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Quality of life is greatly affected by chronic wounds. It requires more intensive 
care than acute wounds. Schedule follow-up appointments with their doctor to 
track healing. Good wound treatment promotes healing and fewer problems. 
Wound care requires precise and reliable wound measurement to optimize 
patient treatment and outcomes according to evidence-based best practices. 
Images are used to objectively assess wound state by quantifying key healing 
parameters. Nevertheless, the robust segmentation of wound images is 
complex because of the high diversity of wound types and imaging conditions. 
This study proposes and evaluates a novel hybrid model developed for wound 
segmentation in medical images. The model combines advanced deep learning 
techniques with traditional image processing methods to improve the accuracy 
and reliability of wound segmentation. The main objective is to overcome the 
limitations of existing segmentation methods (UNet) by leveraging the combined 
advantages of both paradigms. In our investigation, we  introduced a hybrid 
model architecture, wherein a ResNet34 is utilized as the encoder, and a UNet is 
employed as the decoder. The combination of ResNet34’s deep representation 
learning and UNet’s efficient feature extraction yields notable benefits. The 
architectural design successfully integrated high-level and low-level features, 
enabling the generation of segmentation maps with high precision and accuracy. 
Following the implementation of our model to the actual data, we were able 
to determine the following values for the Intersection over Union (IOU), Dice 
score, and accuracy: 0.973, 0.986, and 0.9736, respectively. According to the 
achieved results, the proposed method is more precise and accurate than the 
current state-of-the-art.
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1 Introduction

Rehabilitation therapists assume a crucial role in the home-based 
therapy of injuries caused by pressure and other types of wounds. 
Therapists possess a robust understanding of evidence-based practices 
in the field of wound care. Through collaborative efforts with the 
interdisciplinary care team, therapists are capable of offering valuable 
assistance in the management of wound care, hence contributing to 
its effectiveness. Rehabilitation therapists receive specialized training 
in wound assessment and documentation and provide critical 
interventions to improve patient outcomes and the financial 
sustainability of home healthcare businesses. Physical therapists 
develop optimal wound treatment plans, including restoring mobility, 
strengthening, and healing. A wound is considered chronic if healing 
takes more than 4 weeks without progress (1). There are a variety of 
things that can impede the usual process of wound healing. People 
who have comorbidities like diabetes and obesity are more likely to 
suffer from wounds like these. The care for these injuries comes at a 
very high financial cost. Patients who are suffering from chronic 
wounds require more intensive wound care as opposed to patients 
who are suffering from acute wounds (2). They have to visit a doctor 
on a consistent basis so the doctor can monitor how well the wound 
is healing. The management of wounds needs to adhere to the best 
practices available in order to facilitate healing and reduce the risk of 
wound complications. The evaluation of wound healing begins with a 
thorough assessment of the wound. When determining the rate of 
wound healing, one of the most important aspects of wound care 
practice is the utilization of clinical standards (3). These guidelines 
prescribe the usual documentation of wound-related information, 
such as wound color, size, and composition of wound tissue (4). The 
conventional technique involves professionals in the area of treating 
wounds to take measurements of the wound area as well as its tissue 
structure. This method is labor-intensive, expensive, and difficult to 
replicate (5, 6). In this study, we are introducing an approach for 
automatically assessing wounds that makes use of automatic wound 
color segmentation in addition to algorithms that are based on 
artificial intelligence.

Wound healing is a complex and dynamic biological process 
that results in tissue regeneration, restoration of anatomical 
integrity, and restoration of similar functionality (7). According to 
assumptions, the advanced wound care market is anticipated to 
surpass a value of $22 billion by the year 2024 (5). This discrepancy 
may be attributed to the rise in outpatient wound treatments that 
are presently being administered (8). Chronic wounds are 
categorized as wounds that have exceeded the typical healing 
timeline and remain open for a duration surpassing 1 month (9). 
Chronic wound infections have been found to cause substantial 
morbidity and make a significant contribution to the rising costs 
of healthcare (10). The development of advanced wound care 
technologies is imperative in order to address the increasing 
financial strain on national healthcare budgets caused by chronic 
wounds, as well as the significant adverse effects these wounds have 
on the quality of life of affected patients (11). Currently, there is a 
significant prevalence of patients experiencing wound infections 
and chronic wounds. The management of postoperative wounds 
continues to present a laborious and formidable task for healthcare 
professionals and individuals undergoing surgery. There exists a 
significant need for the advancement of a collection of algorithms 

