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Background: Pain management is an essential and complex issue for non-
communicative patients undergoing sedation in the intensive care unit (ICU). 
The Behavioral Pain Scale (BPS), although not perfect for assessing behavioral 
pain, is the gold standard based partly on clinical facial expression. NEVVA©, 
an automatic pain assessment tool based on facial expressions in critically ill 
patients, is a much-needed innovative medical device.

Methods: In this prospective pilot study, we recorded the facial expressions of 
critically ill patients in the medical ICU of Caen University Hospital using the 
iPhone and Smart Motion Tracking System (SMTS) software with the Facial 
Action Coding System (FACS) to measure human facial expressions metrically 
during sedation weaning. Analyses were recorded continuously, and BPS scores 
were collected hourly over two 8  h periods per day for 3 consecutive days. For 
this first stage, calibration of the innovative NEVVA© medical device algorithm 
was obtained by comparison with the reference pain scale (BPS).

Results: Thirty participants were enrolled between March and July 2022. To 
assess the acute severity of illness, the Sequential Organ Failure Assessment 
(SOFA) and the Simplified Acute Physiology Score (SAPS II) were recorded on ICU 
admission and were 9 and 47, respectively. All participants had deep sedation, 
assessed by a Richmond Agitation and Sedation scale (RASS) score of less than 
or equal to −4 at the time of inclusion. One thousand and six BPS recordings 
were obtained, and 130 recordings were retained for final calibration: 108 
BPS recordings corresponding to the absence of pain and 22 BPS recordings 
corresponding to the presence of pain. Due to the small size of the dataset, 
a leave-one-subject-out cross-validation (LOSO-CV) strategy was performed, 
and the training results obtained the receiver operating characteristic (ROC) 
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curve with an area under the curve (AUC) of 0.792. This model has a sensitivity 
of 81.8% and a specificity of 72.2%.

Conclusion: This pilot study calibrated the NEVVA© medical device and showed 
the feasibility of continuous facial expression analysis for pain monitoring in ICU 
patients. The next step will be to correlate this device with the BPS scale.
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Highlights

 • What is already known: Early pain management in ICUs is 
one of the cornerstones of standard care in critically ill 
patients. It is difficult to ensure reliable pain assessment for 
non-communicative ICU patients. International clinical 
practice guidelines recommend systematic pain assessment 
using subjective behavioral scales.

 • What this paper adds: Better pain control is necessary in ICUs. 
Consequently, this calls for the development of new automated 
pain assessment tools, such as the novel NEVVA© medical 
device, based on automated, continuous analysis of 
facial expressions.

1 Introduction

Pain is defined as an unpleasant subjective sensory and emotional 
experience related to or resembling that associated with actual or 
potential tissue damage. Nociception is a distinct concept that refers 
to the physiological neural process of encoding harmful stimuli, which 
can lead to pain. The effects of encoding noxious stimuli may manifest 
as autonomic responses (e.g., fluctuations in vital signs) and behavioral 
responses (e.g., facial expressions) (1). Consequently, these responses 
can serve as indicators for pain assessment in cases where 
communication ability is compromised.

Pain is reported in more than 50% of cases in critically ill patients, 
with physiological and psychological consequences (increased morbidity 
and mortality, disturbances of the nychthemeral rhythm, post-traumatic 
stress syndromes, etc.) (2). Pain is associated with different procedures 
such as surgical incisions, chest tubes, arterial blood sampling, or 
endotracheal suctioning, and is reported as severe in more than 15% of 
patients during their stay in the intensive care unit (ICU) (3). Fifty-five 
percent of ICU nurses, however, underestimate patient pain when asked 
to rate pain intensity using a visual analog scale (4).

Early ICU pain management is one of the cornerstones of 
standard care in critically ill patients. Excessive use of inappropriate 
sedation-analgesia can cause major side effects (alveolar 
hypoventilation, renal dysfunction, digestive paresis, etc.) and must 
be avoided. It is necessary to distinguish between an early phase of 
deep and multimodal sedation-analgesia over the first few hours or 

Abbreviations: AI, Artificial intelligence; AUs, Action Units; AUC, Area under the 

curve; BPS, Behavioral Pain Scale; CPOT, Critical Care Pain Observation Tool; 

FACS, Facial Action Coding System; ICU, Intensive care unit; KNN, k-nearest-

neighbor; LOSO-CV, Leave-one-subject-out cross-validation; RASS, Richmond 

Agitation and Sedation Scale; RMSE, Root mean square error; SAPS II, Simplified 

Acute Physiology Score; SMTS, Smart Motion Tracking System software; SOFA, 

Sequential Organ Failure Assessment.
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days and a later phase of gradual weaning from sedation-analgesia. 
Deep sedation is defined by a score of −4/−5 on the Richmond 
Agitation and Sedation scale (RASS), followed by a gradual release of 
sedation, which is defined by a RASS score of −3 to 0 (Table A1) (5).

