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Background: The objective of this study was twofold: firstly, to develop a 
convolutional neural network (CNN) for automatic segmentation of rectal cancer 
(RC) lesions, and secondly, to construct classification models to differentiate 
between different T-stages of RC. Additionally, it was attempted to investigate the 
potential benefits of rectal filling in improving the performance of deep learning 
(DL) models.

Methods: A retrospective study was conducted, including 317 consecutive 
patients with RC who underwent MRI scans. The datasets were randomly 
divided into a training set (n  = 265) and a test set (n  = 52). Initially, an automatic 
segmentation model based on T2-weighted imaging (T2WI) was constructed 
using nn-UNet. The performance of the model was evaluated using the dice 
similarity coefficient (DSC), the 95th percentile Hausdorff distance (HD95), and 
the average surface distance (ASD). Subsequently, three types of DL-models 
were constructed: Model 1 trained on the total training dataset, Model 2 trained 
on the rectal-filling dataset, and Model 3 trained on the non-filling dataset. 
The diagnostic values were evaluated and compared using receiver operating 
characteristic (ROC) curve analysis, confusion matrix, net reclassification index 
(NRI), and decision curve analysis (DCA).

Results: The automatic segmentation showed excellent performance. The rectal-
filling dataset exhibited superior results in terms of DSC and ASD (p  =  0.006 
and 0.017). The DL-models demonstrated significantly superior classification 
performance to the subjective evaluation in predicting T-stages for all test 
datasets (all p  <  0.05). Among the models, Model 1 showcased the highest overall 
performance, with an area under the curve (AUC) of 0.958 and an accuracy of 
0.962 in the filling test dataset.

Conclusion: This study highlighted the utility of DL-based automatic segmentation 
and classification models for preoperative T-stage assessment of RC on T2WI, 
particularly in the rectal-filling dataset. Compared with subjective evaluation, the 
models exhibited superior performance, suggesting their noticeable potential for 
enhancing clinical diagnosis and treatment practices.
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Background

Colorectal cancer (CRC) stands as the second most prevalent 
contributor to cancer-related mortality in the United  States. 
Projections for the year 2023 indicate that approximately 153,020 
individuals will receive a diagnosis of CRC, and regrettably, 52,550 
individuals will succumb to the disease. This includes a concerning 
subset of 19,550 cases and 3,750 deaths among individuals below the 
age of 50 years old (1). Rectal cancer (RC) is a subset of CRC, a disease 
that poses a grave risk to people’s lives. Rectal magnetic resonance 
imaging (MRI) has witnessed widespread utilization in the 
comprehensive assessment of RC, assuming a vital role in treatment 
planning for patients by facilitating accurate preoperative tumor 
staging. Within clinical practice, high-resolution T2-weighted imaging 
(HR-T2WI) has gained unanimous acceptance as the optimal 
approach for preoperative staging of RC (2). The precise preoperative 
differentiation between T1-2 and T3-4 stages in RC holds immense 
significance for clinicians in guiding individualized treatment 
strategies. The ability to discern which patients should undergo total 
mesorectal excision (TME) or receive neoadjuvant treatment while 
minimizing the risks of both over-treatment and under-treatment has 
become paramount (3, 4). However, the traditional approach to MRI 
staging relies heavily on the expertise and subjective evaluation of 
radiologists, leading to diminished repeatability and accuracy rates. 
This reliance poses significant challenges in achieving an accurate 
preoperative T-stage diagnosis for RC (5). Furthermore, a contentious 
issue surrounds the use of rectal distension during rectal MRI, 
specifically regarding whether the rectal lumen should be filled with 
fluid or gel (2–4). While the primary objective of rectal filling is to 
optimize lesion visualization and improve T-stage assessment on MRI, 
the question of its routine application remains unresolved due to a 
lack of robust evidence demonstrating substantial improvements in 
lesion conspicuity (3–5).

In recent years, radiomics has emerged as a potential method for 
addressing diverse clinical challenges, surpassing traditional methods 
in several studies. By leveraging high-throughput analysis to extract a 
multitude of quantitative features from medical images, radiomics 
approaches have demonstrated promising potential in the field of 
digestive tumors (6–17). However, the predominant methodologies in 
this domain typically involve manually determining the volume of the 
entire primary tumor. This process is not only arduous and time-
consuming but also heavily reliant on the operator’s expertise, 
demanding a high level of proficiency (9, 16, 17).