and associated methodologies aimed at the timely identification of 
wound infections and the autonomous monitoring of wound 
healing progress (12, 13). A pressure ulcer, in accordance with the 
European Pressure Ulcer Advisory Panel, is characterized as a 
specific region of restricted harm to both the underlying tissue as 
well as the skin, resulting from an action of pressure, shear, and 
friction. A pressure ulcer is classified as a chronic injury resulting 
from persistent and prolonged soft tissue compression compared 
to a bony prominence, as well as a rigid surface or medical 
equipment (14). The occurrence of diabetic foot ulcer (DFU) 
represents a significant complication associated with the presence 
of diabetes (15). DFU is the primary factor contributing to limb 
amputations. In line with the World Health Organization (WHO), 
it has been estimated that approximately 15% of individuals 
diagnosed with diabetes mellitus experience the occurrence of 
DFU at least once throughout their lifespan (16). Image 
segmentation is an essential task when it comes to computer vision 
and image processing (17). The process of image segmentation 
holds significant importance in numerous medical imaging 
applications as it aids in automating or facilitating the identification 
and drawing of lines around essential regions of interest and 
anatomical structures (18). Nevertheless, it is challenging to 
generalize the performance of segmentation across various wound 
images. The presence of various wound types, colors, shapes, body 
positions, background compositions, capturing devices, and 
image-capturing conditions contributes to the considerable 
diversity observed in wound images (19). Wound segmentation in 
medical imaging has advanced with hybrid models. Relevant 
studies (20–22) emphasize community-driven chronic wound 
databases, telemedicine-based frameworks, and M-Health for tele-
wound monitoring.CNNs, ensemble learning, attention 
mechanisms, and transfer learning improve crop and rice disease 
detection and breast cancer classification (23–26). Our research 
builds on these findings to develop a hybrid model for improved 
chronic wound segmentation accuracy. The objective of our study 
is to concentrate on the advancement of a deep-learning 
methodology for wound segmentation. We  suggest a unique 
framework that integrates the advantageous features of the UNet 
architecture and the ResNet34 model in order to enhance the 
efficacy of image segmentation tasks.

The main contribution of this study is the development and 
evaluation of a hybrid model for wound segmentation that seamlessly 
integrates advanced deep learning approaches with traditional image 
processing methods. This innovative alliance aims to improve the 
accuracy and reliability of wound segmentation significantly, 
overcoming limitations identified in existing methodologies.

The article’s remaining sections are arranged in the manner shown 
below. Related works: Detailed review of previous research in the field. 
Materials and Methods: Describes the used dataset, the architecture 
and implementation of the hybrid model, detailing how advanced 
deep learning techniques integrate with traditional image processing 
techniques. Results: Presents the results of the experimental analysis 
evaluating the performance of the hybrid model. Discussion: Analyzes 
the results, discusses their implications, compares them with existing 
segmentation methods, and explores potential applications of the 
hybrid model in clinical practice. Conclusions: Summarizes the main 
contributions, highlights the importance of the developed hybrid 
model, and suggests directions for future research.
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2 Related work

Wang et al. (27) proposed the implementation of an integrated 
system that automates the process of segmenting wound regions and 
analyzing wound conditions in images of wounds. In contrast to 
previous segmentation techniques that depend on manually designed 
features or unsupervised methods, the study’s authors introduce a deep 
learning approach that simultaneously learns visual features relevant to 
the task and carries out wound segmentation. In addition, acquired 
features are utilized for subsequent examination of wounds through two 
distinct approaches: identification of infections and forecasting of 
healing progress. The proposed methodology demonstrates 
computational efficiency, with an average processing time of under 5 s 
per wound image of dimensions 480 by 640 pixels when executed on a 
standard computer system. The evaluations conducted on a 
comprehensive wound database provide evidence supporting the 
efficacy and dependability of the proposed system. Ohura et al. (28) 
established several convolutional neural networks (CNNs) using 
various methods and architectural frameworks. The four architectural 
models considered in their study were LinkNet, SegNet, U-Net, and 
U-Net with the VGG16 Encoder Pre-Trained on ImageNet (referred to 
as Unet_VGG16). Every convolutional neural network (CNN) was 
trained using supervised data pertaining to sacral pressure ulcers (PUs). 
The U-Net architecture yielded the most favorable outcomes among the 
four architectures. The U-Net model exhibited the second-highest level 
of accuracy, as measured by the area under the curve (AUC) with a 
value of 0.997. Additionally, it demonstrated a high level of specificity 
(0.943) and sensitivity (0.993). Notably, the highest values were achieved 
when utilizing the Unet_VGG16 variant of the U-Net model. The 
architecture of U-Net was deemed to be the most practical and superior 
compared to other architectures due to its faster segmentation speed in 
comparison to Unet_VGG16. Scebba et al. (19) introduced the detect-
and-segment (DS) method, which is a deep learning technique designed 
to generate wound segmentation maps that possess excellent 
generalization skills. The proposed methodology involved the utilization 
of specialized deep neural networks to identify the location of the 
wound accurately, separate the wound from the surrounding 
background, and generate a comprehensive map outlining the 
boundaries of the wound. The researchers conducted an experiment in 
which they applied this methodology to a dataset consisting of diabetic 
foot ulcers. They then proceeded to compare the results of this approach 
with those obtained using a segmentation method that relied on the 
entire image. In order to assess the extent to which the DS approach can 
be  applied to data that falls outside of its original distribution, the 
researchers evaluated its performance on four distinct and independent 
data sets. These additional data sets encompassed a wider range of 
wound types originating from various locations on the body. The 
Matthews’ correlation coefficient (MCC) exhibited a notable 
enhancement, increasing from 0.29 (full image) to 0.85 (DS), as 
observed in the analysis of the data set for diabetic foot ulcers. Upon 
conducting tests on the independent data sets, it was observed that the 
mean Matthews correlation coefficient (MCC) exhibited a significant 
increase from 0.17 to 0.85. In addition, the utilization of the DS 
facilitated the segmentation model’s training with a significantly 
reduced amount of training data, resulting in a noteworthy decrease of 
up to 90% without any detrimental effects on the segmentation 
efficiency. The proposed data science (DS) approach represents a 
significant advancement in the automation of wound analysis and the 

