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Accurate detection and reliable assessment of therapeutic responses in bone 
metastases are imperative for guiding treatment decisions, preserving quality of 
life, and ultimately enhancing overall survival. Nuclear imaging has historically 
played a pivotal role in this realm, offering a diverse range of radiotracers and 
imaging modalities. While the conventional bone scan using 99mTc marked 
bisphosphonates has remained widely utilized, its diagnostic performance 
is hindered by certain limitations. Positron emission tomography, particularly 
when coupled with computed tomography, provides improved spatial resolution 
and diagnostic performance with various pathology-specific radiotracers. This 
review aims to evaluate the performance of different nuclear imaging modalities 
in clinical practice for detecting and monitoring the therapeutic responses in 
bone metastases of diverse origins, addressing their limitations and implications 
for image interpretation.
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Introduction

The skeleton is the most common organ affected by metastatic spread in solid tumors, 
notably in breast and prostate carcinomas. Given the prevalence of bone metastasis in specific 
cancers, vigilant monitoring for bone involvement and prompt intervention are integral 
aspects of cancer care for individuals at risk. When cancer cells invade the bones, they can 
disrupt normal bone function, leading to symptoms like bone pain, pathological fractures, and 
complications related to modifications in bone marrow function. Complications associated 
with bone metastases are collectively referred to as skeletal-related events (SRE), primarily 
encompassing pathological fractures, spinal cord compression, and hypercalcemia. SREs are 
remarkably common among metastatic patients, occurring on average every 3–6 months (1). 
Early diagnosis and assessment of therapeutic responses to bone metastases are crucial for 
guiding cancer treatment strategies and minimizing the occurrence of SREs. Managing bone 
metastasis often involves a range of treatments, including surgery, radiation therapy, 
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bisphosphonate medications, targeted therapies, and palliative care, 
aimed at alleviating symptoms and enhancing the patient’s quality 
of life.

In the last decade, significant progress has been made in 
understanding the tumoral burden on the skeleton. The intricate 
dependence and interaction between cancer cells and the bone 
microenvironment has been emphasized. Normal bone tissue 
undergoes constant dynamic remodeling, where the functions of 
osteoclastic resorption and osteoblastic production are intricately 
balanced. Disruption of this delicate equilibrium by cancer cells 
results in the production of various patterns of bone lesions (2). 
Skeletal metastases are commonly classified as osteolytic, sclerotic, or 
osteoblastic based on the radiographic appearance of the lesion. 
However, schematic dichotomous differentiation is not always 
possible, as lesions may exhibit both morphological types (mixed 
metastasis). Predominance of bone resorption mechanisms, generally 
mediated by activated osteoclasts, leads to the detection of destructive 
bone lesions, giving metastasis a lytic aspect. Lytic metastases are most 
common and prevalent in breast, lung, thyroid, renal, and gastro-
intestinal malignancies. Myeloma almost always causes osteolytic 
metastases. Conversely, amplified osteoblastic activity, associated with 
abnormal formation of frequently unstructured new bone, is prevalent 
in metastases with a sclerotic appearance. While prostate carcinoma 
is the main cause of osteoblastic metastases, breast, lung, and 
neuroendocrine tumors can also cause sclerotic bone lesions.

Metastatic spread predominantly targets skeletal segments rich in 
highly vascularized red marrow deposits. The physical properties of 
circulation in these areas, characterized by vascular sinusoids with 
endothelial cells lacking a basement membrane, facilitate tumor 
extravasation (3). Consequently, the axial skeleton, ribs, long bones, 
and vertebral column are commonly affected sites of metastasis. The 
metastatic process involves a complex multistep interaction between 
malignant cells and the host microenvironment. Early stages include 
local tumoral proliferation, cellular detachment, and invasion of organ 
stroma. Systemic circulation is reached through the penetration of 
cells into blood vessels and/or lymphatic structures. Adhesion and 
extravasation into the target organ (bone microenvironment) are 
crucial stages in metastatic development. Cell adhesion molecules 
(CAM), expressed on the surface of tumoral cells and in the metastatic 
site, play a key role in this process, supporting the nonrandom 
hypothesis of tumor metastases (4, 5). Integrins, a common CAM 
family, facilitate tumoral cell adhesion to vascular endothelial 
structures. The rupture of blood vessel basement membranes, induced 
by the secretion of proteolytic enzymes (i.e., type IV collagenase) by 
tumoral and host cells, predicts tumoral extravasation through 
chemotaxis. Subsequent interaction with the microenvironment, 
involving osteolytic and osteoblastic phenomena, occurs (6). The 
development of bone metastases can be summarized in four steps (7): 
(a) bone colonization by circulating tumor cells, formation of a 
premetastatic niche in the bone marrow, extravasation of circulating 
tumor cells influenced by pro-migratory and pro-inflammatory 
tumor-secreted molecules, and tumor cell engraftment; (b) cancer cell 
dormancy, as the bone marrow environment limits cancer cell 
proliferation; (c) reactivation of dormant cells after acquiring 
appropriate genetic mutations allowing them to express bone-specific 
proteins; (d) disruption of bone homeostasis through the secretion of 
factors that stimulate or inhibit osteoclast and osteoblast activity, 
leading to the development of metastases.

Nuclear medicine imaging

Nuclear medicine imaging has been a cornerstone in the 
diagnosis and management of bone metastases, playing a vital role 
in the field of oncology (8, 9). This medical imaging modality 
provides a diverse array of radiotracers meticulously crafted to 
address various clinical scenarios. Furthermore, nuclear imaging 
continues to evolve with technological advancements, making it an 
essential tool in the detection and monitoring of bone metastases, a 
common manifestation of advanced cancer. Nuclear medicine 
enables a non-invasive characterization of tumoral functional status 
and variability at the molecular and cellular level, examining the 
uptake intensity and kinetics of several radiotracers. Molecular 
imaging techniques are highly sensitive, allowing the detection of 
diseases at the initial stages. To enhance diagnostic accuracy, the 
integration of anatomical and functional imaging is often achieved 
through “hybrid” modalities such as Positron Emission Tomography/
Computed Tomography (PET/CT) and Single Photon Emission 
Computed Tomography/Computed Tomography (SPECT/CT) 
devices (10). While PET/MRI hybrid systems are now available, their 
role is still being established, and their clinical routine availability 
is limited.

Understanding the pathophysiology of bone metastases is crucial 
for comprehending the deployment of various nuclear imaging 
modalities and their respective strengths and limitations. Nuclear 
imaging for bone metastasis detection relies on different radiotracers 
that offer insights into tumor activity, either directly (e.g.,18F-
fluorodeoxyglucose (18F-FDG), 18F-Fluorocholine (18F-FCH), 18F-or 

68Ga-radiolabeled prostate-specific membrane antigen (PSMA), 
18F-Fluoro-dihydroxyphenylalanine (18F-DOPA), radiolabeled 
somatostatin analogs like 68Ga-DOTA-peptides) or indirectly, often 
through the assessment of osteoblastic markers [bisphosphonates 
labeled with 99mTc, and 18F-Fluoride (18F-NaF)].