Previous study yielded an initial finding indicating the 
development of two distinct radiomics models utilizing rectal 
HR-T2WI, both with and without rectal filling. These models were 
devised to evaluate the T staging of RC. Notably, our results 
demonstrated the superior performance of the radiomics model 
incorporating rectal filling in effectively distinguishing between T1-2 
and T3 stages. This promising outcome suggests that the utilization of 

this model could offer valuable support in clinical decision-making 
when evaluating T-stage in RC patients (6).

Meanwhile, the deep learning (DL)-based method, as a novel 
technology, could significantly improve lesion automatic 
localization and segmentation, tumor diagnosis, staging, and 
prognosis prediction to facilitate treatment strategy, and could 
even greatly help radiologists work more efficiently and reduce 
their burden (18–20). Despite the considerable significance of T 
staging in RC, there exists a notable research gap regarding the 
validation and comparative analysis of MRI-based DL approaches 
specifically tailored for T staging evaluation, taking into account 
the presence or absence of rectal filling.

Therefore, in this study, we  initially attempted to construct a 
convolutional neural network for the automatic localization and 
segmentation of RC lesions. Subsequently, we developed DL networks 
for the assessment of RC T-staging. Of utmost importance was our 
exploration of whether rectal filling could prove beneficial in guiding 
clinical decision-making for RC T stage evaluation.

Methods

Participants

This study followed the Declaration of Helsinki and had approval 
from the Ethics Committees of Changhai Hospital. Written informed 
consent was waived from all patients.

This retrospective trial enrolled a total of 492 consecutive patients 
with RC who underwent radical resection at Changhai Hospital 
between January 2017 and May 2023. The study’s inclusion criteria 
comprised the following: (1) confirmation of rectal adenocarcinoma 
through postoperative pathological examination; (2) presence of a 
single lesion; (3) baseline rectal magnetic resonance (MR) examination 
conducted within 14 days prior to surgical resection. Exclusion criteria 
included: (1) receipt of any local or systemic treatment prior to 
surgical resection, such as neoadjuvant chemoradiotherapy (n = 108); 
(2) concurrent diagnosis of other malignancies (n = 7); (3) poor image 
quality (n = 25); (4) synchronous distant metastasis (n = 23); (5) 
palliative resection (n = 7); (6) history of previous pelvic surgery 
(n = 5). Consequently, a total of 317 cases were included in the final 
analysis, as depicted in Figure 1.

Clinicopathologic data

Patients’ demographic and clinicopathological data were 
retrospectively extracted from the clinicopathological databases. 
These data encompassed various factors, including sex, age, body mass 
index (BMI), histological differentiation, pathological T-stage, 
pathological N-stage, carcinoembryonic antigen (CEA) levels (with 
<5 ng/mL considered as negative), and carbohydrate antigen 19-9 
(CA19-9) levels (with <37 U/mL considered as negative). These 
parameters were recorded concurrently with the baseline MRI 
examinations. Employing the criteria set forth by the National 
Comprehensive Cancer Network (NCCN) and American Joint 
Committee on Cancer (AJCC) staging system (21), the patients 
involved in the study were meticulously stratified into distinct cohorts, 
each characterized by their respective pathological T stages. 

Abbreviations: RC, Rectal cancer; TME, Total mesorectal excision; DL, Deep 

learning; T2WI, T2-weighted imaging; VOI, Volume of interest; ROC, Receiver 

operating characteristic; AUC, Area under the ROC curve; MRF, Mesorectal fascia; 

EMVI, Extramural vascular invasion; LNM, Lymph node metastasis; DSC, Dice 

similarity coefficient; HD95, 95th percentile Hausdorff distance; ASD, Average 

surface distance.
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Specifically, the T1-2 group encompassed individuals with tumors 
confined solely to the submucosal and muscularis propria layers. In 
contrast, the T3-4 group comprised patients with tumors that 
exhibited invasive growth beyond the confines of the 
muscularis propria.