The assessment and management of pain in communicating with 
patients has been the subject of extensive literature (6). Nevertheless, 
it is difficult to ensure sensitive and reliable pain assessment in the 
ICU for non-communicative patients under deep multimodal 
sedation. Behaviors may be masked in heavily sedated patients, in 
those receiving neuromuscular blocking agents, or in those with 
severe neurological lesions significantly affecting their motor system. 
Historical scales rely on hetero-assessment and use physiological 
variables in response to nociceptive action such as heart rate, 
respiratory rate, blood pressure, pupil diameter, and sweating without 
good specificity (7). In adult ICU patients, vital signs are not 
recommended for pain assessment, and international clinical practice 
guidelines recommend a systematic pain assessment using subjective 
behavioral scales, including behavioral indicators of pain strongly 
correlated with hetero-assessment of pain intensity (8).

Two scales, the Behavioral Pain Scale (BPS) (9) and the Critical 
Care Pain Observation Tool (CPOT) (10), are commonly used in the 
ICU. The BPS has three analysis criteria: facial expression, upper limb 
tone, and compliance with mechanical ventilation (the BPS score is 
defined between 3 and 12, with each indicator ranging from 1 to 4 in 
proportion to pain intensity, adapted from the COMFORT and Harris 
scales in pediatric ICUs) (11) (Table A2). Nevertheless, due to a lack 
of reproducibility, sensitivity, and specificity, and insufficient 
discrimination, scientific literature did not allow us to recommend the 
use of a particular scale (12, 13). Thus, no behavioral scale is 
considered optimal for non-communicative critically ill patients (14). 
The sensitive, systematic, discriminatory, and reproducible assessment 
of pain in ICU therefore remains a challenge for clinicians in order to 
choose the finest and most appropriate dose of analgesia (15, 16).

In a recent study, Nuseir et al. (17) noted that pain management is 
multifactorial and complex and could benefit from automated 
approaches to improve the quality of care. Some automated tools for 
the recognition of facial expressions of pain have been recently 
developed using distinct approaches (11–15). However, the use of 
facial images of ICU patients is not easy in routine clinical practice due 
to difficulties in obtaining standardized, unmasked facial images (e.g., 
endotracheal tube, nasoesophageal tube, and oxygen mask). In 
addition, facial muscle movements associated with pain may be weak 
due to sedation and tissue edema (e.g., neuromuscular blocking agents 
or edema-induced loss of dynamic change in the face). In recent years, 
there has been growing interest in integrating artificial intelligence (AI) 
into medicine, encompassing various techniques such as machine 
learning, deep learning, data mining, and natural language processing 
(18). The literature has recognized the crucial role of AI in clinical 
settings, particularly in disease diagnosis, treatment selection, and 
patient monitoring. Applications of AI in pain research have been 
relatively understudied. Nevertheless, recent advances in AI have 
enabled us to develop a pain assessment tool based on facial expressions 
in critically ill patients (19). The AI gold standard for objective 
assessment of facial expressions in human emotion research is the 
Facial Action Coding System (FACS) (20). This system measures the 
individual movements or “Action Units” (AUs), among facial muscles, 
assigning codes to the activity of individual muscles or muscle groups.

To our knowledge, few studies have focused on AI applications in 
pain assessment in critically ill, non-communicative ICU patients. In this 

prospective, pilot study, we recorded the facial expressions of critically ill 
patients in the medical ICU at Caen University Hospital, using FACS and 
Smart Motion Tracking System (SMTS) software to build a database and 
calibrate the innovative medical device—NEVVA©—on facial expressions.

2 Materials and methods

2.1 Study population

We conducted a prospective study by enrolling 30 patients who 
were admitted to the medical ICU at Caen University Hospital in 
France between March 2022 and June 2022. For this pilot study, all 
non-communicative adult patients over the age of18 who were under 
deep sedation (defined by a RASS score less than or equal to −4) for 
organ failure [defined by at least an organ Sequential Organ Failure 
Assessment (SOFA) score (21) greater than or equal to 3], except for 
neurological failure, and who were expected to require 48 or more 
hours of ICU care were eligible for enrollment.