In this narrative review, we will explore the historical significance 
and the ever-evolving landscape of nuclear imaging in the diagnosis 
and management of bone metastases, highlighting its pivotal role in 
improving patient care and outcomes.

Bone scan: the historical cornerstone 
in the management of bone 
metastases

The predominant nuclear imaging technique utilized in the 
management of bone metastases is bone scintigraphy, commonly 
referred to as a bone scan (BS). Typically, this involves planar 
scintigraphy followed by tomographic acquisition, often combined 
with CT. A 99mTc-labeled bisphosphonate is intravenously administered 
for this procedure. This radiotracer binds to the mineralization front 
of hydroxyapatite crystals and the osteocyte gap boundary (11). 
Consequently, the uptake of the radiotracer is directly influenced by 
both osteoblastic activity and regional blood flow guiding it to 
its target.

The BS serves as a valuable tool for estimating the metabolic 
activity of the skeleton and identifying lesions that cause distinct 
alterations in physiological bone turnover, even in pre-radiological 
phases. In contrast, plain radiographs require a 30–50% bone mineral 
loss before visualizing bone metastases (12). The BS offers the 
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advantage of conducting a whole-body exploration in a short time, 
with low patient irradiation and high sensitivity for osteoblastic 
phenomena (13). However, its major drawbacks include a lack of 
specificity and a low sensitivity for bone lesions with a prevalent 
osteolytic pattern. Despite the emergence of PET/CT and MRI, the BS 
still has important indications in oncology, particularly in the work-up 
of metastatic breast cancer as per the 2021 European Society of 
Medical Oncology (ESMO) guidelines (14), advanced prostate cancer 
according to the 2020 American Society of Clinical Oncology 
guidelines (15), or moderate to high-risk prostate cancer according to 
the 2020 ESMO guidelines (16). In the following section on the BS, 
we  will focus on these two types of tumors, discussing their 
performance, limitations, and potential complementarity with other 
available diagnostic methods.

Diagnosis of bone lesions

Several studies have conducted a comparative analysis of the 
diagnostic accuracy between BS and 18F-FDG PET/CT in breast 
cancer. A 2008 meta-analysis revealed a pooled sensitivity for BS of 
88% and a specificity of 87% (17). A 2012 systematic review, focusing 
on newly diagnosed breast cancers, reported a median sensitivity of 
98% and a specificity of 93.5% (18). However, within these high 
median rates, there is variability among studies, with some reporting 
lower sensitivities. In a more recent 2017 study using histology, 
clinical, and imaging follow-up as a reference, a sensitivity of 89% was 
found for BS. Notably, different sensitivities were observed based on 
the phenotype of metastases, with a sensitivity of 94–100% for 
osteoblastic and mixed metastases, 90% for osteolytic, and 70% for 
infraradiologic metastases. In a recent study comparing 18F-FDG and 
BS, a sensitivity of about 51% was found for BS in detecting osteolytic 
lesions (19). These lower sensitivities are also observed in renal 
carcinoma, which is mainly responsible for lytic metastases (20–22). 
Concerning lung cancer, three meta-analyses comparing bone scans 
to 18F-FDG PET with or without CT reported sensitivities and 
specificities ranging from 86 to 91.8% and 68.8 to 88%, respectively 
(23–25). All these three meta-analyses concluded to the superiority of 
18F-FDG imaging.

In the context of prostate cancer, a recent meta-analysis conducted 
in 2023, comprising 31 studies, compared radiolabeled PSMA PET/
CT with conventional imaging for the initial staging of intermediate-to 
high-risk patients. The meta-analysis reported a pooled sensitivity of 
73% and a specificity of 79.1% (26). The sensitivity of BS is impacted 
by the low detection rate of lytic lesions, which are more common in 
high-risk patients, and by metastases smaller than the spatial 
resolution of the gamma camera (even with SPECT acquisitions), both 
often detected by PSMA PET/CT (26). These variations in sensitivity 
based on metastasis phenotype should be  considered when 
encountering lytic lesions without significant uptake. Additionally, the 
effectiveness of BS is limited by their inability to provide specific 
information about bone lesions, posing challenges in differentiating 
between benign bone tumors and metastases based solely on uptake 
patterns. To interpret results accurately and consider the possibility of 
a bone biopsy, a comprehensive understanding of the distinctive 
morphological traits of various benign bone tumors and their 
corresponding uptake levels in a BS is essential (10).

Follow-up during treatment

Assessing the therapeutic response using bone scintigraphy can 
be intricate and requires an understanding of various phenomena 
associated with the evolution of bone metastases in response to 
treatment (8, 27, 28). Factors such as flare-ups, changes in the density 
of bone metastases, and potential interferences from bisphosphonates 
and anti-RANKL agents can complicate the interpretation of results 
during systemic treatment for patients with bone metastases. These 
complexities may lead to misleading conclusions about tumor 
progression or response to the treatment.

Flare-up phenomenon
Flare-up is characterized by an apparent progression of bone 

metastases, such as an increase in the number of bone lesions or 
enlargement and heightened uptake intensity of known lesions, 
following the initiation of systemic therapy. This phenomenon is 
not indicative of actual disease progression. The main mechanisms 
proposed to explain flare-ups include bone formation replacing 
necrotic tumoral tissue and inflammatory responses secondary to 
the destruction of tumor cells. Additionally, in patients with 
prostate cancer treated with abiraterone, a direct anti-osteolytic and 
pro-osteoblastic effect of the drug has been observed, leading to 
increased uptake of bone-targeting radiotracers (29). Flare-up is 
typically observed in BS imaging but has also been reported in 
patients undergoing PET/CT with several radiotracers (30–33). 
This phenomenon is commonly seen within the first 6 months 
following the introduction of hormonal drugs and chemotherapy 
in prostate and breast cancer patients (27). It has also been 
documented in non-small cell lung cancer patients treated with 
gefitinib between 29 and 77 days after the initiation of treatment 
(34). To minimize misinterpretation, it is recommended to wait for 
a period of 6 months after the initiation of systemic treatment 
before assessing the therapeutic response. In patients with 
metastatic prostate cancer, the Prostate Cancer Working Group 3 
(PCWG3) has established criteria to differentiate between flare-up 
and real disease progression (35). According to these criteria, a 2 + 2 
rule is applied: over the first 24 weeks, patients should undergo a BS 
every 8–9 weeks. Genuine progression is defined by the 
identification of at least two new lesions on an initial BS, 
accompanied by the detection of at least two additional lesions on 
a subsequent BS.

