2 
and TLR4 are widely distributed on the surface of platelets. The 
activation of the TLR2 in platelets causes the activation of platelets, 
which can cause platelets to release their own stores of α-particles 
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TABLE 1 The changed gut microbiota in alcohol and NASH-related liver disease.

Author year Study population Study method 
samples

LC cases Changed microbiota

Increased Decreased

Chen et al. (45) 2011 36 patients

24 HCs

16S rRNA gene 

sequencing

Stool samples

12 ARLC Proteobacteria, Fusobacteria

Enterobacteriaceae

Veillonellaceae

Streptococcaceae

Bacteroidetes

Lachnospiraceae

Mutlu et al. (46) 2012 48 patients

18 HCs

LH-PCR

Mucosal tissue

19 ARLC Firmicutes

Bacilliand

Gammaprotoebacteria

Bacteroidetes

Clostridia

Kakiyama et al. (47) 

2013

84 patients

19 HCs

16S rRNA gene 

sequencing

Mucosal tissue

7 ARLC Enterobacteriaceae Lachonospiraceae

Ruminococcaceae

Blautia

Mouzaki et al. (50) 

2013

33 patients

17 HCs

qPCR

Stool samples

22 NASH C. coccoides Bacteroidetes

Raman et al. (51) 

2013

30 patients

30 HCs

16S rRNA gene 

sequencing

Stool samples

30 NAFLD Firmicutes

Lachnospiraceae

Dorea, Robinsoniella Roseburia

Lactobacillus

Ruminococcaceae

Porphyromonadaceae

Oscillibacter

Zhu et al. (52) 2013 47 patients

16 HCs

16S rRNA gene 

sequencing

Stool samples

22 NASH Bacteroides:

Prevotellaceae

Prevotella

Porphyromonadaceae 

porphyromonas

Proteobacteria:

Enterobacteriaceae

Escherichia

Firmicutes:

Lachanospiraceae

Ruminococcaceae

Blautiaand

Faecalibacterium

Clostridium

Actinobacteria:

Bifidobacteriaceae

Bifidobacterium

Bajaj et al. (43) 2014 219 patients

25 HCs

16S rRNA gene 

sequencing

Stool samples

32 NASH Porphyromonadaceae 

acterioidaceae

Veillonellaceae

Bajaj et al. (43) 2014 219 patients

25 HCs

16S rRNA gene 

sequencing

Stool samples

43 ARLC Enterobacteriaceae

Halomonadaceae

Lachnospiraceae

Ruminococcaceae

ClostridialiesXIV

Jiang et al. (44) 2015 53 patients

32 HCs

16S rRNA gene 

sequencing

Stool samples

53 NAFLD Firmicutes:

Peptostreptococcaceae:

ClostridiumXI

Clostridiaceae:

Anaerobacter

Streptococcus

Lactobacillus

Lentisphaerae

Ruminococcaceae

Oscillibacter

Flavonifractor

Bacteroidetes:

Porphyromonadaceae

Odoribacter

Porphyromonadaceae

Rikenellaceae

Alistipes

Bajaj et al. (48) 2017 48 patients

18 HCs

16S rRNA gene 

sequencing

Mucosal tissue

20 ARLC Peptostreptococcacae

Proteobacteria

Pasteurellaceae

Bacillales

Lachnospiraceae

Ruminococcaeae

Clostridiales cluster XIV

Prevotellaceae

Bacteroidaceae

Dubinkina et al. (49) 

2017

99 patients

60 HCs

Metagenomic

Stool samples

27 ARLC Bifidobacterium

Streptococcus

Lactobacillusspecies

Akkermansia

Coprococcus

Unclassified Clostridiales

HCs, healthy controls; 16S rRNA, 16S ribosomal RNA; LH-PCR, length heterogeneity PCR; LC, liver cirrhosis; ARLC, alcohol-related liver cirrhosis; NASH, non-alcoholic steatohepatitis; 
NAFLD, non-alcoholic fatty liver disease; PCR, polymerase chain reaction; LH-PCR, length heterogeneity PCR; qPCR, quantitative real-time PCR.
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TABLE 2 The changed gut microbiota in viral hepatitis-related liver disease.