potential reduction of efforts required for the management of chronic 
wounds. Oota et al. (29) constructed segmentation models for a diverse 
range of eight distinct wound image categories. In this study, the authors 
present WoundSeg, an extensive and heterogeneous dataset comprising 
segmented images of wounds. The complexity of segmenting generic 
wound images arises from the presence of heterogeneous visual 
characteristics within images depicting similar types of wounds. The 
authors present a new image segmentation framework called WSNet. 
This framework incorporates two key components: (a) wound-domain 
adaptive pretraining on a large collection of unlabelled wound images 
and (b) a global-local architecture that utilizes both the entire image and 
its patches to capture detailed information about diverse types of 
wounds. The WoundSeg algorithm demonstrates a satisfactory Dice 
score of 0.847. The utilization of the existing AZH Woundcare and 
Medetec datasets has resulted in the establishment of a novel state-of-
the-art. Buschi et al. (30) proposed a methodology to segment the pet 
wound images automatically. This approach involves the utilization of 
transfer learning (TL) and active self-supervised learning (ASSL) 
techniques. Notably, the model is designed to operate without any 
manually labeled samples initially. The efficacy of the two training 
strategies was demonstrated in their ability to produce substantial 
quantities of annotated samples without significant human intervention. 
The procedure, as mentioned earlier, enhances the efficiency of the 
validation process conducted by clinicians and has been empirically 
demonstrated to be  an effective strategy in medical analyses.The 
researchers discovered that the EfficientNet-b3 U-Net model, when 
compared to the MobileNet-v2 U-Net model, exhibited superior 
performance and was deemed an optimal deep learning model for the 
ASSL training strategy. Additionally, they provided numerical evidence 
to support the notion that the intricacy of wound segmentation does 
not necessitate the utilization of intricate, deep-learning models. They 
demonstrated that the MobileNet-v2 U-Net and EfficientNet-b3 U-Net 
architectures exhibit comparable performance when trained on a bigger 
collection of annotated images. The incorporation of transfer learning 
components within the ASSL pipeline serves to enhance the overall 
ability of the trained models to generalize. Rostami et al. (31) developed 
an ensemble-based classifier utilizing deep convolutional neural 
networks (DCNNs) to effectively classify wound images into various 
classes, such as surgical, venous ulcers, and diabetic. The classification 
scores generated by two classifiers, specifically the patch-wise and 
image-wise classifiers, are utilized as input for a multilayer perceptron 
in order to enhance the overall classification performance. A 5-fold 
cross-validation strategy is used to evaluate the suggested method. The 
researchers achieved the highest and mean classification accuracy rates 
of 96.4% and 94.28%, respectively, for binary classification tasks. In 
contrast, for 3-class classification problems, they attained maximum 
and average accuracy rates of 91.9% and 87.7%, respectively. The 
classifier under consideration was evaluated against several widely used 
deep classifiers and demonstrated notably superior accuracy metrics. 
The proposed method was also evaluated on the Medetec wound image 
dataset, yielding accuracy values of 82.9% and 91.2% for 3-class and 
binary classifications, respectively. The findings indicate that the 
method proposed by the researchers demonstrates effective utility as a 
decision support system for wound image classification and other 
clinically relevant applications. Huang et al. (32) proposed an innovative 
approach to automatically segment and detect wounds by leveraging the 
Mask R-CNN framework. Their study employed a dataset comprising 
3,329 clinical wound images, encompassing wounds observed in 
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patients diagnosed with peripheral artery disease, as well as those 
resulting from general trauma. The implementation of the Mask 
R-CNN framework was utilized for the purpose of detecting and 
distinguishing wounds. The outcomes of their methodology were 
noteworthy, as evidenced by an Intersection over Union score of 0.69, 
precision rate of 0.77, recall rate of 0.72, average precision of 0.71 and 
F1 score of 0.75. The metrics as mentioned above serve as indicators of 
the precision and efficacy of the suggested framework for the 
segmentation and diagnosis of wounds. Foltynski et al. (33) described 
an automated service for measuring wound areas, which enables 
accurate measurements by employing adaptive calibration techniques 
specifically designed for curved surfaces. The deep learning model, 
which utilized convolutional neural networks (CNNs), underwent 
training with a dataset consisting of 565 wound images. Subsequently, 
the model was employed for image segmentation, specifically to discern 
the wound area and calibration markers. The software that has been 
developed is capable of calculating the area of a wound by utilizing the 
pixel count within the wound region, as well as a calibration coefficient 
derived from the measured distances between ticks located at calibration 
markers. The outcome of the measurement is transmitted to the user 
via the designated email address. The wound models exhibited a median 
relative error of 1.21% in the measurement of wound area. The 
effectiveness of the convolutional neural network (CNN) model was 
evaluated on a total of 41 actual wounds and 73 simulated wound 
models. The mean values for the accuracy, specificity, Intersection over 
Union, and dice similarity coefficient in the context of wound 
identification were found to be  99.3%, 99.6%, 83.9%, and 90.9%, 
respectively. The efficacy of the service has been demonstrated to 
be high, making it suitable for monitoring wound areas. Pereira et al. 
(34) developed a comprehensive system that includes a deep learning 
segmentation model called MobileNet-UNet. This model is capable of 
identifying the specific area of a wound and classifying it into one of 
three categories: chest, drain, or leg. Additionally, the system 
incorporates a machine learning classification model that utilizes 
different algorithms (support vector machine, k-nearest neighbors, and 
random forest) to predict the likelihood of wound alterations for each 
respective category (chest, leg, and drain). The deep learning model 
performs image segmentation and classifies the wound type. 
Subsequently, the machine learning models employ classification 
techniques to categorize the images based on a set of color and textural 
features that are obtained from the output region of interest. These 
features are then utilized to feed into one of the three wound-type 
classifiers, ultimately leading to a final binary decision regarding the 
alteration of the wound. The segmentation model attained a mean 
average precision (AP) of 90.1% and a mean Intersection over Union 
(IoU) of 89.9%. The utilization of distinct classifiers for the final 
classification yielded greater efficacy compared to employing a single 
classifier for all different kinds of wounds. The classifier for leg wounds 
demonstrated superior performance, achieving an 87.6% recall rate and 
52.6% precision rate.