Image acquisition and analysis

Prior to the study, baseline rectal MRI scans were performed using 
3.0 T MR systems, including the Siemens 3.0 T MAGNETOM Skyra 
MRI System, GE 3.0 T Discovery MR 750w, and Signa HDX System, 
coupled with a specialized phased array coil for enhanced imaging 
sensitivity. To ensure optimal image quality, intestinal cleaning was 
meticulously carried out through the administration of a 20 mL 
glycerin enema. Considering the possibility of contraindications, the 
administration of raceanisodamine hydrochloride, a commonly used 
agent, was deliberately omitted. As part of the routine imaging 
procedure, oblique axial HR-T2WI was conducted with careful 
consideration of the orientation perpendicular to the long axis of the 
rectum, encompassing the region of interest (ROI). Notably, detailed 
information regarding the parameters employed for HR-T2WI, which 

played a pivotal role in the subsequent analysis, can be  found in 
Supplementary Table S1.

Within the filling group, patients underwent a baseline MRI with 
rectal filling, involving the administration of warm ultrasound (US) 
transmission gel to achieve rectal distention. Prior to acquiring the 
oblique axial HR-T2W images, the volume of gel used for rectal filling 
was tailored based on the endoscopic evaluation of tumor location. 
Specifically, 60–80 mL of gel was administered for lesions situated in 
the lower and middle rectum, while 80–100 mL was utilized for lesions 
in the upper rectum (22). Conversely, in the non-filling group, rectal 
distention using US gel was omitted during the baseline 
MRI procedure.

Subjective evaluation and ROI delineation were performed by 3 
radiologists with systematic training, including FS, HL, and YY with 
15, 11, and 13 years of experience in MR diagnosis, respectively, who 
were blinded to pathological data. A subjective classification task was 
assigned to the experts, requiring them to categorize each lesion as 
either T1-2 or T3-4 based on the established TNM staging system. 
Interobserver agreement for MR T-staging among the three 
radiologists was calculated. To facilitate accurate lesion segmentation, 
the ROI encompassing the entire rectal lesion was manually delineated 
in a meticulous slice-by-slice manner on the T2WI using 

FIGURE 1

Flowchart of the study.
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ITK-SNAP 4.0.0 software1. The delineated borders, representing the 
ground truth (GT), were meticulously determined by consensus 
among the experts. In cases of any discrepancies or differences of 
opinion, a thorough discussion ensued until a consensus was reached, 
requiring the agreement of at least two experts.

Dataset and pre-processing

A dataset comprising 317 MRI scans of RC and their 
corresponding T-stage labels was extracted and subsequently divided 
into a training set (n = 265) and a test set (n = 52) using a random 
allocation in a ratio of approximately 5:1. For the segmentation task, 
we utilized the preprocessing pipeline of nn-UNet (23–25), which 
could select the suitable data fingerprint automatically. We adopted 
the data preprocessing strategy through data fingerprint information, 
including resampling strategy, cropping area size, gray value 
distribution, etc. information, thus forming a so-called “configuration 
plan.” While for the classification task, to ensure consistency, all 
images underwent preprocessing too from the “configuration plan,” 
including resampling to a target spacing of [0.36, 0.36, 0.36] mm. 
Additionally, the size of each imaging scan was adjusted by cropping 
or padding to achieve a uniform dimension of 384 × 384 × 64.

DL model construction

The U-Net architecture (23), introduced in 2015 as an Encoder–
Decoder model (24), made a significant impact in the field of medical 
segmentation, generating widespread enthusiasm. Subsequent studies 
have primarily concentrated on maximizing the potential of U-Net 
and enhancing its performance through various modifications. 
Presently, UNet-like Encoder–Decoder architectures remain robust 
and highly regarded in the field. One notable variant, nn-UNet (25), 
exemplifies the remarkable qualities of U-Net as a self-configuring 
approach and pipeline for DL-based biomedical image segmentation, 
consistently delivering exceptional results.