Author year Study population Study methods 
samples

LC cases Changed microbiota

Increased Decreased

Chen et al. (45) 2011 36 patients

24 HCs

16S rRNA gene 

sequencing

Stool samples

24 HBV Proteobacteria

Fusobacteria

Enterobacteriaceae

Veillonellaceae

Streptococcaceae

Bacteroidetes

Lachnospiraceae

Xu et al. (60) 2012 32 patients

15 HCs

PCR

Stool samples

16 HBV Bifidobacterium species

Bifidobacterium dentium

Bifidobacterium species

Bifidobacterium longum

Bifidobacterium

catenulatum

Wei et al. (61) 2013 20 patients

20 HCs

Metagenomics

Stool samples

20 HBV Proteobacteria

Enterobacteriaceae

Veillonellaceae

Streptococcaceae

Escherichiacoli

Veillonelladispar

Veillonellaparvula

Bacteroidetes

Bacteroides

Qin et al. (62) 2014 123 patients

114 HCs

Metagenomics

Stool samples

99 HBV Proteobacteria

Fusobacteria

Veillonella, Streptococcus

Clostridium

Prevotella

Bacteroidetes

Bacteroides

Bajaj et al. (43) 2014 219 patients

25 HCs

16S rRNA gene 

sequencing

Stool samples

119 HCV Staphylococcae

Enterococceae

Enterobacteriaceae

Clostridiales XIV

Lachnospiraceae

Ruminococcaceae

Rikenellaceae

Veillonellaceae

Porphyromonadaceae

Aly et al. (63) 2016 7 patients

8 HCs

16S rRNA gene 

sequencing

Stool samples

7 HCV Bacteroidetes

Prevotella

Acinetobacter

Veillonella

Phascolarctobacterium

Ruminococcus

Parabacteroides

Bifidobacterium

Chen et al. (56) 2016 30 patients

20 HCs

16S rRNA gene 

sequencing

Mucosal tissue

24 HBV Firmicutes

Veillonella, Megasphaera

Dialister

Atopobium

Prevotella

Proteobacteria

Neisseria

Haemophilus

SR1 genera incertae sedis

Ponziani et al. (59) 

2018

12 patients

12 HCs

16S rRNA gene 

sequencing

Stool samples

12 HCV Proteobacteria

Staphylococcaceae

Veillonellaceae

Enterobacteriaceae

Corynebacteriaceae

Micrococcaceae

Staphylococcus

Dialister

Eubacterium

Enterococcus

Corynebacterium

Methanobacteriaceae

Methanobrevibacter

Inoue et al. (64) 2018 166 patients

23 HCs

16S rRNA gene 

sequencing

Stool samples

40 HCV Streptococcus

Lactobacillus

Lachnospiraceae, 

Ruminococcaceae

(Continued)
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FIGURE 1

Dysbiosis and liver cirrhosis and complications.

TABLE 2 (Continued)

Author year Study population Study methods 
samples

LC cases Changed microbiota

Increased Decreased

Heidrich et al. (65) 

2018

95 patients

50 HCs

16S rRNA gene 

sequencing

Stool samples

38 HCV Veillonella spp.

Lactobacillus spp.

Streptococcus ssp.

Alloprevotella spp.

Citrobacter spp.

Clostridium sensustricto spp.

Pediococcus spp.

Akkermansia spp.

Bifidobacterium spp.

Escherichia/Shigella spp. 

Haemophilus spp.

Micrococcus spp.

Weissella spp.

Bilophila spp.

Clostridium IV spp.

Clostridium XlVb spp.

Mitsuokella spp.

Vampirovibrio spp.

Butyricimonas spp.

Victivallis spp.