3 Materials and methods

3.1 Dataset

The initial dataset comprises around 256 images of laboratory 
mice with inflicted wounds (35). The study encompasses a total of 

eight mice, with four mice assigned to Cohort 1 (C1) and four mice 
assigned to Cohort 2 (C2). The observation period spans 16 days, 
during which the healing process is monitored. The two cohorts are 
indicative of two separate experimental conditions, thus necessitating 
the grouping of results based on cohort. Each mouse in the study 
exhibits a pair of wounds, one located on the left side and the other on 
the right side. Consequently, the dataset comprises a collection of time 
series data encompassing a total of 16 individual wounds. Every 
wound is bounded by a circular cast that encompasses the injured 
region. The inner diameter of this splint measures 10 mm, while the 
outer diameter measures 16 mm. The splint is utilized as a reference 
object in the workflow due to its fixed inner and outer diameter, 
providing a known size. It is essential to acknowledge that a significant 
proportion, precisely over 25%, of the images within this dataset 
exhibit either missing casts or substantial damage to the splints. The 
images exhibit various challenges, including variations in image 
rotation (portrait vs. landscape), ranging lighting conditions, 
inaccurate or obscured tape measure position, multiple visible 
wounds, significant occlusion of the wound, and the relative 
positioning of the wound within the picture frame. The challenges 
mentioned above prompted researchers to explore the integration of 
deep learning algorithms with conventional image processing 
techniques. The approach of pre-processing for wound segmentation 
involves multiple steps. The images are acquired from the dataset 
containing photographs of wounds. Subsequently, the labelme tool is 
employed to designate the wound area and the encompassing region. 
Data augmentation techniques such as vertical and horizontal flips, 
transpose, and rotation are employed. The inclusion of diverse data 
and the subsequent preparation of the dataset were crucial steps in 
enhancing its quality and suitability for training an effective wound 
segmentation model. Different samples from the described above 
dataset are presented in Figure 1.