For each patient, the BPS [standard of care in our ICU and 
grading the facial expression-based pain score in accordance with the 
guidelines (9)] was collected hourly over two 8 h periods per day, 
diurnal and nocturnal, for 3 consecutive days (Figure 1A). iPhones 
were placed above the heads of patients admitted to the ICU and 
fulfilling the inclusion criteria (Figure 1B). Simultaneously, automated 
facial expression analysis by SMTS software was recorded continuously 
over the two 8 h periods per day for 3 days.

2.2 Characteristics of patients

For each patient, the Simplified Acute Physiology Score (SAPS II) 
(22) and the SOFA (21) were recorded within the first 24 h after ICU 
admission. Demographic and clinical data collected were as follows: 
age, sex, primary diagnosis at admission, and organ support during 
the study period such as mechanical ventilation, vasopressors, and 
renal replacement therapy. ICU length of stay before inclusion in the 
study, as well as mechanical ventilation duration, ICU length of stay, 
and ICU mortality, were also recorded. Regarding sedation-analgesia, 
the type and mean dose of each drug used during protocol timelapse, 
as well as RASS and BPS scores, were recorded according to 
the protocol.

2.3 Data description and image 
pre-processing

SMTS software is based on the analysis of patients’ facial 
expressions, coded in AUs using the FACS. The FACS system is used 
to measure human facial expressions metrically. The system was 
developed to describe facial movements, resulting from facial muscle 
activity in 46 AUs. Each AU code for a muscle or group of muscles was 
typically observed during the production of facial expressions under 
the influence of emotion. Four AU combinations have been described 
as including most of the pain-related information: AU4 (eyebrow 
lowering), AU6 + 7 (orbital tightening), AU9 + 10 (levator muscle 
contraction), and AU43 (eyes closed) (23, 24).

The data of interest in this clinical investigation is a mesh, which 
is a set of 1,220 points analyzed in four dimensions (three spatial and 
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FIGURE 1

(A) Pilot study experimental plan. (B) Pipeline for data acquisition.

one temporal, at an average frequency between 14 and 45 Hz) defining 
the mesh of the patient’s facial expressions collected due to a sensor 
already present on the front digital camera of the hardware. iPhones 
(versions X, 11 and 12) were used to capture the patient’s 3D facial 
mesh, using the augmented reality library (ARKiT library), which in 
turn uses the iPhone’s red-green-blue (RGB) front camera. The facial 
mesh is acquired at an average speed of 20 meshes per second, but at 
variable speeds ranging from 15 to 45 meshes per second, depending 
on hardware and environmental conditions. The 1,220 points are 
placed in a 3D space, where the origin corresponds to a virtual point 
behind the face, and values are measured in meters. The positions of 
the points are invariant to the rotation and the distance of the head 
from the sensors; therefore, the movement of the points can only 
correspond to a change in the facial expression of the captured face.

These data were anonymized, analyzed, and converted into 
AU-related features as a function of time (Figure 2A).

2.4 Action unit features and data 
pre-processing

The features corresponding to AU4, AU6, AU7, AU9, and AU10 
were implemented, but not AU43, which represents closed eyes, as 
ICU patients are expected to have their eyes closed most of the time. 
Each feature is calculated by applying one of the two calculation 
strategies to a defined subset of the 1,220 points in the facial mesh. The 
subset of points for each AU was chosen by hand to best match the AU 
(20) (Figure 2B).

The two computation strategies are:
 – Strategy 1 (s1): Average distance between each point in the subset 

and a point on the top of the nose that is not expected to move 
(see Eq. 1). Strategy s1 is justified by the fact that it detects the 
movement of points toward the nose when the face frowns under 
the effect of pain.

https://doi.org/10.3389/fmed.2024.1309720
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Bellal et al. 10.3389/fmed.2024.1309720

Frontiers in Medicine 05 frontiersin.org

 
nose 2

1AU _ XXs1
n

n
p P

p p
n ∈

= −∑
 

(1)

Computation of strategy s1 for a given AU, where P is the set of 
3D points associated with the AU, pnose is a point chosen on the top 
of the nose, and n is the number of points in the set P.