In the era of SPECT/CT technology, there was optimism that the 
CT component would provide valuable insights for the interpretation 
of BS. Unfortunately, it turns out that CT is also susceptible to 
flare-ups. Among patients with castrate-resistant prostate cancer 
receiving treatment, a noteworthy 21% experienced an exacerbation 
of metastatic bone conditions when assessed through a 3 months CT 
scan, despite observing improvements in their PSA levels. 
Approximately one-third of these patients did not exhibit any CT 
progression when re-evaluated 6 months after the start of treatment 
(36). In addition, the flare-up phenomenon can also be  observed 
during morphological and diffusion MRI sequences, potentially 
leading to diagnostic errors if not recognized. Finally, despite the 
challenges in assessing the therapeutic response induced by the 
flare-up phenomenon, some authors suggest considering it to increase 
the sensitivity and specificity of bone scintigraphy after treatment 
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initiation, with potential therapeutic impact, particularly on tumors 
initially staged as localized (37).

Decreasing density of bone metastases
Similar to how an increase in the density of sclerotic bone 

metastases can be associated with either a therapeutic response or 
progression, studies in prostate cancer under androgen deprivation 
therapy have found that a decrease in the density of initially sclerotic 
bone metastases and a reduction in the uptake of bone-targeting 
agents can also be indicative of both scenarios (Figure 1) (38, 39). This 
may be  attributed to the suppression of the osteoblastic effect of 
testosterone in the event of a therapeutic response or the progression 
towards predominant lytic phenomena following the acquisition of 
resistance to hormonal therapy (38). In prostate cancer, this limitation 
could be overcome by the advent of radiolabeled PSMA PET/CT. In a 
retrospective analysis involving prostate cancer patients receiving 
androgen deprivation therapy, findings revealed that among the 65 
patients with bone metastases who underwent 68Ga-PSMA PET/CT 
scans, 15 individuals (23%) displayed a decrease in the density of their 
bone metastases. Among the 37 lesions that exhibited reduced density, 
21 (57%) were negative on PET scans, while 16 (43%) had intense 
68Ga-PSMA uptake (38). Significantly, PET scans did not detect any 
positive findings in the bone lesions of patients who exhibited a 
treatment response.

Interference of bisphosphonate and anti-RANKL 
treatment

The resemblance between bisphosphonates utilized in BS (such as 
99mTc-HDP, 99mTc-HMDP, 99mTc-MDP) and those employed for 
therapeutic applications could give rise to competition for binding 

sites and reduced tumoral uptake of the radiotracer. This hypothesis 
was supported by several clinical observations noting a reduced 
skeletal uptake as soon as 24 h after administration of etidronate (40–
43). The persistence of this effect could be observed for a duration of 
15 days, as evidenced by consecutive serial BS (42). However, besides 
small effective sizes, inconsistencies in scanning timing, and the 
absence of systematic control scintigraphy before bisphosphonate 
administration, all the reported clinical cases involved etidronate, 
which is not the main bisphosphonate used in clinical routine.

Three prospective studies addressed this question by comparing 
bone scintigraphy before and after the administration of different 
bisphosphonates such as pamidronate, clodronate, zoledronic acid, 
and alendronate, revealing no notable reduction in bone uptake 
observed during the course of treatment (44–46). In one autopsy 
series, the concordance between bone scintigraphy results and bone 
histology was investigated in 11 patients who had succumbed to 
androgen-independent prostate cancer. Among them, five had 
received pamidronate treatment (47). No significant difference in the 
detection of bone metastases was reported in patients treated 
with pamidronate.

Today, denosumab, an anti-RANKL that inhibits osteoclast 
function, has largely replaced bisphosphonate in patients with bone 
metastases to reduce the risk of SREs. Very few data are available to 
evaluate its impact on bone scintigraphy. One review reported a case 
of almost normalization of bone metastases uptake after the 
introduction of denosumab, despite the rise in biological tumor 
markers (48). A more recent study compared the uptake intensity of 
18F-NaF between patients treated by denosumab and a control group 
using cervical vertebrae as a reference, showing no significant 
difference (49).

FIGURE 1
99mTc-HMDP SPECT/CT in a first patient with a bone metastatic prostate adenocarcinoma under first generation hormonotherapy for 2  years, showing 
a right posterior iliac sclerotic bone metastasis with a high uptake (A,B). Routine follow-up 6  months later showed shading of the iliac metastasis and 
less intense uptake (E,F), linked to a progression confirmed by a rising PSA and subsequent imaging. 99mTc-HMDP SPECT/CT in a second patient with a 
bone metastatic breast invasive lobular carcinoma, displaying a vertebral sclerotic metastasis with a high uptake at initial staging (C,D). Routine follow-
up 12  months later showed a shadowing of the metastasis and a less intense uptake (G,H), indicative of a therapeutic response confirmed by clinical 
evolution and subsequent imaging.
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Response to treatment

The limitations of BS mentioned earlier, along with the gamma 
camera’s lower spatial resolution compared to PET/CT (approximately 
15 mm for SPECT/CT vs. 4 mm for last-generation PET/CT devices), 
its reduced sensitivity in detecting purely lytic lesions, and the time 
interval between an effective therapeutic response and the decline in 
bone-targeting radiotracer uptake, collectively diminish the 
effectiveness of BS in evaluating treatment responses. Additionally, 
bone scintigraphy is constrained by moderate interobserver 
agreement (50).

However, due to their accessibility and relatively low cost 
compared to PET/CT and whole-body MRI, BS are still widely used 
in the follow-up of metastatic patients. In this context, caution should 
be exercised when interpreting changes in BS; confirmation around 
8 weeks after the first equivocal BS should be carried out, or further 
investigations with other imaging modalities may be requested. In the 
specific case of prostate cancer, the previously mentioned PCWG3 
criteria can be applied (35). However, this semi-quantitative method 
does not account for lesions that are increasing in size and can 
therefore be misleading for some progressive patients. To address this 
limitation, an alternative quantitative approach known as the BS 
Index (BSI), specifically designed for prostate cancer, can be employed 
(51). It represents the fraction of the total skeleton involved in 
metastases. However, it remains a time-consuming process and is 
therefore not easily utilized in clinical routine. An automated version 
(aBSI) has been developed and is now available. Multiple studies 
conducted across various clinical scenarios have demonstrated that 
aBSI plays a prognostic role, exhibiting correlations with overall 
survival (50).

In the context of breast cancer, MD Anderson criteria can 
be  utilized to assess bone response (52). These criteria combine 
information from CT, MRI, radiography, and BS to classify the type of 
response. A prospective study based on MD Anderson criteria found 
a correlation between tumoral response at 6 months and progression-
free survival (53).

In monitoring the treatment response of prostate cancer under 
223Ra therapy, the pivotal trial did not recommend specific radiological 
tests (54). Several retrospective studies reported an increase in the 
number of bone lesions on BS after 12 weeks in 21–28% of patients. 
However, only very few cases of confirmed progression were observed 
after six infusions, indicating the possibility of a flare 
phenomenon (55).