3.2 Data preprocessing

The pre-processing of data is of most tremendous significance in 
the preparation of input data for machine learning tasks. In the 
context of wound segmentation, it is imperative to perform image 
pre-processing in order to improve the quality of the images, extract 
pertinent features, and augment the dataset to enhance the 
performance of the model. This section will examine the different 
stages encompassed in the process of data pre-processing for wound 
segmentation. In brief, the process of data pre-processing for wound 
segmentation entails several steps. Firstly, the images are obtained 
from the wound photo dataset. Next, the wound area and the 
surrounding region are labeled using the labelme library in Python. 
Lastly, data augmentation methods such as vertical and horizontal 
flips, rotation, and transpose are applied. The following steps are 
essential in improving the dataset, enhancing its diversity, and 
preparing it for the training of a resilient wound segmentation model. 
Firstly, the images are obtained from the dataset containing 
photographs of wounds (35). The images function as the primary 
source of input for the segmentation task. The dataset comprises a 
compilation of images portraying various categories of wounds. It is 
necessary to perform image processing and labeling on each image in 
order to differentiate the injured area from the surrounding region. 
The labelme (36) library is employed for image annotation and 
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labeling in the Python programming language. The labelme library 
offers a user-friendly graphical interface that allows users to annotate 
regions of interest within images. In order to facilitate segmentation, 
distinct classes are created by applying separate labels to both the 
wound area and the surrounding area. Figure 2 illustrates various 
instances of data labeling.

The next step is data augmentation after the labeling procedure is 
finished. Data augmentation techniques are utilized to enhance the 
diversity and quantity of the dataset, thereby potentially enhancing the 
model’s generalization capability. When it comes to wound 
segmentation, several frequently utilized data augmentation 
techniques encompass horizontal and vertical flips, rotation, and 
transposition. The transformations of vertical and horizontal flips 

involve mirroring the image along the horizontal or vertical axis, 
respectively. These operations induce variations in the dataset by 
altering the orientation of the wounds. The process of rotation entails 
the application of a specific angle to the image, thereby emulating 
diverse viewpoints of the wound. The operation of transposition 
involves a straightforward flipping of an image along its diagonal axis.

By implementing these data augmentation techniques on the 
labeled images, we produce supplementary training instances that 
exhibit variations in orientation and position. The augmented dataset 
utilized in this study encompasses a broader spectrum of potential 
scenarios, thereby enhancing the model’s capacity to acquire more 
resilient features and enhance its precision in accurately segmenting 
wounds. To retain their relationship with the augmented images, the 

A B C

D E F

G H I

FIGURE 1

An illustration of nine different samples (A–I) from the data set used in the study, presented in visual form for more detailed analysis and understanding.
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labels must be altered appropriately during the data augmentation 
process. In the event that an image undergoes horizontal flipping, the 
associated labels must undergo a corresponding horizontal flipping 
as well. Figure 3 provides an example of the augmentation process, 
illustrating the original image and the augmentation steps 
applied to it.

3.3 Proposed framework

This study introduces a novel framework that integrates the U-Net 
(37) architecture and the ResNet34 (38) model in order to enhance the 
efficacy of image segmentation tasks. The proposed framework utilizes 
the encoding capabilities of ResNet34 as the primary encoder while 
incorporating the decoder architecture of U-Net to achieve precise 
and comprehensive segmentation. The diagram depicting the 
proposed framework is presented in Figure 4, while Figure 5 highlights 
the main steps of the proposed system.

The framework integrates the robust encoding capabilities of 
ResNet with the precise and comprehensive segmentation capabilities 
of U-Net. Through the strategic utilization of the inherent advantages 
offered by both architectures, our hybrid model endeavors to enhance 
the efficacy of image segmentation tasks. The integration of fusion and 
skip connections facilitates a seamless connection between the 
encoder and decoder, enabling efficient information transmission and 
accurate segmentation. The framework that has been proposed 
presents a promising methodology for tackling the challenges 
associated with image segmentation. It holds the potential to advance 
the current state-of-the-art in this particular domain significantly. The 
main elements within the proposed framework may be enumerated 
as follows:

3.4 Encoder-decoder architecture

The proposed framework uses a hybrid model architecture with a 
ResNet34 as the encoder and a U-Net as the decoder. The integration 
of ResNet34’s deep representation learning and U-Net’s efficient 
feature extraction enables us to derive significant advantages. The 

utilization of the encoder-decoder architecture has been widely 
recognized as an effective strategy in the context of image 
segmentation tasks. This architectural design effectively captures and 
incorporates both low-level and high-level features, thereby facilitating 
the generation of precise and accurate segmentation maps.

3.5 ResNet encoder

The ResNet34, which is an abbreviation for Residual Network 34, 
is a highly prevalent deep learning framework renowned for its 
efficacy in addressing the challenge of vanishing gradients in deep 
neural networks. The encoder employed in our study is a pre-trained 
ResNet model, which has undergone training on a comprehensive 
image classification task to acquire extensive and distinctive features. 
The ResNet encoder is responsible for taking the input image and 
iteratively encoding it into a compressed feature representation.