 – Strategy 2 (s2): Average distance between each point in the subset 
and the centroid point of the subset (see Eq. 2). The rationale 
behind strategy s2 is that it detects contraction movements in an 
area where each point of the subset gets closer to each other.
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(2)

Computation of strategy s2 for a given AU, where P is the set of 
3D points associated with the AU, pcentroid is the centroid point of the 
set P, and n is the number of points in the set P.

Features AU4s1, AU6s1, and AU10s1 were computed using 
strategy s1 and represent AU4, AU6, and AU10. Features AU4s2, 
AU7s2, and AU9s2 were computed using strategy s2, and represent 
AU4, AU7, and AU9. Two features are computed for AU4, AU4s1, 
and AU4s2, in order to better represent this AU, which can be seen 
as a combination of a movement of the eyebrows toward the nose 
and the contraction of the eyebrows toward each other. The 
calculation of AU7s2 is a little different, as it corresponds to the 
mean value of the values obtained by the s2 strategy to each eyelid 
separately. These characteristics do not predict the activation of an 
AU or its level of activation. Rather, they are supposed to correlate 
with the level of activation of each AU for a given individual but 
may be  affected by morphological differences between 
individual patients.

Once the AU characteristics have been calculated, a certain 
amount of data pre-processing is required. Indeed, for environmental 
reasons, the ARKit library is not always able to correctly detect the 

patient’s face and calculate a facial mesh. For this reason, we find in 
our data not only noise affecting the position of points but also the 
complete absence of data during certain periods of time. Moreover, 
when ARKit redetects the face after the absence of data, a short mesh 
period given by the library corresponds to a readjustment of the mesh 
with the patient’s face, resulting in a poor-quality mesh with facial 
dimensions and points positions that do not match reality. 
Fortunately, the readjustment period lasts less than half a second. For 
these reasons, the following data pre-processing was applied:

 – Remove data corresponding to the readjustment period by 
removing the first second of data following the absence of data 
of 0.1 s.

 – Remove periods of uninterrupted data that are too small, lasting 
less than 20 s. We consider short periods of uninterrupted data to 
be unsafe, as they indicate that it is difficult to detect the face 
correctly over this period of data.

 – Smooth out the noise by calculating a moving average of size 20 
on the AUs features.

2.5 Primary objective (Calibration tool)

Model design and calibration of the innovative medical device 
(NEVVA©) for the automated, continuous and three-dimensional 
analysis of facial expressions. The fitted model will be evaluated 
mainly by the root mean square error (RMSE) between the BPS 
evaluated by the nursing staff and the BPS calculated by 
the algorithm.

2.6 Statistical analysis

Patient data are expressed as number (percentage) for categorical 
variables and as mean ± standard deviation (SD) for continuous variables.

FIGURE 2

(A) Representation of the points of the facial mesh in 3 dimensions, with the color illustrating the depth. (B) Facial mesh points with the coloration of 
the points selected to represent some action units. (Pink: AU4; blue: AU6; yellow: AU7; green: AU9; and cyan: AU10).
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All the data collected at the end of the study are grouped for a given 
patient at a rate of 20 measurements per second over 8 h of recording 
during the day and 8 h of recording at night, and this for 3 days: 8 × 60 
× 60 ×2 × 3 × 20 = 172,800 measurements. This total number of 
measurements makes it possible to study variations of the system as a 
function of different clinical situations: at rest, during treatment, 
during a medical procedure, during a painful episode, etc. A sample of 
30 patients leads to the collection of 5,184,000 measurements.

Given our objective to predict the presence or absence of pain over 
a given time interval, and in accordance with the pain recorded by 
healthcare staff, feature statistics are computed for a given time interval. 
The following statistics are calculated: mean, minimum, maximum, 
variance, SD, and area around the mean. The logic behind the unusual 
calculation of the area around the mean is that it measures both the 
duration of a series of movements and their intensity. To calculate this 
statistic, we first calculate the mean value of the characteristic in the 
time interval, subtract the mean value of the characteristic values in the 
time interval, and, finally, calculate the integral, using the trapezoidal 
rule, by adding up the absolute integral value of the parts that have only 
positive values and the parts that have only negative values. Figure 3 
illustrates the computed statistic. To compensate for potential data 
absences, the statistic is finally divided by the sum of the uninterrupted 
data durations, and the zones associated with a data absence are not 
taken into account in the zone sum.