123I-metaiodobenzylguanidine 
scintigraphy and bone metastases of 
neuroblastoma

Neuroblastoma is a common pediatric solid tumor originating 
from neural crest cells, which give rise to the adrenal medulla and 
sympathetic nervous system, expressing the norepinephrine 
transporter (56, 57). More than 50% of neuroblastomas are diagnosed 
at the metastatic stage (58), often involving bone and bone marrow 
(59), with only 30–40% long-term survival (60), necessitating more 
aggressive treatments (61). Therefore, imaging plays a crucial role in 
the initial staging and response assessment of neuroblastoma to guide 
therapeutic strategy.

mIBG is a norepinephrine analog taken up by neuroblastoma 
cells, allowing for the initial staging and response assessment of 
neuroblastoma, when labelled with 123I, scintigraphic imaging. mIBG 
is excreted into the urinary tract, and its physiologic uptake includes 
salivary glands, liver, spleen, myocardium, lower to mid-lung zones, 
colon, brown fat, and uncommonly normal adrenal glands (62). No 
mIBG physiologic uptake is observed in bone or bone marrow, 
making it a good tracer to evaluate bone involvement in neuroblastoma 
(62). Concerning diagnostic performances of 123I-mIBG planar 
scintigraphy in the detection of bone metastases, a 1988 study using 
histologic data as the gold standard found a sensitivity of 90% and a 
specificity of 100% (63). The addition of SPECT to planar scintigraphy 
is recommended, as it allows exact localization of uptake (i.e., bone 
versus soft-tissue uptake superimposed on planar acquisitions) and 
improves diagnostic accuracy (62, 64). However, mIBG imaging is 
time-consuming and suffers from poor spatial resolution compared 
to other current nuclear medicine modalities. Around 10% of 
neuroblastoma are not mIBG avid; in these cases, 18F-FDG PET/CT is 
recommended (64). Furthermore, a recent systematic review reported 
better performances of PET imaging with catecholaminergic tracers 
than 123I-mIBG in lesion-based analysis, notably for bone and bone 
marrow metastases, thanks to better sensitivity (65).

Several semi-quantitative scores have been developed to measure 
the extent of the disease and response to treatment. Two of them have 
shown good inter-observer concordance and a good correlation with 
outcome (66): SIOPEN score and Curie score, which should be used 
in initial and follow-up imaging (67). It is worth noting that the 
SIOPEN score only depends on the extent of bone involvement. More 
recent recommendations propose using the mIBG relative score (i.e., 
the absolute score of bone lesions at the time of response assessment 
divided by the absolute score of bone lesions at baseline before 
treatment) for response assessment (64).

Beyond the bone scan: positron 
emission tomography

18F-NaF PET, the PET counterpart of BS

18F-NaF is a PET bone tracer whose uptake mechanism resembles 
that of 99mTc-diphosphonates. In this process, 18F substitutes for 
hydroxyl groups in hydroxyapatite and covalently bonds to the surface 
of new bone. Therefore, the level of 18F-NaF uptake depends on both 
bone formation activity and loco-regional blood flow. Compared to 
99mTc-diphosphonates, 18F-NaF is characterized by faster 
pharmacokinetics, allowing image acquisition as soon as 30 min after 
injection, and a two-fold higher uptake in bone (68). Additionally, it 
benefits from the better spatial resolution and sensitivity of PET 
scanners compared to SPECT, providing a theoretically superior 
capacity to show smaller lesions.

Numerous studies and a few meta-analyses have assessed the 
diagnostic accuracy of 18F-NaF PET/CT in detecting bone metastases 
from various primary tumors. In a 2019 meta-analysis on a patient-
basis, Liu et al. reported various primaries pooled sensitivity of 93% 
(95% CI, 91–96%) and specificity of 95% (95% CI, 93–96%) when 
equivocal results were considered as negative, and 96% (95% CI, 
93–97%) and 93% (95% CI, 91–55%) when equivocal results were 
considered as positive. They also included studies comparing 18F-NaF 
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PET/CT to planar bone scintigraphy and found that 18F-NaF PET/CT 
shows superior sensitivity and specificity when equivocal results were 
considered as positive, and superior sensitivity but no significant 
difference in specificity when equivocal results were considered as 
negative (69). Concerning prostate cancer specifically, Sheikhbahaei 
et al. also found excellent diagnostic performance, with a sensitivity 
of 98% (95% CI, 95–99%) and specificity of 90% (95% CI, 86–93%), 
surpassing 99mTc-diphosphonate SPECT +/− CT (AUC 0.996 versus 
0.896, p < 0.001) (70). These results were reproduced in a recent 
prospective multicenter phase 3 trial comparing 18F-NaF PET/CT to 
99mTc-MDP SPECT/CT, including patients with breast or prostate 
cancer and a high risk or a clinical suspicion of bone involvement but 
without previous documented bone metastasis (71). Based on registry 
data, Hillner et al. have found that 18F-NaF PET, with or without CT, 
have a significant impact on treatment management of prostate cancer 
in initial staging and follow-up (72). It should be noted, however, that 
this study did not make any comparison with bone scan data, making 
it impossible to compare the impact of the two modalities. This 
question was partially addressed in a 2019 study, where Zacho et al. 
found that 18F-NaF PET/CT would provide no benefit in patients with 
a normal bone scan in initial staging (73). In an 81-patient population 
with moderate to high-risk prostate cancer, 18F-NaF indicated bone 
metastasis in 1 patient and was equivocal in 7 patients, but all of them 
exhibited biochemical response after radical prostatectomy. On the 
other hand, a similar study performed in a situation of biochemical 
relapse after definitive therapy for localized prostate cancer and no 
relapse found on conventional imaging, including bone scan, found 
that 18F-NaF PET/CT revealed bone metastases in 16% of the 
population, confirmed by clinical and imaging follow-up (74). 
However, it is noteworthy that 18F-NaF PET/CT found suspicious 
bone uptake, disproven by follow-up, in 11% of the patients. 18F-NaF 
PET/CT may, therefore, be able to detect bone metastases earlier, as 
suggested by another study reporting no difference between 18F-NaF 
PET/CT and BS for the response assessment of bone metastases from 
prostate cancer, perhaps due to a higher sensitivity at the baseline scan 
for 18F-NaF PET/CT (75).

The quantification of 18F-NaF uptake in bone metastases has been 
utilized in several studies to assess bone response (75–80). SUVmax is 
the main parameter used and has been shown to be correlated with 
PSA response, alkaline phosphatase kinetics, progression-free 
survival, and overall survival in prostate cancer (76, 78, 79), and to 
progression-free survival in breast cancer, using a threshold of ±25% 
change in SUVmax (81, 82). Similar to BS, 18F-NaF PET/CT is also 
susceptible to the flare phenomenon, as described, for example in 
breast and prostate cancer (81, 83, 84).

