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Background: Evidence indicates that chronic non-alcoholic fatty liver disease

(NAFLD) can increase the risk of atherosclerosis (AS), but the underlying

mechanism remains unclear.

Objective: This study is intended for confirming key genes shared between

NAFLD and AS, and their clinical diagnostic value to establish a foundation for

searching novel therapeutic targets.

Methods: We downloaded the Gene Expression Omnibus (GEO) datasets,

GSE48452 and GSE89632 for NAFLD and GSE100927, GSE40231 and GSE28829

for AS. The progression of NAFLD co-expression gene modules were recognized

via weighted gene co-expression network analysis (WGCNA). We screened for

differentially expressed genes (DEGs) associated with AS and identified common

genes associated with NAFLD and AS using Venn diagrams. We investigated

the most significant core genes between NAFLD and AS using machine

learning algorithms. We then constructed a diagnostic model by creating a

nomogram and evaluating its performance using ROC curves. Furthermore,

the CIBERSORT algorithm was utilized to explore the immune cell infiltration

between the two diseases, and evaluate the relationship between diagnostic

genes and immune cells.

Results: The WGCNA findings associated 1,129 key genes with NAFLD, and

the difference analysis results identified 625 DEGs in AS, and 47 genes that

were common to both diseases. We screened the core RPS6KA1 and SERPINA3

genes associated with NAFLD and AS using three machine learning algorithms.

A nomogram and ROC curves demonstrated that these genes had great clinical

meaning. We found differential expression of RPS6KA1 in patients with steatosis

and NASH, and of SERPINA3 only in those with NASH compared with normal

individuals. Immune infiltration findings revealed that macrophage and mast cell

infiltration play important roles in the development of NAFLD and AS. Notably,

SERPINA3 correlated negatively, whereas RPS6KA1 correlated positively with

macrophages and mast cells.
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Conclusion: We identified RPS6KA1 and SERPINA3 as potential diagnostic

markers for NAFLD and AS. The most promising marker for a diagnosis of NAFLD

and AS might be RPS6KA1, whereas SERPINA3 is the most closely related gene

for NASH and AS. We believe that further exploration of these core genes will

reveal the etiology and a pathological relationship between NAFLD and AS.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common
chronic liver disease worldwide, and its incidence has increased
from 25% in 2005 to 32% today (1), rendering it a leading chronic
condition. In a study of abdominal ultrasound and coronary
computed tomography angiography of 5,121 patients with neither
history of coronary artery disease nor chronic alcohol consumption
revealed a close correlation between the fatty liver index, NAFLD
fibrosis scores, and non-calcified plaque (2). This proved that
NAFLD is closely associated with noncalcified plaques, which are
prone to sudden and unexpected cardiac events. In other words,
NAFLD may induce the occurrence of cardiovascular diseases
for instance atherosclerosis (3). Furthermore, cardiovascular
complications correlate with increased risk for NAFLD (4). More
focus on NAFLD is needed to reduce the risk of atherosclerotic
events. The clinicopathological syndrome NAFLD is characterized
by diffuse hepatocellular bulla fat, alcohol consumption, and other
specific liver damaging factors, including simple hepatic steatosis
and the evolution of non-alcoholic steatohepatitis (NASH),
cirrhosis, and liver cancer (5, 6). The main pathological feature
of liver steatosis is hepatocyte steatosis (> 5%), while NASH
is inflammation and fibrosis (7). A meta-analysis has revealed
significant correlation between AS and any degree of fibrosis,
the severity of which amplifies this association (8). The risk of
atherosclerosis increases when NAFLD progresses from simple
steatosis to NASH (9).

Atherosclerosis is the deposition of apolipoprotein in the
inner walls of blood vessels. This recruited various immune cells,
resulting in endothelial dysfunction, which leads to a chronic
inflammatory response (10). A close association between NAFLD
and AS has been identified, and the increased abundance of
systemic inflammatory factors such as IL6, IL-1β, TNF-α leads
to further endothelial dysfunction and enhanced vascular plaque
formation in patients NAFLD (11). In addition, NAFLD and
AS are manifestations of metabolic syndrome in end-organ
damage, as well as diseases caused by abnormal fat metabolism.
Therefore, systemic inflammation, endothelial dysfunction, and
altered lipid metabolism might be mechanisms through which
NAFLD increases the risk of AS. With the wide development
and application of bioinformatics, WGCNA and machine learning
algorithms (MLAs) can help to explore potential biological
diagnostic markers between NAFLD with different stages and AS
and assess immune characteristics between them using immune
cell infiltration. This would contribute to the prevention and

early treatment of both diseases. Here, we used WGCNA analysis
and MLAs to explore potential biological diagnostic markers that
differ between NAFLD with different progression and AS, and
are common to both. We also and assessed immune signatures
between potential markers using immune cell infiltration. Our
findings should contribute to the prevention and early treatment
of both diseases.