In essence, our approach involves first calculating the AU 
features for each mesh acquired in the time interval of interest, then 
applying the various pretreatments on the AU features time series 
and finally calculating all the statistics described for each feature on 
the given time interval, giving us a total of 36 variables (6 AU features 
× 6 statistical calculations) to describe a patient’s pain-related 
movements over a given time interval. Our approach is shown in 
Figure 4A.

We use Python v3.11.4 (Python Software Foundation, Beaverton, 
Oregon, United States) for statistical analyses.

2.7 Ethic issues

The NEWA study was approved by the Local Health Research Ethics 
Committee of Caen University Hospital (ID 2980), and all methods 
were performed in accordance with the relevant guidelines and French 
research laws. Written informed consent was obtained from patients 
and/or their surrogates prior to study enrolment and data collection. 
The procedures were carried out as part of the daily management of 
patients admitted to the medical ICU (analysis and recording of data for 
calibration of the device, without modification of overall management).

3 Results

3.1 Patients’ and BPS recordings’ 
characteristics

A total of 30 participants were enrolled between March and July 
2022. The mean age of the included patients for analyses was 57 years, 
and 60% of them were male patients. SOFA and SAPS II were 9 and 47, 
respectively. All participants had an RASS score less than or equal to −4 
at inclusion, 46% had a median RASS score from −4 to −3 on day 1 and 
23% were not evaluable on RASS because they were awake and 
communicating. Thirty percent of patients had a median RASS score 
ranging from −4 to −3 on the second day and 50% could not be evaluated 
on RASS because they were awake and communicating (Table 1).

For medical and care reasons, 1,006 of the 1,440 expected BPS 
recordings were obtained. For each recording, a time interval of 
10 min before and 10 min after the recording was expected. Recordings 
containing no data during this 20 min period were immediately 
discarded. As a result, 637 BPS recordings were retained (Table 2).

Some dataset recordings lacked data for the 20 min study period. 
Recordings with a cumulative total of less than 10 min of data for the 
20 min recording period were removed from the dataset. Finally, 130 

FIGURE 3

Illustration of the computation of the area around the mean statistic. The sum of all gray areas constitutes the “area around mean” statistic.
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recordings out of the 637 previously selected were retained for the 
final analysis (Figure 4B).

Data diversity across pain levels is poor, especially for high pain 
levels. For this reason, we focused our study on the ability to recognize 
the presence of pain rather than on the recognition of pain intensity. 
Next, 108 recordings of BPS facial expressions corresponding to an 
absence of pain (facial BPS = 1) and 22 recordings of BPS facial 
expressions recordings corresponding to the presence of pain (facial 
BPS ≥ 2) were obtained (Table 2).

3.2 Patient facial AU detection and model 
training

Numerous experiments were carried out, involving various types 
of machine learning models, hyperparameters fitting, and variable 
selection. A k-nearest-neighbor (KNN) classifier model, using the 
“area around mean” statistics of AU4s1 and AU4s2 as model inputs, 
produced the best results. This may be  explained by the fact that 
eyebrow movement, represented by AU4, is the most common and 
visible movement when expressing pain.

3.3 Primary objective—Calibration tool

Due to the small size of the dataset, a leave-one-subject-out cross-
validation (LOSO-CV) strategy was used. Prior to each training 
session, and to mitigate the effect of imbalanced data, reduced 
sampling of the training data was performed to get an equal number 
of painful and non-painful examples. KNN hyperparameters were 
tuned by testing a large set of possible combinations of hyperparameter 

values, with a LOSO-CV strategy and to maximize the F1-score of the 
classifiers produced.

With the presented model, dataset, and training approach, 
we obtained an area under the curve (AUC) with a 95% confidence 
interval of (0.735–0.803), using a bootstrapping method to calculate the 
AUC confidence interval, with 2000 stratified bootstrap replicates. As 
an example, the results of a LOSO-CV-adjusted classifier on the 
non-bootstrapped dataset can produce a receiver operating 
characteristic (ROC) curve with an AUC of 0.792 (Figure 5A). By 
adjusting the classifier’s decision threshold to our preferences, we obtain 
a model with a sensitivity of 0.818 and a specificity of 0.722 (Figure 5B).

4 Discussion

In this prospective pilot study, we set up a protocol for applying AI 
to obtain facial expression analysis in critically ill, non-communicative 
patients. We focused on a facial mesh composed of 1,220 points analyzed 
in four dimensions, defining the patient’s facial expressions. Using FACS 
to measure these human facial expressions metrically using AUs, we have 
established a pain classification based on facial expression. Meshes were 
collected using a sensor present on an iPhone and a digital camera. The 
device’s performance in detecting pain was close to 80% in sensitivity 
and 70% in specificity. The present study demonstrates the feasibility of 
automated, continuous pain assessment using a novel AI tool in ICUs.