Taking inspiration from these advancements, we incorporated a 
powerful and highly acclaimed network architecture, slightly modified 
by nn-UNet to be tailored for our rectal cancer data, as the backbone 
in Stage I of our study, where we trained it on a total of 265 cases. To 
adapt this network to our specific dataset and enable automatic 
segmentation of RC (Figure 2A), we  rebuilt the training pipeline. 
We  employed a larger dropout rate and more data augmentation 
strategy to prevent overfitting. In order to enhance the performance 
and generalizability of our model, we randomly divided the dataset 
with 5-fold cross-validation, implemented group normalization 
instead of batch normalization, and introduced larger convolution 
kernels. To evaluate the accuracy of the segmentation results, 
we calculated the dice similarity coefficient (DSC), the 95th percentile 
Hausdorff distance (HD95), and the average surface distance (ASD) 
between the automatically segmented images and GT images (26–28).

In contrast to the segmentation sub-task, the classification sub-task 
focuses on feature extraction after the convolution stage without the need 

1 http://www.itksnap.org/

to restore the features to their original size, which is one of the differences 
between the classification and segmentation tasks. Thus, in Stage II of our 
study, we designed an appropriate encoder as the backbone, which is the 
encoder of the 3D UNet, to extract features after convolution. For the 
output layer, we incorporated a multi-layer perception network to classify 
the T stages of RC. The flowchart of the classification task is depicted in 
Figure 2B. To facilitate T-stage classification in Stage II, we introduced a 
simple and easily manageable padding-cropping strategy. This involved 
utilizing the segmentation results obtained from Stage I and treating them 
as the input for the classification task, following the process outlined in 
Figure 2B. To construct our DL models, we divided the dataset into three 
categories based on the rectal filling status: model 1 trained on the 
complete training set of 265 cases, model 2 trained exclusively on rectal-
filling cases, and model 3 trained using the non-filling dataset. The 
construction details of these models are provided in 
Supplementary material.

Statistical analysis

To perform the statistical analysis, we employed two software tools: 
MedCalc (version 19.8, MedCalc Software, Mariakerke, Belgium) and the 
R package (version 4.1.3, Vienna, Austria). Normality testing of all 
continuous variables was conducted using the Kolmogorov–Smirnov test 
to assess their distribution. Categorical data were compared using either 
the Pearson Chi-square test or the Fisher’s exact test, depending on the 
expected cell counts. For continuous variables, presented as 
mean ± standard deviation, comparisons were made using either the 
Student’s t-test for normally distributed data or the Kruskal–Wallis H test 
for variables with non-normal distributions. To comprehensively evaluate 
the diagnostic performance of the T-staging classification models, 
we  employed rigorous statistical techniques. Receiver operating 
characteristic (ROC) curve analysis and the confusion matrix were 
utilized to assess the models’ discriminative abilities in the independent 
test datasets. Essential performance measures, such as sensitivity, 
specificity, accuracy, positive predictive value (PPV), negative predictive 
value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio 
(NLR), were determined to provide a comprehensive understanding of 
the models’ diagnostic values. Furthermore, to compare the classification 
models with subjective evaluation, we conducted net reclassification index 
(NRI) analysis. To gauge the clinical significance of the models, decision 
curve analysis (DCA) was performed, allowing us to calculate the net 
benefit. Statistical significance was established at a two-sided p-value less 
than 0.05, indicating strong evidence for significance.

Results

Patients’ characteristics

A comprehensive overview of patient demographic characteristics 
can be found in Table 1. After thorough evaluation, a total of 317 
patients were included in the final analysis. Among them, 158 out of 
317 cases (49.8%) underwent rectal filling, while the remaining 159 
cases (50.2%) were in the non-filling group. Notably, there were no 
significant differences observed between these two cohorts of patient 
demographic characteristics (p > 0.05). The subsequent examination 
of the 52 test cases revealed an equal distribution of 26 cases each in 
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both the filling and non-filling groups. Importantly, no statistically 
significant differences in T stage were detected between the filling and 
non-filling groups (T1-2/T3-4: 14/12 vs. 10/16, p = 0.404). Moreover, 
it is noteworthy that none of the cases exhibited positive 
circumferential resection margin (CRM) involvement.