18F-FDG PET/CT for breast cancer 
management

18F-FDG PET/CT has emerged as a cornerstone in oncology due 
to its ability to offer valuable insights into tumor metabolic activity. 
Acting as an analog of glucose, 18F-FDG is transported from the blood 
to metabolically active cells, where it undergoes phosphorylation and, 
unlike glucose, is not further metabolized. The Warburg effect, which 
refers to cancer cells’ heightened consumption of glucose compared 
to normal cells, leads to increased uptake of 18F-FDG visible on PET 
imaging (85). Extensively used in oncology for cancer detection, 

staging, and restaging, 18F-FDG PET/CT enables clinicians to assess 
the effectiveness of ongoing treatments and identify potential disease 
recurrence. The ability to visualize metabolic changes before 
anatomical alterations occur enhances the sensitivity of the technique, 
contributing to early detection and intervention. Moreover, by gauging 
changes in metabolic activity post-therapy, clinicians can evaluate the 
effectiveness of treatments, allowing for timely adjustments to the 
therapeutic strategy. Various morphological and metabolic criteria 
have been proposed for this purpose, although they come with 
limitations in their application to bone metastases and in the context 
of the advent of targeted therapies and immunotherapy (86). 
Additionally, 18F-FDG PET/CT assists in the localization of biopsy 
targets, guiding clinicians to areas with heightened metabolic activity 
for more accurate and informed tissue sampling. Beyond these clinical 
applications, 18F-FDG PET/CT aids in the identification of distant 
metastases, contributing to a more comprehensive understanding of 
the disease’s spread. Despite being a powerful tool, 18F-FDG PET/CT 
has limitations, including false positives in areas of inflammation and 
false negatives in tumors with low glucose metabolism.

Initial staging
The shift toward using 18F-FDG PET/CT instead of CT and BS in 

metastatic breast cancer staging (14), as recommended by the 2021 
ESMO guidelines, aligns with numerous studies and meta-analyses 
comparing the diagnostic performances of these modalities. The 
per-patient sensitivities ranged from 81 to 93%, and the specificities 
ranged from 93 to 99%, with no significant differences noted between 
18F-FDG PET/CT and BS (17, 87, 88). However, it is worth noting that 
many patients were already undergoing treatment at the time of 
imaging, which can complicate definitive interpretations. Responding 
sclerotic metastases may show persistent radiotracer uptake on BS, 
even in the absence of 18F-FDG uptake. A more recent study involving 
84 patients with newly diagnosed metastatic breast cancer compared 
the performances of 18F-FDG PET/CT and BS, revealing that 18F-FDG 
PET/CT detected 87.4% of the total bone lesions, whereas BS 
identified only 26.3. Moreover, 18F-FDG PET/CT led to clinically 
relevant management differences in 16% of patients compared to 
BS (89).

The immunohistochemical characteristics of breast cancers, such 
as estrogen receptor (ER), progesterone receptor (PR), HER2 receptor 
expression, and Ki67, play a crucial role in determining therapeutic 
options and are also correlated with tumor aggressiveness. This 
correlation extends to the degree of 18F-FDG uptake, as confirmed by 
a recent meta-analysis. Tumors that are ER-negative, PR-negative, 
HER2-positive, and have a high Ki67 (>14%) exhibit significantly 
increased SUVmax (90). The histologic subtype of breast cancer 
further influences the level of 18F-FDG uptake, with invasive ductal 
carcinoma (IDC) being more 18F-FDG-avid than invasive lobular 
carcinoma (ILC) (91–93). Additionally, ILC bone metastases tend to 
be more often sclerotic than IDC metastases (91). Interestingly, BS 
appears to outperform 18F-FDG PET/CT in detecting sclerotic 
metastases, with detection rates of 55.6–74% versus 95–100% for bone 
scintigraphy (Figure 2) (94, 95).

As previously indicated, 18F-FDG PET/CT outperforms BS in the 
initial assessment not only of non-small cell lung carcinoma (23–25) 
but also in a variety of primitive such as renal carcinoma (96), 
hepatocellular carcinoma (97), head and neck cancers (98), or 
osteosarcoma (99).
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In the pre-therapeutic context, it is crucial to consider the 
histological subtype and immunohistochemical characteristics when 
encountering a consolidating bone lesion without 18F-FDG uptake. 
For tumors with low 18F-FDG avidity, the likelihood of a bone 
metastasis remains significant. It becomes important in such cases to 
search for other lesions with a similar phenotype that may exhibit 
uptake and to assess for morphologic progression based on previous 
imaging studies.

Response assessment
The efficacy of 18F-FDG PET/CT in evaluating therapeutic bone 

responses has been investigated in studies involving patients with 
bone-only or bone-dominant metastatic breast cancer. There is a 
correlation between the evolution of tumoral uptake and the 
response assessed by changes in biological tumor markers, 
conventional imaging, and subjective symptoms in bone-dominant 
metastatic breast cancer (100). Furthermore, a retrospective study 
with 102 patients demonstrated that a decrease in 18F-FDG uptake 
was an independent predictor of a longer response duration to 
treatment (101). These findings have been substantiated in recent 

studies (102, 103), indicating a significant correlation between 
higher uptake and shorter progression-free survival and shorter time 
before SRE occurs. Additionally, 18F-FDG PET/CT appears capable 
of detecting a quantifiable measurable response earlier than CT in 
retrospective a series (104). In a prospective study, including 26% of 
patients with bone-only metastatic breast cancer, 18F-FDG PET/CT 
identified disease progression 6 months earlier than CT did (105). 
Hence, 18F-FDG PET/CT emerges as a reliable tool for assessing 
bone response to treatment, potentially influencing clinical 
therapeutic decisions compared to BS and CT. It is worth noting that 
a flare-up phenomenon has been reported within the first 7–10 days 
following the introduction of tamoxifen in a prospective trial 
evaluating the role of 18F-FDG PET/CT in tamoxifen response 
assessment in breast cancer (106). However, this effect does not seem 
to persist over time, making it unlikely to be  a source of 
misinterpretation. In the case of non-small cell lung cancer, a flare 
phenomenon has also been described in a series of four cases after 2 
to 3 cycles (6 to 9 weeks) of bevacizumab associated with standard 
chemotherapy (107). It is worth noting that this effect did not 
involve non-osseous lesions.

FIGURE 2
18F-FDG PET/CT (A,B) and 99mTc-HMDP SPECT/CT (C,D) in a 75  years-old woman referred for initial staging of an invasive lobular carcinoma of the 
breast, showing multiples subcentimetric sclerotic bone lesions, linked to a diffuse bone invasion on the rest of the scans (not shown), without 18F-FDG 
and 99mTc-HMDP uptake, corresponding to bone metastases confirmed by biopsy.
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FIGURE 3
68Ga-PSMA PET/CT [anterior MIP (A), sagittal PET/CT (B)] and 18F-Fluorocholine PET/CT [anterior MIP (C), sagittal PET/CT (D)] illustrating the difference 
in sensitivity between the two radiotracers, 68Ga-PSMA PET/CT showing more bone metastases than 18F-Fluorocholine scan.

Radiolabeled choline and PSMA PET/CT for 
prostate cancer management

Prostate cancer cells usually exhibit low avidity for 18F-FDG, often 
showing no uptake on PET/CT scans. To address this limitation, two 
main radiotracers are available for molecular imaging of prostate 
cancer: radiolabeled choline and PSMA ligand (108, 109). Choline 
derivatives labeled with 18F or 11C are incorporated into 
phosphatidylcholine, a constituent of cell membranes, whose 
metabolism is increased in prostate cancer cells. PSMA, an enzyme 
highly expressed at the membranes of prostate cancer cells, serves as 
a target for radiolabeled PSMA ligands. These ligands bind to this 
enzyme and are subsequently internalized by the cell. Beyond its 
theragnostic potential via 177-Lutetium (177Lu)-PSMA, it has been 
demonstrated that this radiotracer is even more specific than 
radiolabeled choline, enabling the detection of millimetric or 
infraradiologic bone lesions.