Zeng et al. (66) 2019 67 patients

15 HCs

16S rRNA gene 

sequencing

Stool samples

25 HBV Bacteroidetes

Bacteroides

Akkermansia

Atopobium

Atopobium

Parabacteroides

Firmicutes

Actinobacteria

Sultan et al. (57) 

2021

38 patients

38 HCss

16S rRNA gene 

sequencing

Stool samples

38 HCV Ruminococcaceae

Prevotella

Succinivibrio

Catenibacterium

Megasphaera

Enterobacteriaceae

Erysipelotrichaceae

Rikenellaceae

Bacteroides

Dialister

Bilophila

Streptococcus

Parabacteroides

Alistipes

HCs, Healthy controls; 16S rRNA, 16S ribosomal RNA; LC, Liver cirrhosis; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; PCR, Polymerase Chain Reaction.
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and dense particles to interact with vascular endothelial cells and 
promote platelet-dependent thrombosis (86, 87). In vitro studies 
have shown that platelets in patients with liver cirrhosis are more 
reactive to TLRs agonists than healthy people and have nothing to 
do with the number of platelets. The reactivity is significantly 
weakened in the presence of TLR4 blockers, indicating that LPS 
may activate platelets through TLR4 and may lead to liver cirrhosis-
related thrombotic complications (70). Activated platelets release 
P-selectin to stimulate monocytes and macrophages to release 
chemokines, promote platelet-monocyte aggregation, and release 
inflammatory molecules to change the chemotaxis and adhesion of 
endothelial cells (88).

3.1.3 LPS and neutrophils
Activation of neutrophils can induce thrombosis through the 

neutrophil extracellular bactericidal networks (NETs) (89, 90). In vitro 
animal models have shown that the elimination of NETs can prevent 
thrombosis (91). NETs are formed by neutrophils releasing nuclear 
contents (DNA-histone complex, double-stranded DNA, and 
neutrophil elastase) into extracellular space (92). Histone-DNA 
complex can activate coagulation factor XIIa activated by coagulation 
factor XII, and then activate coagulation factor XI and downstream 
endogenous coagulation pathway (93). Histone of NETs can promote 
thrombin production, endothelial cell activation, and thrombus 
formation through the platelet-dependent mechanism mediated by 
TLR2 and TLR4 (94).

3.1.4 Trimethylamine-N-oxide
Trimethylamine (TMA) lyase from intestinal microorganisms 

metabolizes phosphatidylcholine, choline and carnitine to TMA, 
which is further processed to trimethylamine-N-oxide (TMAO) by 
flavin monooxygenase (FMO) in the liver (95). TMAO not only 
aggravates cardiovascular events but also is closely related to the 
formation of thrombosis (96). TMAO activates platelets by increasing 

the release of Ca2+ stored platelets intracellular, while platelets with 
hyperreactivity enhance the thrombosis risk (97). The animal 
experiment showed that a high choline diet can enhance platelet 
hyperresponsiveness, but this will not occur with the intervention of 
antibiotics or a high choline diet in germ-free mice (98). Therefore, 
TMAO acts as a medium to closely connect intestinal microbiota 
with thrombosis.

Liver cirrhosis is usually accompanying by acquired factors of 
thrombophilia, such as hyperhomocysteinemia, secondary to vitamin 
B and folate deficiencies, and antiphospholipid antibody syndrome 
(67). Moreover, the levels of albumin and protein C were lower in 
patients with liver cirrhosis compared to healthy controls, and low 
levels of albumin and protein C were associated with the increased 
risk of PVT formation (99, 100). Abnormal metabolic state, 
hemodynamic changes, and PAI-1  in patients with NAFLD may 
contribute to prethrombotic state and hypercoagulable state (101, 
102). In a cross-sectional study, NASH-related cirrhosis was the 
strongest independent risk factor for the independent diagnosis of 
PVT in patients undergoing liver transplantation (103).