Optimal pain management in ICU patients poses several 
challenges, such as the lack of clearly defined management protocols 
for certain painful conditions, the fear of adverse effects from analgesic 
drugs, uncertainty regarding the reliability and specificity of certain 
behavioral indicators of pain, and limited accuracy in interpreting 
facial expressions associated with negative effects. The application of 

FIGURE 4

(A) Schematization of the proposed approach. (B) Schematization of the data selection process.
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TABLE 2 BPS records’ characteristics before and after treatment.

Facial expression and total BPS records

Quantity of 
records

Quantity of 
records

BPS facial 

expression 1
525 Total BPS 3 473

BPS facial 

expression 2
109 Total BPS 4 102

BPS facial 

expression 3
3 Total BPS 5 40

BPS facial 

expression 4
0 Total BPS 6 16

Total BPS 7 5

Total BPS 8 1

Total BPS > 8 0

Facial expression BPS records after treatments

Quantity of records

Absence of pain 108

Presence of pain 22

AI for automated facial analysis is a dynamic area of human emotion 
research, with many commercial software tools available for automated 
facial coding. Some of these tools [e.g., Noldus FaceReader (25) and 
Affdex (26)] can automatically detect facial AUs in accordance with 
FACS. Automated tools are often considered to offer greater objectivity 
and reliability than human assessment, as they can eliminate 
subjectivity and bias (27).

In the context of pain assessment, a few studies have focused on 
the evaluation of facial expression in humans, particularly in infants. 
The Prkachin and Solomon Pain Intensity score is a valuable tool for 
assessing pain intensity based on FACS AUs (28). Zamzmi et al. (29) 
reviewed the most recent methods of automated pain analysis in 
infants, and facial expressions are considered one of the most common 
and specific indicators of pain. The facial expression of pain involves 
movements and distortions in facial muscles associated with a painful 
stimulus, including deepening of the nasolabial furrow, brow lowering, 
narrowed eyes, and chin quiver. Many important aspects of patient 
care are not yet captured autonomously. AI is developing rapidly in 
the medical field, and its scope of application is vast in the ICU setting. 
AI technology could help not only to perform repetitive assessments 
in real-time but also to integrate and interpret these data sources in 
relation to electronic medical record data, potentially enabling more 
timely and targeted interventions (30, 31). For example, non-invasive 
monitoring of ICU patients and their environment with an AI system 
has recently been shown to be feasible and effective in differentiating 
the behavior of patients with or without delirium (32).

Sensitive and reliable pain assessment is difficult to achieve for 
ICU patients under deep sedation who are unable to self-report their 
pain. Facial responses to pain appear to be consistent across distinct 
types of pain stimulation (33). The use of AI-based interventions in 
conscious patients has a positive effect on pain recognition, pain 
prediction, and pain self-management. Most reports, however, are 
only pilot studies (34). Using imaging analysis, Kuramoto et al. (35) 
explored the physiological basis of how pain signaling leads to 

TABLE 1 Patients’ characteristics.

Characteristics and variables All participants (N =  30)

Inclusion period March 2022 to July 2022

Age, median (range) 57 (32–70)

Male, number (%) 18 (60)

Female, number (%) 12 (40)

Primary diagnosis at admission, number (%)

  Coma

  Respiratory failure

  Hemodynamic failure

  Cardiac arrest

5 (17)

20 (67)

3 (10)

2 (6)

Maximum SAPS II score, median (range) 47 (25–78)

Maximum SOFA score, median (range) 9 (2–13)

Any organ support, number (%) 30 (100)

Patients required vasopressors, number (%) 17 (57)

Patients required mechanical ventilation, number 

(%)
30 (100)

Patients required renal replacement therapy, 

number (%)
6 (20)

ICU length of stay before inclusion, median day 

(range)
2 (0–12)

ICU length of stay, median day (range) 12 (4–57)

Mechanical ventilation duration, median day (range) 7 (1–36)

Type of hypnotic at inclusion, number (%)—

median dose (range)

 Propofol

 Midazolam

 Propofol + Midazolam

 Propofol + Ketamine

 Propofol + Dexmedetomidine

17 (57)–180 mg/H (100–250)

5 (17)–10 mg/H (5–30)