Initial staging
Considering T-stage and N-stage, the less detailed anatomical 

information from CT (compared to MRI), the influence of the partial-
volume effect, and the limited sensitivity for the detection of micro 
metastases appear to be the most significant drawbacks for accurate 
staging with choline PET/CT (108). Various studies have assessed 18F-
FCh PET/CT in the M staging of medium-to high-risk prostate 
cancer. Langsteger et al. reported a sensitivity and specificity of 91 and 
83%, respectively, for the detection of bone metastases in prostate 
cancer patients (110). Wondergem et al. confirmed these favorable 
performances, reporting on a patient basis that sensitivity and 
specificity rates were 85.2 and 96.5% for 11C-Choline and 18F-FCh 
(111). It appears that 18F-FCh PET/CT is more sensitive in the early 

phase of the bone metastatic process, when the lesions are in the bone 
marrow and no cortical lesions are evident. In the clinical phase of the 
process, 18F-FCh PET/CT and bone scintigraphy have similar 
diagnostic performances.

PSMA PET/CT also demonstrates excellent performance in the 
initial M staging of prostate cancer (Figure  3). An intriguing 
retrospective study involving 30 patients assessed the uptake of 68Ga-
PSMA-11 and the type of bone metastases (112). Surprisingly, the 
study revealed that radiotracer uptake was significantly higher in 
osteolytic and bone marrow metastases compared to osteoblastic ones. 
Among 126 patients who underwent PSMA PET and planar BS within 
3 months, 37 patients were in the case of initial staging (113). In a 
patient-based analysis, the sensitivity and specificity were 100% (IC 
95 76.8–100%) versus 71.4% (IC 95 41.9–91.6%), and 100% (IC 95 
85.2–100%) versus 95.7% (IC 95 78.1–99.9%; p = 0.006) respectively. 
Hofman et  al. recently published a prospective, randomized, 
multicenter study called proPSMA (114). Three hundred and two 
patients with high-risk prostate cancer were randomly assigned to 
conventional imaging (i.e., bone scintigraphy and computed 
tomography) or PSMA PET/CT for the initial staging. PSMA PET-CT 
had a 27% (95% IC 23–31%) greater accuracy than that of conventional 
imaging: 92% (95% IC 88–95%) versus 65% (95% IC 60–69%); 
p < 0.0001. Bone metastases were detected in 15/150 (10%) patients in 
the PSMA PET/CT group. Most interestingly, first-line conventional 
imaging conferred management change less frequently: 23% (95% IC 
10–22%) versus 41% (95% IC 21–36%; p = 0.008).

Finally, one should be aware of the high rate of false-positive focal 
bone uptake with PSMA PET/CT, known as unspecific bone uptake 
(also known as UBU), whose etiology is still unknown. Several studies 
have reported a higher incidence with 18F-F-PSMA than with 68Ga-
PSMA (115). Comparison with CT, other prostate-specific 
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radiotracers, clinical history, and previous traumatic events is 
recommended to overcome this limitation (115).

Biochemical recurrence after a curative intent 
treatment

This stage of the disease is the most extensively studied for both 
choline and PSMA PET/CT. Fanti et al. published a meta-analysis of 
18 articles with 2,126 patients evaluating the detection rate of 
11C-Choline PET/CT (116). The pooled detection rate, sensitivity, and 
specificity were 62% (95% IC 53–71%), 89% (95% IC 83–93%), and 
89% (95% IC 73–96%) respectively. For bone metastases, eight studies 
with 775 participants reported detection rates. The pooled rate was 
25% (95% IC 16–34%). Another meta-analysis focused on the 
detection of bone metastasis. Guo et al. analyzed 14 studies of 840 
patients (117). On a per-patient analysis, the authors reported a 
pooled sensitivity, specificity, and negative likelihood ratio of 89% 
(95% CI 80–94%), 98% (95% CI 95–99%), and 12% (95% CI 7–20%) 
respectively. It is worth mentioning that despite its excellent 
performance for the detection of bone metastasis, a negative choline 
PET/CT cannot rule out the absence of bone lesions.

PSMA PET/CT has outperformed choline PET/CT in the 
diagnosis of biochemical relapse. A head-to-head comparison of 68Ga-
PSMA and 18F-choline PET/CT was conducted on 37 patients (118). 
The detection rates were 86.5 and 70.3%, respectively, in favor of the 
PSMA PET/CT (p = 0.04). Schwenck et al. confirmed the superiority 
of PSMA PET/CT (versus 11C-choline PET/CT) for the detection of 
both lymph nodes (94% versus 71%, p < 0.001) and bone metastases 
(98% versus 64%, p < 0.001) in this clinical setting (119). Moreover, it 
appears that the real benefit of PSMA PET/CT is in biological 
recurrences with low PSA levels. Burgard et  al. retrospectively 
analyzed 115 patients with PSA levels under 0.2 ng/mL (120). Overall, 
29 patients (25.2%) had lesions suspicious of prostate cancer. Eleven 
(25%) lesions out of 44 were bone metastases. Another recent meta-
analysis confirmed these data (121). Thirty-seven articles with 4,790 
patients were included. The authors reported that for PSA categories 
0–0.19, 0.2–0.49, 0.5–0.99, 1–1.99, and ≥2 ng/mL, the percentages of 
positive scans were 33, 45, 59, 75, and 95%, respectively.

Of note, the performance of radiolabeled-choline PET/CT 
depends on both the PSA value at the time of the examination and the 
PSA doubling time (PSAdt). Castelluci et al. evaluated 605 patients 
treated with radical prostatectomy with an early biochemical relapse 
(PSA values between 0.2 ng/mL and 2 ng/mL; mean 1.05 ng/mL; 
median 1.07 ng/mL) (122). They reported an overall detection rate of 
28.4% (172/605 patients). Bone lesions were observed in 56 patients 
(9.3%). The multivariate analysis confirmed that PSA value (p = 0.011) 
and PSA doubling time (p < 0.001) were significant predictors of PET/
CT positivity, with optimal cutoff values of 1.05 ng/mL and 
5.95 months. This also concerns the ligand PET/CT. A retrospective 
analysis of 1,007 patients who underwent 68Ga-PSMA PET/CT 
reported an overall detection rate of 79.5% (801 patients) (123), with 
131 (13%) patients diagnosed with bone metastases. The authors 
confirmed that PSA level was significantly associated with a 
pathological PET/CT result (p < 0.001).