Automatic segmentation results

In Stage I, we developed a segmentation pipeline utilizing DL 
models, which can be  succinctly referred to as nn-UNet. These 

automatic segmentation models exhibited exceptional performance in 
the test datasets, as illustrated in Figure 3. For the overall test dataset, 
the median values of DSC, HD95, and ASD were 0.835, 2.236 mm, and 
0.647 mm, respectively. In the rectal-filling cases, the median values 
were 0.862 for DSC, 2.118 mm for HD95, and 0.584 mm for 
ASD. Conversely, in the non-filling cases, the median values were 
0.807 for DSC, 3.000 mm for HD95, and 0.879 mm for ASD. Notably, 
the DSC and ASD values were higher in the rectal-filling dataset 
(p = 0.006 and p = 0.017, respectively). The detailed results of the 
automatic segmentation are presented in Table  2 and 
Supplementary Figure S1.

FIGURE 2

Structure diagram of the deep learning model. (A) The automated segmentation pipeline; (B) the classification pipeline. The first stage is to construct a 
segmentation flow chart to segment rectal cancer. The second stage is to build a classification flow chart and use the segmentation results of the first 
stage to do specific staging tasks.
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Classification performance

In Stage II, concentrating on T-staging classification, the subjective 
evaluation yielded area under the curve (AUC) values of 0.735, 0.810, 
and 0.713 for the total, filling, and non-filling test datasets, respectively. 
The corresponding accuracies were 0.731, 0.808, and 0.692. 
Interobserver agreement for MR T-staging among the three 

radiologists is presented in Supplementary Table S2. Notably, the DL 
models outperformed the subjective evaluation across all test datasets. 
Model 1 achieved AUC values of 0.902, 0.958, and 0.900 for the total, 
filling, and non-filling test datasets, respectively. The accuracies were 
0.846, 0.962, and 0.808, respectively. Model 2, trained on rectal-filling 
cases, exhibited an AUC of 0.946 and an accuracy of 0.885 in the filling 
test dataset. Model 3, trained exclusively on non-filling cases, 

TABLE 1 Pathological characteristics of patients.

Variables Total Rectal filling Non-rectal filling p value

N  =  317 N  =  158 N  =  159

Gender 0.326

Male 206 (65.0%) 98 (62.0%) 108 (67.9%)

Female 111 (35.0%) 60 (38.0%) 51 (32.1%)

Age (years) 59.4 ± 12.0 58.3 ± 9.8 59.8 ± 10.3 0.185

BMI (kg/m2) 23.9 ± 3.4 23.8 ± 3.0 24.2 ± 3.3 0.260

Tumor location 0.161

Upper 45 (14.2%) 20 (12.7%) 25 (15.7%)

Middle 190 (59.9%) 103 (65.2%) 87 (54.7%)

Lower 82 (25.9%) 35 (22.1%) 47 (29.6%)

Differentiation 0.977

High-Moderate 250 (78.9%) 124 (78.5%) 126 (79.2%)

Poor 67 (21.1%) 34 (21.5%) 33 (20.8%)

T stage 0.078

T1-2 180 (56.8%) 98 (62.0%) 82 (51.6%)

T3-4 137 (43.2%) 60 (38.0%) 77 (48.4%)

N stage 0.971

N0 222 (70.0%) 110 (69.6%) 112 (70.4%)

N1-2 95 (30.0%) 48 (30.4%) 47 (29.6%)

Tumor deposit 0.816

Negative 242 (76.3%) 122 (77.2%) 120 (75.5%)

Positive 75 (23.7%) 36 (22.8%) 39 (24.5%)

Lymphovascular invasion 0.184

Negative 190 (59.9%) 101 (63.9%) 89 (56.0%)

Positive 127 (40.1%) 57 (36.1%) 70 (44.0%)

Perineural invasion 0.197

Negative 152 (47.9%) 82 (51.9%) 70 (44.0%)

Positive 165 (52.1%) 76 (48.1%) 89 (56.0%)

Tumor budding 0.669

Negative 204 (64.4%) 104 (65.8%) 100 (56.6%)

Positive 113 (35.6%) 54 (34.2%) 59 (43.4%)

CEA* 0.061

Negative 177 (55.8%) 97 (61.4%) 80 (50.3%)

Positive 140 (44.2%) 61 (38.6%) 79 (49.7%)

CA19-9* 0.593

Negative 254 (80.1%) 129 (81.6%) 125 (78.6%)

Positive 63 (19.9%) 29 (18.4%) 34 (21.4%)

*Preoperative blood samples. BMI, body mass index; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9.
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demonstrated an AUC of 0.863 and an accuracy of 0.885  in the 
non-filling test dataset. Comprehensive ROC analyses are presented 
in Table 3, and the corresponding curves are depicted in Figure 4.