5 (17)–200 mg/H (100–

300) + 10 mg/H (10–50)

1 (3)–300 mg/H + 150 mg/H

2 (7)–120 mg/H (80–150) + 0.7 𝜇g/

kg/H (0.6– 0.7)

Sufentanil at inclusion, median dose (range) 10 𝜇g/H (3–20)

RASS score at inclusion, day +0

−5, number (%)

−4, number (%)

−3 at 0, number (%)

6 (20)

24 (80)

0 (0)

Median RASS score at day +1

−5, number (%)

−4, number (%)

−3, number (%)

−2, number (%)

−1, number (%)

0, number (%)

NA, number (%)

0 (0)

7 (23)

7 (23)

3 (10)

3 (10)

3 (10)

7 (23)

Median RASS score at day +2

−5, number (%)

−4, number (%)

−3, number (%)

−2, number (%)

−1, number (%)

0, number (%)

NA, number (%)

1 (3)

5 (17)

4 (13)

1 (3)

1 (3)

2 (7)

15 (50)

ICU mortality, number (%) 2 (7)

NA, not applicable; RASS, Richmond Agitation and Sedation Scale; SOFA, Sequential Organ 
Failure Assessment; SAPS, Simplified Acute Physiology Score.
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pain-indicative muscle movement in 18 healthy patients. They used 
iPhone sensors to acquire facial meshes and reported AI-based 
analyses focusing on the facial area. Our study confirms the accuracy 
of this kind of AI tool for critically ill, non-communicative patients.

In the ICU, it is estimated that over 50% of patients experience 
moderate to severe pain at rest, while 80% of patients experience pain 
during procedures. Over the past 2 decades, pain assessment has been 
improved by the widespread use of pain scales, such as BPS and CPOT, 
in which analysis of facial expression is the main factor. Nevertheless, 
under appropriate sedation, in the most severe patients, pain-induced 
changes in facial expression are difficult to identify (36). Recently, Wu 
et al. (37) produced a video-based pain classification for ICU patients, 
which yielded a sensitivity of 0.802 for detecting grimacing versus 
relaxed facial expression. In our study, using our NEVVA©-generated 
database and with a LOSO-CV strategy, we fitted a model that yielded 
an AUC of 0.792, a sensitivity of 0.82, and a specificity of 0.72.

AI-based methodologies can streamline pain prediction, 
recognition, and scoring processes and contribute to the automatic 
identification of pain from clinical notes containing pertinent pain 
assessment data. The interest of our methodological, specific approach 
is also reflected in the stepwise calibration on a decreasing sedation 
scale from RASS score (−5/−4 at the start of inclusions to awakening) 
and day/night continuity in order to study the overall changes in 
automated facial analysis as a function of sedation regime and 
circadian rhythm. Although NEVVA© could be a valuable tool for 
assessing pain in sedated patients, certain methodological remarks 
must be  highlighted in the present study. First, to minimize the 

inclusion of patients with compromised neurological status, 
we excluded patients with primary neurological failure as well as those 
receiving neuromuscular blockers; and second, analysis by the 
NEVVA© system is equated with continuous scales (e.g., visual analog 
scale), which are temporally more relevant than categorical scales (e.g., 
BPS) for assessing pain, to establish linearity in the recording of pain 
intensity (38).

In critically ill patients, regular pain assessment is associated with 
a better outcome, as are ventilator-free days. On the one hand, severe 
pain may reflect the potential deterioration of serious illness, but on 
the other hand, increasing pain has been associated with anxiety, 
delirium, and poor short- and long-term outcomes (39). The results 
obtained in this pilot study are encouraging for future research. 
AI-based automated pain assessment could be used in the future as a 
continuous monitoring tool to indicate the need for immediate 
assessment and management by nursing staff. This low-cost, high-
capacity, intelligent data processing could also enable earlier 
identification of the onset of pain and ensure ongoing monitoring, 
thus better distributing nurses’ workload so that they can devote time 
to their core tasks.