3.6 U-Net decoder

The U-Net architecture was initially introduced for the 
segmentation of biomedical images, with the specific aim of 
generating precise and comprehensive segmentation maps. The 
system comprises a decoder that facilitates the restoration of spatial 
information that was lost during the encoding phase. The decoder in 
the U-Net architecture is composed of a sequence of up sampling and 
concatenation operations, which progressively restore the initial 
image resolution while integrating high-level feature maps obtained 
using the encoder.

3.7 Fusion and skip connections

In order to facilitate efficient transmission of information 
between the encoder and decoder, our hybrid framework 
integrates fusion and skip connections. The fusion connections 
facilitate the integration of feature maps derived from the ResNet 
encoder with their corresponding feature maps in the U-Net 

A B C

FIGURE 2

An illustration of the outcomes obtained from the process of data labeling utilizing the labelme tool, where the blue polynomial line in A–C outcomes 
indicates the area around the wound, while the red polynomial line indicates the wounded area.
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A B C

D E F

FIGURE 3

Original image and Augmented images with an illustration for each process done on the original image: (A)—original image, (B)—vertical flip, (C)—
horizontal flip, (D)—random rotate 90, (E)—transpose, (F)—grid distortion.

FIGURE 4

The U-Net architecture that is being suggested with a ResNet-34-based encoder.
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decoder. The integration of both low-level and high-level features 
enables the decoder to enhance the accuracy of the segmentation. 
Skip connections are utilized to establish direct connections 
between the encoder and decoder at various spatial resolutions. 
These connections play an important role in facilitating 
the transfer of intricate details and spatial information 
between various layers, thereby enabling the achievement of 
precise segmentation.

3.8 Training and optimization

The introduced framework is trained in a supervised fashion 
utilizing a dataset that has been annotated with segmentation masks 
at the pixel level. A suitable loss function, such as the Dice coefficient 
or cross-entropy, is utilized to quantify the dissimilarity between the 
ground truth and the predicted segmentation maps. The optimization 
of network parameters is performed using the Adam algorithm, a 
gradient-based optimization technique, along with a suitable schedule 
for the learning rate.

4 Results

This section presents the results of a study aimed at segmenting 
the wound using the developed hybrid Resent 34 and U-Net model. 
The research process included the development of the model, data 
augmentation, training of the model on these data, and testing on 
actual data not involved in the training process. As a result, the 
following were obtained:

4.1 Development of an algorithm for 
segmentation of the wound

An algorithm was developed based on a combination of the 
Resent34 neural network and U-NET architecture. The algorithm 
consists of several stages, including preliminary data labeling, 
processing, and building and training of the model. Preliminary 
processing includes scaling and normalization of the data to improve 
the quality and speed of the model’s training.

4.2 Model training

To train the model, a set of data was used, including images of 
wounds with labeling segmentation. The model was optimized using 
Adam optimizer, and then the training was carried out on a 12th Gen 
Intel® i7.

4.3 Testing on real data

After training, the model was tested on actual data that were not 
used in the learning process. For each image of the wound, the model 
predicted a segmentation mask indicating the wounded area. Metrics 
were used, such as Intersection over Union (IOU) and Dice coefficient 
to assess the quality of the segmentation.

4.3.1 Intersection over Union
The IOU metric is used to assess the similarity between the 

predicted mask and the actual mask of the wound. IOU is calculated 

FIGURE 5

The main steps of the proposed system.
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by dividing the intersection between the two masks into the area of 
their association. The higher IOU indicates the best segmentation.

4.3.2 Dice coefficient
The Dice coefficient is also used to measure similarities between 

the predicted mask and the actual mask of the wound. It is calculated 
as the double value of the intersection area, divided into the sum of 
the areas of predicted and actual masks. The high value of the Dice 
coefficient also indicates a more accurate segmentation.

As a result of testing the model on the actual data, the following 
values of the IOU, Dice metrics, and accuracy were obtained: 0.973, 
0.986, and 0.9736, respectively. These results confirm that the 
developed wound segmentation algorithm achieves good results and 
demonstrates a high degree of similarity between the wound-predicted 
and actual masks. High values of the IOU and Dice metrics indicate 
the accuracy and quality of the wound segmentation, which is 
essential for the task of evaluating the wound size and monitoring its 
healing. The developed wound segmentation algorithm, combining 
the Resent34 neural network and U-NET architecture, in combination 
with data augmentation, shows promising results on actual data. It can 
be a helpful tool in medical practice for the automatic segmentation 
of the wound and for evaluating its characteristics for a more accurate 
diagnosis and treatment management. Figures 6, 7 shows the training 
and validation IOU and loss, respectively.

Below is a table with the results of cross-validation conducted to 
assess the performance of the proposed model. Cross validation was 
performed using the k-fold cross-validation method on the training 
augmented dataset. Model performance evaluation metrics, including 
IOU and Dice score, are presented in Table 1.