Model comparison and clinical utility

Compared to subjective evaluation for RC T-staging, NRIs of 
DL-models were 0.167 to 0.310, demonstrating an improved clinical 
utility in all datasets (Table 3).

Considering the influence of rectal filling or non-filling, the 
confusion matrix highlighted the superior classification performance of 
Model 1  in the rectal-filling dataset compared to Model 1  in the 
non-filling dataset. Likewise, the performance of Model 2 in the filling 
dataset outperformed that of Model 3  in the non-filling dataset 
(Figure 5). The net clinical advantage of Model 1 over Model 2 in the 
rectal-filling dataset and Model 1 over Model 3 in the non-filling dataset 

is illustrated by the DCA chart (Figure 6). Overall, Model 1 in the rectal-
filling dataset demonstrated notably improved diagnostic performance.

Discussion

In this study, we  developed an advanced and automated 
segmentation model based on nn-UNet to achieve precise 
segmentation of rectal adenocarcinomas from T2W images, 
particularly in the rectal-filling dataset. Subsequently, we constructed 
DL-based classification models that exhibited significantly improved 
performance in T-staging classification compared to subjective 
evaluation for RC cases. Notably, Model 1, trained on the total training 
dataset, demonstrated higher AUC and accuracy in the rectal-filling 
cohort. To the best of our knowledge, this is the first investigation into 
the impact of rectal filling on DL models, highlighting its influence on 
classification performance.

FIGURE 3

Representative diagram of automatic segmentation.

TABLE 2 Automatic segmentation results.

Test data sets Total Rectal filling Non-rectal filling p value*
DSC 0.835 (0.779, 0.871) 0.862 (0.817, 0.879) 0.807 (0.719, 0.850) 0.006

HD95 (mm) 2.236 (2.000, 3.742) 2.118 (1.732, 2.450) 3.000 (2.000, 5.385) 0.127

ASD (mm) 0.647 (0.516, 1.034) 0.584 (0.440, 0.737) 0.879 (0.616, 1.332) 0.017

Median (IQR).
*Kruskal–Wallis rank sum test.
DSC, dice similarity coefficient; HD95, the 95th percentile Hausdorff distance; ASD, average surface distance.
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In the current landscape of medical practice, rectal MRI has been 
widely endorsed as the optimal approach for preoperative T-staging 
in RC. However, its diagnostic accuracy is compromised by the 
connective tissue hyperplastic response in the surrounding rectal 
mesenteric fat, leading to indistinct tumor boundaries. This limitation 
of traditional MRI techniques in distinguishing between T2 and T3 
stages has been well-documented in previous studies (3–5), and our 
own results align with these observations. Our study conducted a 
comprehensive ROC analysis, revealing that the subjective 
discrimination of preoperative T-stage by radiologists was 
significantly inferior to the proposed DL model. The accuracies of 
radiologists’ assessments ranged from 69.2 to 80.8%. Additionally, the 
net reclassification index (NRI) analysis demonstrated improved 
classification performance achieved by employing DL approaches, 
while decision curve analysis (DCA) highlighted the favorable 
clinical usefulness of these models. These findings can be attributed 
to the inherent challenges faced by radiologists in accurately 
interpreting irregular tumor shapes and blurred boundaries. 
Therefore, the accurate identification and precise segmentation of 
lesions serve as crucial prerequisites for future research endeavors 

aimed at advancing preoperative evaluation and staging 
methodologies in RC.

The routine utilization of manual or semi-manual 
segmentation methods is often plagued by inherent challenges, 
including their arduous and time-consuming nature, as well as 
their heavy reliance on operator expertise (16, 17). In recent years, 
several studies have explored the application of 2D convolutional 
neural network (CNN) models for the discrimination of T2 and 
T3 stages using 2D MR images (29, 30). However, these approaches 
introduce an additional burden on radiologists, as they require 
manual selection of a representative slice (2D) from each MR 
volume (3D). This manual selection step adds complexity and 
potential subjectivity to the process. Hou et al. conducted a study 
where they developed a DL model using 3D T2W images, 
achieving an impressive AUC value of 0.869 (31). However, it is 
important to note that the segmentation process in their research 
was carried out manually, which may introduce subjectivity and 
potential variability. In a separate study by Wei et al., a multi-
parametric MR image fusion model was employed, achieving an 
AUC of 0.854. This approach involved the manual determination 

TABLE 3 ROC curve analysis and comparison in the test dataset.