However, our study has several limitations, the main one being 
that the tool was only able to identify the presence or absence of 
pain signals but not discern the specific characteristics and severity 
of pain. This underscores the need for further investigation in this 
area to develop more nuanced and accurate pain assessment 
techniques. Second, this is a single-center study, but the 
management of pain is in line with international guidelines. Third, 

FIGURE 5

(A) ROC curve of the KNN classifier. (B) Normalized confusion matrix in proportion of each class.
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the model used focuses on facial expression, but in the absence of 
brain injury or neuromuscular blocking agents, we assume that 
changes in facial expression are most relevant to assessing pain in 
critically ill patients. For example, vital signs often fluctuate without 
precision during nociceptive procedures in the ICU (40), but facial 
muscle movements associated with pain may be weak due to tissue 
edema (inducing a loss of dynamic change of muscle movement 
AUs). In addition, the quality of the results was hindered by the fact 
that a large number of records were not exploitable, mainly due to 
an insufficient amount of mesh data acquired at the BPS record 
time, which led to having only a small dataset to analyze. This lack 
of data was explained by an improper placement of the iPhone 
toward the face of the patient and by insufficient room lighting. 
Moreover, the proposed model is also limited by the large time 
interval needed to predict the presence or absence of pain. We were 
unable to reduce the size of the time interval without adversely 
affecting the results. One explanation is that BPS recording times 
were noted on paper and may therefore generate temporal 
inaccuracies. Given that painful expressions can evolve in a matter 
of minutes, it is possible that by having a small analysis time 
interval, we associate non-painful expressions with a painful BPS 
recording, or inversely. However, with a large time interval, the 
painful expression would be present in the analyzed data, even with 
a large time gap with the recording. In order to improve our model, 
a second stage of this study is underway in our ICU to tackle these 
latter issues. An iPad-based interactive software application has 
been developed for BPS data capture to replace paper recording. 
This software accurately records the BPS recording time with 
timestamps and checks that the iPhone mesh acquisition is working 
correctly so that BPS and iPhone recordings are obtained at the 
same time. In the event of an acquisition problem, staff are informed 
by a color code and asked to check the iPhone’s positioning and the 
room brightness before starting BPS recording. Due to this 
technological upgrade, a higher-quality dataset should increase the 
operability and performance (i.e., sensibility and specificity) of our 
AI model. Additionally, NEVVA© could be used in decision-making 
processes to measure the efficacy of analgesia and determine the 
impact of analgesia titration on patient outcomes, such as the 
duration of mechanical ventilation and length of ICU stay. Future 
research should incorporate controlled trials to assess the 
effectiveness of these innovative systems in improving 
pain management.

5 Conclusion

In 1872, Darwin explained how different affective states, including 
pain, manifest themselves through distinct behaviors, including facial 
expressions (41). One hundred and forty years later, autonomous pain 
assessment based on facial expression is a key issue for critically ill 
patients but is somewhat difficult to assess in the ICUs due to the lack 
of communication among patients under deep, multimodal sedation. 
In the present prospective study, we  developed and calibrated an 
innovative medical device—NEVVA©—an automated pain assessment 
tool based on facial expression in critically ill patients with good 
sensibility and specificity.

These findings enable AI-based pain assessment in ICUs by 
monitoring changes in facial expressions in critically ill patients. 

However, further studies are warranted to validate the performance of 
this new automated pain assessment tool.
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Appendix

TABLE A1 Richmond Agitation-Sedation Scale.

Richmond Agitation-Sedation Scale (RASS)

Score Term Description

+4 Combative Overtly combative, violent, immediate danger to staff

+3 Very agitated Pulls or removes tube(s) or catheter(s), aggressive

+2 Agitated Frequent nonpurposeful movement, fights ventilator

+1 Restless Anxious but movements not aggressively vigorous

0 Alert and calm

−1 Drowsy Not fully alert but has sustained awakening to voice (≥10 s)

−2 Light sedation Briefly awakens to voice with eye contact (<10 s)

−3 Moderate sedation Movement or eye opening to voice (but no eye contact)

−4
Deep sedation No response to voice but movement or eye opening to physical 

stimulation

−5 Unarousable No response to voice or physical stimulation

TABLE A2 Behavior Pain Scale.

Behavior Pain Scale (BPS)

Sub-scale Description Score

Facial expression

Relaxed 1

Partially tightened 2

Fully tightened 3

Grimacing 4

Movement of the upper 

limbs

No movement 1

Partially bent 2

Fully bent with finger flexion 3

Permanently retracted 4

Compliance with 

mechanical ventilation

Tolerating movement 1

Coughing but tolerating 

ventilation for most of the 

time

2

Fighting ventilator 3

Unable to control ventilation 4

Total 3 (No) to 12 (Maximum): Score 3 to 4 = No pain, Score 5 to 6 = Mild pain, 
Score ≥ 7 = Maximum pain.
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