3.2 SBP

SBP is a common and serious complication in cirrhotic patients 
(104). It refers to primary peritonitis that occurs in patients with 
cirrhosis and ascites without abdominal infection lesions (105). 
Animal experiments showed that the bacteria strain isolated from 
intestinal mucosa lymphoid tissue and ascites was similar (106). 
These studies provide strong evidence for the role of bacterial 
translocation in SBP. The bacterial translocation and the increase 
of intestinal permeability is the main mechanism of SBP in the 
setting of liver cirrhosis, at the same time, the decrease of host 
immune clearance ability is also closely related to the occurrence 
of SBP (43).

FIGURE 2

Dysbiosis and PVT.
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Gram-negative bacteria, such as Escherichia coli and Klebsiella, 
and Gram-positive bacteria are common causes of SBP (107, 108). The 
patients with liver cirrhosis were accompanied by decreased diversity 
of the gut microbiota, which was characterized by a significant 
reduction in autochthonous taxa and a significant increase in 
pathogenic taxa (109). Clinical studies have shown that Streptococcus 
spp., Klebsiella, Escherichia, and Citrobacter spp. were mainly 
infectious organisms on routine culture in liver cirrhosis patients with 
SBP (43).

The gut-liver-immune axis plays a key role in SBP. The changes in 
intestinal motility, mucosal immunity, and drug usage in patients with 
liver cirrhosis will lead to significant changes in the composition of 
gastrointestinal microorganisms and aggravate the translocation of the 
intestinal microbiota (110, 111). Moreover, interaction between BA 
and its receptor farnesoid X receptor (FXR) helps to maintain intestinal 
barrier function and reduce bacterial translocation (112). Animal 
experiments showed that FXR agonists could reduce intestinal 
permeability and bacterial translocation through FXR (29, 113). In 
addition to FXR agonists, selective intestinal decontamination is an 
important measure for the treatment of SBP. Intestinal decontamination 
with rifaximin and norfloxacin significantly decreased the incidence 
of SBP in cirrhotic patients with ascites (114, 115), but rifaximin was 
more effective than norfloxacin in the secondary prevention of SBP 
(116). Moreover, non-selective β-blockers (NSBB) can reduce intestinal 
permeability, markers of bacterial translocation (IL-6/LPS binding 
protein), and SBP by improving intestinal motility and reducing 
intestinal bacterial overgrowth (117, 118).

3.3 HE

HE is a severe complication of advanced liver cirrhosis and is 
closely linked to the gut-liver-brain axis (119). The impaired hepatic 
clearance ability with the progression of liver cirrhosis is reconsider 
phrasing for clarity, neurotoxic substances, and false neurotransmitters 
produced by the intestinal microbiota (120). These substances have an 
important effect on HE. Moreover, the formation of portal shunts 
further facilitates the entrance of the microbial metabolites into the 
blood (121).

A series of inflammatory cytokines and endotoxemia caused by 
gut dysbiosis can impair blood-brain barriers, neuroinflammation, 
and affect cognition (122). Compared with healthy people, the specific 
bacteria (Alcaligenes, Porphyromonas, and Enterobacteriaceae) in fecal 
microbiota were significantly increased in liver cirrhosis patients 
complicated with HE and were strongly related to the cognition and 
inflammation of HE (123). A study analyzed the relationship between 
cognition, Magnetic resonance imaging parameters, and intestinal 
microflora and found that patients with HE had a significantly lower 
cognitive ability, systemic inflammation, gut dysbiosis, and 
hyperammonemia than controls and cirrhotic patients without 
HE (119). Specific microbial families (autochthonous taxa negatively 
and Enterobacteriaceae positively) correlated with changes in 
astrocytes associated with magnetic resonance spectroscopy and 
hyperammonemia (119). Treatment methods such as fecal microbial 
transplantation, intestinal decontamination, and diet regulation for 
the intestinal microbiota can improve the cognitive level of patients 
with HE (124–126). Therefore, Gut dysbiosis is associated with the 
development of HE (43).