Total Filling Non-filling

Model 1 SE Model 1 Model 2 SE Model 1 Model 3 SE

AUC 0.902 0.735 0.958 0.946 0.810 0.900 0.863 0.713

95% CI 0.818–0.985 0.594–0.848 0.874–0.999 0.865–0.999 0.653–0.966 0.784–0.999 0.706–0.999 0.533–0.892

Sensitivity 0.750 0.679 1.000 1.000 0.833 0.688 1.000 0.625

Specificity 0.958 0.792 0.929 0.786 0.786 1.000 0.700 0.800

Accuracy 0.846 0.731 0.962 0.885 0.808 0.808 0.885 0.692

PLR 18.000 3.257 14.000 4.667 3.889 Inf. 3.333 3.125

NLR 0.261 0.406 0.000 0.000 0.212 0.313 0.000 0.469

PPV 0.955 0.792 0.923 0.800 0.769 1.000 0.842 0.833

NPV 0.767 0.679 1.000 1.000 0.846 0.667 1.000 0.571

NRI* 0.238 0.310 0.167 0.263 0.275

SE, subjective evaluation; NPV, negative predictive value; PPV, positive predictive value; NLR, negative likelihood ratio; PLR, positive likelihood ratio.
*NRI, net reclassification index, compared to SE.
Model 1: trained on total training datasets; Model 2: trained on rectal-filling datasets; Model 3: trained on non-filling datasets.

FIGURE 4

ROC curves in the test dataset. (A) Total test dataset; (B) rectal-filling test dataset; (C) non-filling test dataset.
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of the location and size of a 3D bounding box containing the 
tumor (32).

In Stage I, we successfully developed an automatic segmentation 
model for rectal adenocarcinomas using a 3D nn-UNet architecture. 

As a standardized and dataset-agnostic framework, nnU-Net was 
proposed as a robust and powerful tool for medical image 
segmentation. The results demonstrated impressive performance, with 
median values of 0.807–0.862 for DSC, 2.118–3.000 for HD95, and 

FIGURE 5

Confusion matrices.

FIGURE 6

DCA in filling and non-filling test datasets. Results for the rectal-filling dataset. (A) The net benefit analysis showed that for p probability thresholds 
ranging from 0.25 to 0.88 in the test dataset, Model 1 provided greater benefits compared to Model 2 assessment. Moreover, Model 1 exhibited larger 
net benefits when compared to all/no intervention methods. (B) Results for the non-filling dataset. The net benefit analysis demonstrated that for 
P probability thresholds ranging from 0.42 to 0.91 in the test dataset, Model 1 yielded additional benefits compared to Model 3 assessment. 
Furthermore, Model 1 showed larger net benefits when compared to all/no intervention methods.
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0.584–0.879 for ASD in the test dataset. To enhance the robustness 
and generalization of the model while avoiding overfitting, 
we employed a data augmentation strategy along with 5-fold cross-
validation. Furthermore, two experienced radiologists carefully 
examined the visualizations of the segmentation results, and no 
noticeable segmentation errors were detected. The implementation of 
this method bears the potential to serve as a viable replacement for the 
prevailing manual segmentation method, which is notorious for its 
time-consuming nature and lack of reproducibility. Subsequently, 
we conducted additional evaluations on the total test dataset, as well 
as the rectal-filling and non-filling datasets within the test set. Our 
findings revealed that the DSC and ASD values were significantly 
better in the rectal-filling datasets compared to both the total datasets 
and the non-filling datasets (p = 0.006 and p = 0.017, respectively). 
These results suggest that the model exhibited a tendency towards 
better performance and metrics in rectal-filling cases.