Therapy response assessment
A very few studies have evaluated choline PET/CT for the therapy 

response assessment of castration-resistant prostate cancer, whether 
with chemotherapy or hormone therapy. Schwarzenböck et  al. 

monitored 11 patients treated with docetaxel (124), De Giorgi et al. 
evaluated 43 patients under abiraterone (69), and 36 patients under 
enzalutamide (70). These studies reported a high percentage of 
discrepancy between PSA and PET/CT results and did not provide 
many details on the evolution of bone metastases under treatment.

On the other hand, there is rapidly growing evidence that 
promises a place for PSMA PET/CT in this indication. The first step 
was to create an international framework for response evaluation 
criteria. The question is not fully resolved yet, with several 
classifications already in use: the adapted PCWG3 (using PSMA PET 
instead of bone scan), the PSMA PET Progression criteria (PPP) 
(125), and the RECIP 1.0 classification (126). Gafita et al. compared 
all those criteria in 124 men with a metastatic RCPC (127) and 
demonstrated that the RECIP 1.0 classification was the most correlated 
to patient outcomes.

As already explained, PCWG3 defines bone progression as the 
appearance of at least 2 new lesions (with two or more additional new 
lesions on a confirmatory scan, 2 + 2 rule). In contrast, because of its 
high specificity, 1 new distant lesion by PSMA PET is considered 
progressive disease by PPP if the following criteria are met: consistent 
clinical or laboratory data, including PSA and other parameters such 
as pain assessment, lactate dehydrogenase, and anemia (125). The 
RECIP 1.0 criteria mainly focus on the PSMA uptake volume for 
therapy response assessment under 177Lu-PSMA therapy (126). The 
definition of a new lesion is as follows: the appearance of at least 1 new 
PSMA-positive lesion, defined as any new focal uptake of PSMA 
ligand higher than the surrounding background. The authors 
recognized that there was no external validation of their threshold 
definition and that they could not compare the prognostic ability of 
RECIP versus PCWG3 criteria, since bone scans were not included in 
the clinical workup of 177Lu-PSMA radionuclide therapy at 
all institutions.

One prospective trial studied the role of PSMA PET/CT in the 
follow-up of 223Ra therapy and showed progressive bone disease in 
89% of the patients, with the overall burden of disease on PSMA being 
strongly correlated with PSA changes (128). Since PSA seems 
inappropriate for evaluating the response to 223Ra therapy (128, 129), 
the role of PSMA PET/CT for monitoring patients under 223Ra 
appears limited.

Focusing on bone metastases, Schmidkonz et al. investigated 177 
men suffering from 443 bone lesions on 68Ga-PSMA-11 PET (130). 
Within this cohort, 20 patients with 173 bone metastases underwent 
PSMA PET/CT imaging before and after therapies. Bone metastases 
showed a mean density of 589 ± 203 HU before therapy, with a 
significant increase to 827 ± 215 HU (p < 0.05). None of the other 
CT-derived parameters had significant changes under therapies. In 
contrast, a significant correlation was observed between the 
percentage differences of whole-body total metabolic volume and the 
percentage difference of serum-PSA levels (p < 0.001) before and after 
therapies. The main limitation was the vast heterogeneity of treatments 
used (radiation therapy, androgen deprivation therapy, chemotherapy, 
and radioligand therapy).

The flare phenomenon has also been described in several case 
reports and studies between 2 and 6 weeks following treatment 
initiation, depending on study design (131–133). It is not exactly 
known how long a flare-up can be observed on PSMA PET/CT, but it 
is worth noting that one study described no flare phenomenon after a 
median follow-up of 3 months in 26 patients (134).
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18F-FDOPA and 68Ga-DOTA-peptides PET/
CT for neuroendocrine tumors 
management

Neuroendocrine tumors (NETs) are rare and heterogeneous epithelial 
neoplasms with neuroendocrine differentiation. The primary site of 
origin for NETs, accounting for approximately 60% of cases, is the 
gastrointestinal (GI) tract, with the small intestine being the foremost 
location of tumor development (135, 136). The incidence of bone 
metastases in patients with NETs has been investigated mainly through 
retrospective studies. Data from US institutional registries indicate that 
around 12% of patients with NETs develop bone metastatic disease (137, 
138). This finding aligns with the results of a recent European study, which 
examined 677 patients diagnosed with NETs from 2000 to 2015 (139). 
Generally, bone metastases in NETs appear to be more frequent in lung 
carcinoids compared to gastroenteropancreatic neuroendocrine tumors 
(GEP-NETs). Among GEP-NETs, rectal NETs consistently exhibit the 
highest propensity for metastasizing to the bones (140).

While bone involvement is incidentally discovered in as many as 40% 
of NET patients, clinical complications arising from bone metastases have 
been noted in roughly half of these cases (138). Typically, NET bone 
metastases affect the axial skeleton more frequently than the appendicular 
bones, and identifying radiographic signs can be challenging. When 
standard radiography and CT scans are employed, NET bone metastases 
tend to exhibit either an osteosclerotic pattern or a combination of 
osteolytic and osteosclerotic features. It seems that MRI exhibits higher 
sensitivity in the detection of NET bone lesions compared to CT. Whole-
body MRI with diffusion-weighted imaging, in particular, is noted for its 
substantial diagnostic accuracy in this regard (141–144).

The prognosis for NET patients with bone metastases varies 
widely based on factors such as the extent of bone involvement, the 
aggressiveness of the primary tumor, and the effectiveness of 
treatment. While bone metastases in NETs are generally associated 
with a more indolent course compared to some other cancers, they 
can still significantly impact a patient’s quality of life and overall 
survival. Evidence indicates that NET patients diagnosed with 
synchronous bone metastases tend to experience less favorable 
survival outcomes when compared to those with metachronous bone 
metastases that appear later after diagnosis (145, 146). Interestingly, 
the impact of bone metastases on survival appears to be  more 
significant in patients with pancreatic NETs than with intestinal NETs 
(147). Notably, in lung NETs, the presence of bone metastases is 
associated with a poor prognosis, regardless of the tumor grade or 
whether the metastases occur synchronously or metachronously (141).

Over the last 20 years, nuclear medicine imaging methods for 
NETs have undergone gradual advancements (148, 149). The 
introduction of radiotracers such as 18F-Fluoro-dihydroxyphenylalanine 
(18F-DOPA) and 68Ga-DOTA-peptides for PET imaging has 
revolutionized the diagnosis and management of NETs. These cutting-
edge tools provide unprecedented insights into localization, 
characterization, and treatment planning, elevating the precision of 
care for patients grappling with these complex malignancies (150).