Emerging evidence also shows that brain cholesterol 
accumulation contributes to the progression of HE  through 
BA-mediated effects on the FXR (127). Moreover, serotonin and 
tryptophan metabolism via the gut microbiota is a key factor for the 
occurrence of central nervous system diseases (128). Recent studies 
have found that bacteria (Stenotrophomonas pavanii, 
Methylobacterium extorquens) and metabolites (methanol, threonine) 
in the blood and feces of patients with liver cirrhosis are positively 
correlated with HE, while fecal Enterobacteriaceae and TMA were 
positively correlated with blood proinflammatory cytokines (129). 
Therefore, bacteria or their metabolites in the blood are correlated 
with systemic inflammation and HE in patients with liver cirrhosis. 
Those studies provide new perspectives and treatment strategies for 
the pathogenesis of HE.

3.4 PH

Liver structural disorder and nodular regeneration in liver 
cirrhosis will cause compression of hepatic sinusoids and blood 
vessels, and increase intrahepatic resistance, resulting in (PH) (130). 
PH has an important effect on intestinal permeability, gut microbiota, 
and bacterial translocation. PH reduces intestinal mucosal blood flow, 
causes neoangiogenesis, ischemia, and edema of the intestine, 
destroying intestinal barrier function (131). Therefore, the gut 
dysbiosis in liver cirrhosis causes the translocation of a large number 
of bacteria and products, especially LPS, into the blood, leading to 
activate the immune system and causes systemic inflammation via 
interacting with TLRs (43, 132), and activation of the liver immune 
system and systemic inflammation promote the progression of liver 
cirrhosis and aggravate PH (133). In the animal model, intraperitoneal 
injection of LPS activates the expression of TLR4 and increases 
inflammatory mediators, leading to escalating PH (134). The release 
of systemic inflammatory factors (nitric oxide, NO), can also reduce 
systemic vascular resistance and induce hyperdynamic circulation, 
thus affecting PH (135, 136). Therefore, there is an important 
pathophysiological relationship between PH and the gut-liver axis.

FXR not only plays an important role in intestinal microflora 
homeostasis, BA metabolism, and intestinal barrier function, but also 
in anti-fibrosis and reducing PH. In the experimental liver cirrhosis, 
non-steroidal FXR agonist PX20606 improves PH via reducing 
intestinal bacterial migration, liver fibrosis, vascular remodeling, and 
hepatic sinusoid dysfunction (137). Studies in preclinical models of 
cirrhosis shows that intestinal decontamination can improve the 
portal vein pressure and hyperdynamic circulation in liver cirrhosis 
(138). These studies provide insight into molecular mechanisms and 
novel therapeutic targets in PH.

3.5 HRS

HRS refers to functional acute renal failure in patients with severe 
liver disease (139). HRS is a severe complication of advanced liver 
cirrhosis with a prevalence between 11% and 20% (140). The 
mechanism of HRS is not clear, but it is mainly related to the following 
two aspects: on the one hand, the production of ascites increases, and 
the circulating blood volume decreases after decompensation of liver 
cirrhosis, resulting in prerenal renal failure (141); on the other hand, 
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the bacterial dysbiosis and the translocation of bacteria and related 
products after decompensation of liver cirrhosis lead to the 
endotoxemia, which is closely related to HRS (142, 143). Animal 
model studies have shown that the increased expression of TLR4 in 
the kidney tissue of cirrhotic rats increases the susceptibility to LPS, 
then activates the NF-κB pathway, increases the expression of 
proinflammatory cytokine tumor necrosis factor-α (TNF-α), and 
renal tubular injury (144). Selective gut decontamination can improve 
the systemic hemodynamics and renal function of patients with liver 
cirrhosis, indicating that the gut microbiota plays an important role 
in HRS (144, 145). Moreover, the albumin infusion improves renal 
function in cirrhotic patients and sepsis via affecting endotoxemia, 
hemodynamics, and oxidative stress (146, 147). Moreover, circadian 
hemodynamic in cirrhosis is related to renal function (148). As 
mentioned above, gut dysbiosis has a close relationship with circadian 
rhythm, it is not clear whether the diurnal rhythm of the microbiota 
can affect renal function by regulating hemodynamics.