Table 1 presents the results of the model evaluation for each of the 
k folds, where each fold is used as a test set and the rest of the folds as 
a training set. For each fold, IOU and Dice scores are provided to 
provide information about how well the model performs segmentation 
on each fold.

The averages of these metrics show the overall model’s 
performance on the entire dataset. In this case, the average values of 
IOU and Dice scores are 98.49% and 99.24% respectively, which 
indicates a good quality of the model. Cross-validation allows you to 

take into account the diversity of data and check how stable and 
effective the model is on different data subsets.

5 Discussion

The segmentation of wounds is a crucial undertaking when it 
comes to medical imaging, which entails the identification and 
differentiation of wound boundaries within images. The accurate 
diagnosis, treatment planning, and monitoring of the healing 
progress are contingent upon the appropriate segmentation of 
wounds. One of the primary difficulties encountered in the process 
of wound segmentation pertains to the inherent variability observed 
in the visual characteristics, dimensions, and configurations of 
wounds. Wounds exhibit a variety of textures, colors, and depths, 
encompassing a spectrum that spans from minor lacerations to 
extensive ulcers. The presence of variability poses a challenge in the 
development of a universal segmentation algorithm that can 
effectively segment diverse types of wounds. Various methodologies 
have been suggested for wound segmentation, encompassing 

FIGURE 6

Training and validation IOU curves.

FIGURE 7

Training and validation loss curves.

TABLE 1 Results of cross-validation of the model based on the k-fold 
method.

Fold IOU (%) Dice score (%)

1 97.00 98.48

2 97.89 98.93

3 98.04 99.01

4 98.55 99.27

5 98.79 99.39

6 98.97 99.48

7 98.99 99.49

8 98.43 99.21

9 99.08 99.54

10 99.15 99.58

Average values 98.49 99.24
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conventional machine learning methodologies, image processing 
techniques, and deep learning models. The conventional methods 
frequently depend on the manual extraction of features and the 
application of thresholding techniques in order to distinguish the 
area of the wound from the adjacent healthy tissue. Although these 
methods may yield satisfactory outcomes in specific scenarios, they 
might encounter difficulties when dealing with intricate wounds or 
extensive datasets. Wound segmentation has been a subject of study 
in the field of machine learning, with various methods such as 
support vector machines, random forests, and convolutional neural 
networks being employed for this purpose. These algorithms acquire 
knowledge from a dataset that has been annotated with labels, 
enabling them to comprehend intricate wound patterns and 
distinctive attributes. Among the deep learning models, 
convolutional neural networks (CNNs) have demonstrated 
considerable potential in the field of wound segmentation. 
Convolutional neural networks possess the ability to autonomously 
acquire hierarchical features from unprocessed images, thereby 
enabling the incorporation of both local and global information. It 
has been demonstrated that they exhibit a notable level of precision 
in the process of wound segmentation, even when confronted with 
the presence of noise or other artifacts. Notwithstanding the progress 
made in wound segmentation, there remain a number of challenges 
that necessitate attention and resolution. The tasks mentioned above 
encompass the management of diverse wound types and stages, 
addressing discrepancies in imaging techniques and resolutions, and 
enhancing the applicability of segmentation algorithms across 
various datasets and medical facilities. Further research and 
development are needed to address the challenges and enhance the 
accuracy and generalizability of wound segmentation algorithms. 
The advantages of accurate segmentation of tiny targets and its 
adaptive network structure are shown by the U-Net framework, 
which was developed in 2015 (37). The incorporation of a U-Net as 
a deep learning model in diverse medical applications (39–44) has 
served as a prominent trigger for the motivation behind this 
investigation. The utilization of U-Net has been widely observed in 
wound segmentation. Recently, numerous studies (5, 19, 30, 45–47) 
have endeavored to improve their methodologies by developing 
enhanced models that are built upon the U-Net framework. This 
study presents a novel framework that combines the U-Net 
architecture and the ResNet34 model to improve the effectiveness of 
image segmentation tasks. The integration of the ResNet as an 
encoder within the U-Net framework for image segmentation has 
demonstrated remarkable performance in the segmentation of brain 
tumors, as evidenced by the work conducted by Abousslah et al. 
(48). The performance mentioned above has served as a source of 
inspiration for us to put forth a wound segmentation framework. 
This framework leverages the encoding capabilities of ResNet34 as 
the primary encoder, while integrating the decoder architecture of 
UNet. The objective is to attain accurate and all-encompassing 
segmentation. This section will provide an analysis of the 
fundamental components involved in the formulation of the model, 
as well as an examination of its associated benefits. First and 
foremost, it is essential to acknowledge that the developed model 
demonstrated noteworthy outcomes in the task of segmenting the 
injured region. This observation demonstrates the efficacy of the 
chosen methodology and framework employed in the model. Upon 
analyzing the results, it was observed that the model exhibits a 

notable degree of accuracy and a commendable capacity to discern 
the affected region within the images. This tool has the potential to 
be  a valuable resource for healthcare practitioners in the 
identification and management of various types of wounds. One of 
the primary benefits of the developed model lies in its capacity to 
effectively handle diverse categories of wounds and a wide range of 
medical images. The model effectively addresses both superficial 
injuries and intricate wounds. This characteristic renders it a 
versatile instrument for diverse medical practice scenarios.