Due to the moderate-to-high overexpression of somatostatin 
receptors (SSTR), predominantly subtype 2A, the primary imaging 
technique for diagnosis and assessment involves SSTR imaging. Synthetic 
somatostatin analogs (SSAs), such as octreotide, have been effectively 
labeled for medical imaging. Among these radiopharmaceuticals, 
111In-pentetreotide (OctreoScan) has demonstrated its utility for gamma 
camera studies over more than two decades. Recently, a new category of 

somatostatin analogs, labeled with the positron-emitting radionuclide 
68Ga for PET/CT imaging and called 68Ga-DOTA-peptides 
(68Ga-DOTATOC, 68Ga-DOTATATE, and 68Ga-DOTANOC), has 
emerged as the current gold standard for assessing NETs (148, 149). The 
introduction of 68Ga-DOTA-peptide PET/CT has significantly improved 
the detection of skeletal metastases, surpassing both bone scintigraphy 
and OctreoScan scintigraphy in performance. Recent studies indicate that 
68Ga-DOTA-peptide PET/CT demonstrates a diagnostic accuracy ranging 
from 80 to 100% in identifying NET bone lesions (151–154). When 
compared to contrast-enhanced CT and MRI, 68Ga-DOTA-peptide PET/
CT may enhance diagnostic capabilities by approximately 20 to 25% in 
the detection of bone metastases (Figure 4) (151, 152, 155, 156).

Peptide Receptor Radionuclide Therapy (PRRT) is a targeted 
therapeutic approach for NETs involving the administration of a 
radiolabeled somatostatin analog, typically 177Lu. This analog specifically 
binds to somatostatin receptors overexpressed in NETs, leading to the 
selective delivery of beta particle-emitting radiation and localized 
cytotoxic effects. PRRT has demonstrated efficacy in controlling tumor 
progression, especially in metastatic scenarios where conventional 
treatment modalities may be limited (157). As a personalized and targeted 
therapeutic strategy, PRRT holds promise in optimizing outcomes and 
managing symptoms associated with NETs. Post-treatment SPECT/CT 
imaging after PRRT is critical for dosimetric evaluation (158) and is 
potentially useful for monitoring treatment efficacy and promptly 
detecting disease progression during treatment. However, no studies have 
specifically focused on the efficacy of post-PRRT SPECT/CT imaging for 
bone metastases monitoring. On the other hand, 68Ga-DOTA-peptide 
PET/CT has been successfully used to monitor PRRT efficacy in patients 
with bone metastases of NETs treated by 177Lu-DOTA-octreotate. The 
treatment results in prolonged overall survival and provides relief from 
pain, supporting the consideration of PRRT in the management of 
advanced bone metastatic disease (159, 160).

Importantly, non-tumoral processes with elevated osteoblastic 
activity can also present challenges in the interpretation of 
68Ga-DOTA-peptides PET, as they may exhibit increased osseous 
uptake. These situations encompass a range of conditions, including 
degenerative alterations, fractures, and non-malignant lesions like 
hemangioma, enchondroma, and fibrous dysplasia. Additionally, 
meningiomas, often incidentally discovered, manifest as intensely avid 
masses located outside the brain parenchyma. They are typically found 
along the cerebral convexity, in the parasagittal region, or originating 
from the sphenoid wing (161).

In addition to 68Ga-DOTA-peptides, 18F-DOPA has been 
successfully proposed for in vivo nuclear imaging of NETs (162, 163). 
The heightened uptake of 18F-DOPA in NETs results from increased 
cellular synthesis, storage, and secretion of biogenic amines. As a 
result, the sensitivity of 18F-DOPA PET is influenced by the NET’s 
embryological origin and differentiation. Specific tumoral features, 
such as the biosynthesis of serotonin, play a significant role in 
explaining the superior sensitivity of 18F-DOPA PET for small intestine 
carcinoids (SiNET). 18F-FDOPA PET outperforms morphological 
imaging (CT) and gamma camera-based SSTR imaging for the 
detection of skeletal metastases, lymph nodes, and liver lesions in 
patients with low-grade midgut NETs. The sensitivity of 18F-FDOPA 
PET was 100, 95, and 96% respectively, in per patient, per region, and 
per lesion analysis (164). Becherer et al. reported sensitivities of 90.9% 
for the skeleton in the evaluation of patients with histologically proven 
NETs (165). In a recent study by Deleval et al., 18F-DOPA PET/CT 
detected bone metastases in 46 of 155 (29.7%) SiNET patients, with a 
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negative prognostic impact (166). In a recent 18F-DOPA PET/CT 
study, Lelièvre et al. (167) described the topographical distribution of 
bone metastases in patients with SiNET, mainly involving the spine, 
pelvic bones, and ribs. Metabolic tumor volume (MTV), excluding 
bone lesions, greater than 19.2 mL, and hepatic metastatic involvement 
were significant predictors of bone metastases.

More recently, several retrospective studies (168–171) and one 
systematic review (172) have compared 18F-FDOPA PET/CT and 
SSTR PET/CT in well-differentiated small intestine NETs. Despite 
similar high patient-and region-based pooled sensitivities (83 and 

89%, respectively, for 18F-DOPA PET; 88 and 92%, respectively, for 
SSTR PET), 18F-DOPA demonstrated superiority in lesion detection 
(lesion-based pooled sensitivity, 95% vs. 82%). This higher diagnostic 
performance was also observed in the case of bone metastases (168, 
169). Specifically, 18F-DOPA PET/CT exhibited greater sensitivity than 
68Ga-DOTA peptides PET/CT in patients with high levels of serotonin 
and 5-hydroxyindoleacetic acid (169, 170).

The limited value of 18F-FDG PET/CT is typically reported in the 
management of low-grade NETs, likely due to their low metabolic 
activity and slow growth (Figure 5). Despite these considerations, 

FIGURE 4
18F-FDG (A) and 68Ga-DOTATOC (B–D) PET/CT results (anterior MIP, coronal PET/CT, coronal CT) in a 48  years-old woman with grade 2 metastatic 
pancreatic neuroendocrine tumor showing multiple bone sclerotic metastases characterized by intense and pathologic 68Ga-DOTATOC uptake. 
18F-FDG PET/CT failed to detect metastatic spread.

FIGURE 5

Typical example of “flip-flop” effect (anterior PET MIP, sagittal PET/CT) in a patient with metastatic low-grade (G1) small bowel NET. 18F-FDOPA PET 
showed multiple sclerotic bone metastases (A,B) not detectable by 18F-FDG PET (C,D), emphasizing the role of tumor grade in the selection of the 
optimal diagnostic radiotracer.
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18F-FDG PET holds potential for prognostic stratification in patients 
with NETs. Notably, NETs exhibiting increased 18F-FDG uptake tend 
to display more aggressive behavior, leading to a less favorable long-
term prognosis (173).

Conclusion

Despite their widespread use in staging and assessing bone 
metastases, BS have limitations impacting sensitivity and specificity, 
particularly in the follow-up of patients undergoing therapy. PET/CT has 
effectively addressed these limitations, demonstrating potential 
therapeutic impact, as seen in breast cancer. Nuclear bone imaging is now 
evolving towards the use of more specific PET tracers tailored to each 
tumor type, a trend already established for prostate and neuroendocrine 
tumors. Additionally, the advent of large field-of-view PET/CT, enabling 
dynamic imaging of extensive portions of the body, should have an 
interest in response assessment of bone metastases. Finally, PET/MR 
devices may contribute to enhancing diagnostic performance by 
leveraging complementary information from both modalities.
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