In the Stage II of this study, we introduced a 3D CNN to classify 
RC lesions as T1-2 or T3-4 stages on HR-T2WI. For the classification 
models, we  utilized widely-used UNet-like Encoder–Decoder 
architectures. We  recognized that directly inputting the original 
images into the models would make it challenging to distinguish 
between T1-2 and T3-4 stages, as the models might concentrate on 
areas other than the cancer of interest. To address this concern, 
we  devised a novel approach using the information from the 
automated segmentation results obtained in Stage I. We combined the 
original MRI of RC with its corresponding segmentation result, 
incorporating them as the complete input. This approach involved 
employing a region-of-interest cropping strategy, as mentioned earlier. 
Our initial experiments demonstrated the effectiveness and 
correctness of this approach compared to solely using the original 
MRI of RC with a center-cropping strategy. We believe that the center-
cropping strategy may not accurately select the cancerous region, as 
the cancer might not always be located in the center of every image. 
Although expanding the cropping area could be considered, it would 
introduce redundant information that is not helpful. Therefore, our 
cropping strategy, as described above, represents a promising 
approach for precisely selecting the cancerous region in each 
original image.

A distinctive feature of our study was its groundbreaking 
exploration and validation of DL models for preoperative T staging in 
RC, with a particular focus on the influence of rectal filling. To the best 
of our knowledge, this was the first endeavor to address this specific 
aspect, shedding new light on the application of DL in this context.

Our study encompassed the evaluation of automatic segmentation 
models for rectal adenocarcinomas across three distinct datasets: the 
total dataset, the rectal-filling dataset, and the non-filling dataset. 
Following this, three DL models were trained using these datasets to 
explore their performance. Through a comprehensive analysis 
involving segmentation results, ROC evaluation, confusion metrics, 
and DCA, a noteworthy finding emerged: Model 1 exhibited superior 
performance specifically in the rectal-filling dataset. These results 
underscore the additional benefits conferred by the use of rectal 
contrast material in DL models. Previous research has already 
demonstrated the advantages of rectal filling, including improved 
lesion visualization and enhanced evaluation of tumor penetration on 
MRI (2). Furthermore, our previous study has corroborated the value 
of rectal-filling in accurately delineating rectal lesions and 
distinguishing them from normal rectal tissue, thus facilitating precise 

segmentation (6). This likely explains the higher performance 
observed in the DL model trained on the rectal-filling dataset 
compared to the non-filling dataset.

Despite the notable contributions of our study, several limitations 
warrant consideration. Firstly, our dataset consisted solely of 
HR-T2WI of RC, lacking the inclusion of other imaging modalities. 
Moreover, being a retrospective single-center study, potential selection 
biases may have influenced our findings. Thus, for further validation 
and to enhance the generalizability of our results, larger datasets and 
multi-center studies incorporating diverse imaging modalities are 
necessary. Secondly, it is crucial to acknowledge that factors, such as 
extramural vascular invasion (EMVI), lymph node metastasis (LNM), 
and mesorectal fascia (MRF) significantly influence the prognosis and 
survival of RC patients (2–4, 33). While the impact of rectal luminal 
distention on DL-models pertaining to MRF, EMVI, and LNM 
remains a topic of debate, further investigation is essential to elucidate 
these associations comprehensively. Thirdly, an important 
consideration is the generalizability of our findings to lesions that have 
undergone neoadjuvant treatment, as this aspect remains elusive and 
requires further clarification. Finally, the current investigation 
primarily employed CNN-based models, which are known to perform 
well with small datasets. However, we  did not explore the use of 
transformer-based models, which are better suited for larger datasets. 
Therefore, future research should encompass the incorporation of 
transformer-based models to leverage their potential in handling 
larger datasets effectively.

Conclusion

Leveraging high-resolution rectal MR imaging, we developed a 
DL-based segmentation model to automatically extract the region of 
RC. Subsequently, we constructed DL-based classification models to 
explore an innovative approach for preoperative T-staging of RC using 
DL networks. Through a comprehensive comparison, we observed 
that the DL models exhibited superior predictive capabilities 
compared to subjective evaluation, particularly in distinguishing 
between T1-2 and T3-4 stages in the test dataset with rectal-filling. 
These findings strongly indicate that the DL model, augmented by 
rectal-filling, holds significant potential as an optimal tool for guiding 
clinical practice in the preoperative T-staging of RC patients.
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