3.6 HPS

HPS is a pulmonary complication in liver cirrhosis patients and 
charactered by pulmonary microvascular dilatation and hypoxemia 
(149). The pathogenesis of HPS is unknown. The bacterial 
translocation, intestinal endotoxemia, and pulmonary microvascular 
dilatation may closely relate to the pathogenesis of HPS (150–152). 
Studies on animal models have shown that bacterial translocation, 
intestinal endotoxemia, and related inflammatory factors are closely 
related to the occurrence of HPS (153). Moreover, bacterial 
translocation can increase the incidence and severity of HPS in 
cirrhotic rats, and prophylactic norfloxacin usage can reduce the 
incidence and severity of HPS (154). However, antibiotic norfloxacin 
usage in clinical patients does not improve the gas exchange of HPS 
(155). Therefore, there need to be  further studies on the effect of 
antibiotics in patients with HPS and the role of the specific intestinal 
microbiota in the pathogenesis of HPS.

3.7 HCC

HCC is the most common type of liver cancer as well as the 
common cause of death in patients with advanced cirrhosis (156, 157). 
Moreover, different etiologies may affect the composition of the 
microbiota in HCC patients (158). As aforementioned, systemic 
inflammation caused by the translocation of bacteria, LPS, bacterial 
DNA, and peptidoglycans by activating the TLRs is crucial for the 
development of HCC (42, 159). LPS activates TLR4 signal to promote 
the production of interleukin-6 (IL-6) and TNF-α, mediating the 
differentiation of hepatic progenitor cells into myofibroblasts, and 
promoting the proliferation and malignant transformation of hepatic 
progenitor cells (160). Therefore, LPS and TLR4 are closely related to 
the development of cirrhotic patients to HCC (161). Compared to 
NAFLD cirrhotic patients without HCC, the NAFLD cirrhotic patients 
with HCC have a higher abundance of Bacteroidetes at the phylum 
level, Bacteroidaceae, Streptococcaceae, Enterococcaceae, and 
Gemellaceae at the family level, and Phascolarctobacterium, 
Enterococcus, Streptococcus, Gemella, and Bilophila at the genus level 
(162). In another study, intestinal microbiota constitution in cirrhotic 

patients with HCC is distinguished from those without 
HCC. Compared patients without HCC, Haemophilus, Eggerthella, 
Bifidobacterium, Butyricimonas, Christensella, Odoribacter, an 
unknown genus phylum Tenericutes, and an unknown genus, phylum 
Firmicutes, family Erysipelotrichaceae were all elevated in cirrhotic 
patients with HCC, while Fusobacterium, Prevotella, Streptococcus, 
S24-7 (Phylum Bacteroidetes) and an unknown genus were all 
decreased. Thus, gut dysbiosis is a crucial factor in cirrhotic patients 
with HCC (163).

4 Conclusion

The intestinal microbiota plays a significant role in human health 
and disease. Gut dysbiosis is associated with the onset and progression 
of liver cirrhotic and its complications. The correlation between 
specific intestinal microbiota and pathogenesis of liver cirrhosis 
related complications needs further study. The gut microbiota can 
be used as a potential diagnosis biomarker and treatment target for 
liver cirrhosis and its complications. It has been reported that 
bacteriophage therapy (164), microRNA therapy (165), and carbon 
nanoparticles (166) that based on targeting the intestinal microbiota 
in liver cirrhosis. It is important to assess the role of the gut microbiota 
in the pathogenesis of liver cirrhosis and its complications. With the 
rise of personalized medicine and nanomedical technology, treatment 
options that targeting specific intestinal microbiota composition may 
be the most promising treatment for liver cirrhosis and complications 
in the future.
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