Furthermore, the model that has been developed exhibits the 
capability to automate and expedite the process of segmenting areas 
that have been wounded. Instead of relying on manual allocation and 
analysis of wounds performed by medical personnel, the proposed 
model offers a rapid and precise means of determining the precise 
location of the wound. This will enable healthcare professionals to 
divert their attention towards other facets of treatment and enhance 
the overall efficacy of the procedure. This research proposes a strategy 
that can be applied to other wound types utilizing data and models 
in clinical practice. Chronic wounds like diabetic or pressure ulcers 
heal differently than acute wounds like surgical incisions or burns. 
Thus, data and models used to detect and segment wounds must 
account for these variances and characteristics, including wound 
location, shape, depth, infection, and tissue type. Adapting and 
generalizing the presented technique to additional wound types and 
animals may result in a more comprehensive and versatile wound 
analysis tool for clinical practice and wound care research. However, 
data availability and quality, wound complexity and unpredictability, 
and ethical and practical issues in the use of animals for wound 
experiments present challenges. Future research should explore and 
evaluate these difficulties.

5.1 Comparing the performance to the 
state-of-the-art

As part of this study, we performed wound segmentation using 
modern deep-learning algorithms. In our work, we set ourselves the 
goal of surpassing the results of previous studies and increasing the 
accuracy and efficiency of the segmentation process. In this section, 
we compare our obtained results with the results obtained by other 
researchers in the field of wound segmentation. To do this, we provide 
a table with detailed indicators of IOU and Dice scores that are used to 
assess the quality of segmentation. Table 2 provides a comparison of 
wound segmentation results between our approach and previous 
studies. The table allows us to analyze the advantages and limitations 
of our approach compared to previous work, as well as identify possible 
areas for improving the results. Our conclusions and recommendations 
can contribute to the development of wound segmentation and 
increase its applicability in the practice of clinical medicine.

5.2 Limitations and future scope

The limitation of the present study is the lack of explainability of 
the proposed hybrid model for wound segmentation. A deep model’s 
inexplicability severely restricts how effectively it can be  used. 
Enhancing the model’s explainability is a viable avenue for future 
scope, because it will raise the model’s understanding and applicability 
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among scientists. It is also suggested that future research concentrate 
on employing transformers and other deep models to increase 
performance. This additional avenue can potentially enhance and 
optimize the wound segmentation task’s performance. Furthermore, 
studies in this field might result in the development of hybrid model-
based techniques for wound segmentation that are more precise 
and effective.

6 Conclusion

In this paper, we suggest a deep learning methodology aimed at 
enhancing the generalization features of wound image segmentation. 
Our proposed approach involves the integration of U-Net and ResNet34 
architectures, resulting in a hybrid model. The empirical evidence 
demonstrates that the Hybrid model yields more precise segmentation 
outcomes, as indicated by superior scores in terms of Intersection over 
Union (IOU) and Dice metrics. Furthermore, the Hybrid model 
effectively minimizes the occurrence of incorrectly identified regions. 
We discovered that employing the integration of automated wound 
segmentation and detection improves segmentation efficiency and 
allows the segmentation model to generalize effectively for out-of-
distribution wound images. Therefore, considering our dataset, the 
utilization of both U-Net and ResNet34 in the method explained offers 
a benefit compared to employing the algorithms individually, even 
when incorporating distinct post-processing procedures.

We conclude that our findings about the hybrid model can 
be generalized to other medical datasets characterized by diversity in 
cell densities. Therefore, researchers are strongly encouraged to adopt 
our proposed methodology for additional research in this area.
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TABLE 2 Comparison of wound segmentation results between our approach and previous studies.

Author Techniques Task IOU Dice score

Goyal et al. (15) FCN Segmentation — 79.4%

Wang et al. (27) Deep CNN Segmentation 73.36% —

Huang et al. (32) Mask R-CNN Segmentation 69.0%

Li et al. (49) DCNN+ Segmentation 85.88% —

Dhane et al. (50) Fuzzy spectral clustering Segmentation — 86.7%

Carrión et al. (51) U-Net Segmentation 93.0% 96.0%

Carrión et al. (51) FCN-8 Segmentation 45.90% 59.22%

Carrión et al. (51) SegNet Segmentation 53.88% 65.69%

Our ResNet-U-Net Segmentation 97.25% 98.6%
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