Materials and methods

Data processing and analysis

We downloaded the GEO datasets1 GSE48452, GSE89632,
GSE100927, GSE130970, GSE135251, GSE58979, GSE40231,
GSE28829, GSE97210, GSE57691, and GSE163154 to determine
gene expression and clinical information regarding patients
with NAFLD and AS. The GSE40231 and GSE28829 were
merged into one combined AS dataset through the SVA package
(Supplementary Figure 1). Liver transcriptome data were derived
from 32 NAFLD patients (steatosis, n = 14; NASH, n = 18) and 14
normal subjects in the GSE48452 dataset (GPL11532 platform).
The GSE100927 dataset (GPL17077 platform) included 104
human peripheral artery specimens from 69 patients with AS and
35 healthy individuals. We verified the specific expression
of gene signatures using the GSE89632,the combined AS
dataset,GSE130970, GSE135251, GSE58979, GSE97210, GSE57691,
GSE163154 datasets. All datasets were processed and analyzed
using RStudio version 4.2.1. Detailed information on the GEO
dataset can be found in Supplementary Table 1. Figure 1 displays
the flowchart of the study. Table 1 displays the Abbreviations of
the study.

Gene expression analyzed using WGCNA

Gene expression profiles in many samples can be analyzed
using the WGCNA (12–14). It can cluster genes with similar
expression profiles and analyze dependence between modules
and particular traits or phenotypes. It is widely applied to
phenotypic trait and gene association analyses among multiple
groups (15). Both GSE100927 and GSE57691 datasets contain

1 https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Flowchart.

clinical information related to the progression of NAFLD. We
constructed a gene co-expression network for NAFLD by the
WGCNA version 1.72.1 package in R version 4.3.1. The flash cluster

function in R was used analyze hierarchical clustering in NAFLD
samples to identify and eliminate outliers. We then calculated an
appropriate soft threshold using the pick Soft Threshold algorithm
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TABLE 1 Displays the Abbreviations t of the study.

Abbreviations Full name Abbreviations Full name

AS atherosclerosis GSEA Gene Set Enrichment Analysis

AUC calculated the area KEGG Kyoto Encyclopedia of Genes and Genomes

CCR2 chemokine receptor type 2 KLF2-eNOS Kruppel like factor 2- endothelial nitric oxide synthase

CXCR4 C-X-C chemokine receptor type 4 LASSO Minimum absolute contraction and selection operator

DCA Decision curve analysis MLAs machine learning algorithms

DEGs Differentially expressed genes NAFLD Non-alcoholic fatty liver disease

ECM Extracellular matrix NASH Non-alcoholic steatohepatitis

ECs Endothelial cells ROC Receiver operating characteristic

ERK5 Extracellular signal-regulated kinase 5 SVM-RFE Support vector machine recursive feature elimination

GEO Gene expression omnibus VCXAM-1 Vascular cell adhesion molecule 1

GO Gene ontology WGCNA Weighted gene co-expression network analysis

in the WGCNA package. A scale-free network was constructed
to obtain various gene modules related to NAFLD using the
one-step network construction function in the WGCNA package.
Divide the samples into control, steatosis, and NASH, perform
module phenotype correlation analysis on each module, draw
a module phenotype correlation heatmap, and determine the
module with the highest correlation with the target phenotype.
Key NAFLD-associated gene modules (NAFLD_WGCNA), were
screened by association analysis of the module data with the clinical
characteristics of NAFLD.

Difference analysis

Using R, we standardized and corrected all gene expression
profile microarray data and annotated gene names using limma
version 3.56.2 (16). DEGs in AS (AS_DEGs) were also obtained
by limma package analysis of gene expression between AS patients
and control cases. The gene threshold of AS_DEGs was p < 0.05
and |log2 FC| ≥ 1. We visualized differential data as volcano plots.
Genes that were common to NAFLD_WGCNA and AS_DEGs were
identified using ggvenn version 0.1.10.

Functional enrichment analysis

We aimed to identify NAFLD and AS co-morbidities and
reveal the potential biological significance of the core genes of
these diseases. We therefore analyzed Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
to determine the functional enrichment of NAFLD_WGCNA and
AS_DEGs, respectively using the ClusterProfiler package (17) in R.
Functional enrichment was confirmed at p < 0.05.

Key genes with diagnostic value
screened by MLAs

Based on the common genes in NAFLD and AS, we further
screened core genes using the LASSO regression (18), SVM-RFE

(19), and random forest (20). LASSO regression was applied using
the glmnet package version 4.1.7 with parameters adjusted by 10-
fold cross-validation. Using caret version 6.0–86, e1071 version
1.7–9, and kernlab version 0.9–29, the SVM-RFE algorithm was
applied. Through five-fold cross-validation, the accuracy of the
model algorithm was improved. The random forest algorithm
was executed using randomForest package (version 4.7.1.1).
The overlapping results of the three algorithms represented the
diagnostic markers of NAFLD-associated AS. The core diagnostic
markers of NAFLD-associated AS were further determined from
analyses of ROC curves and gene expression.

Verification of core genes

We verified the differential expression of key genes in
control and focal tissues by the NAFLD and AS datasets
GSE89632, GSE130970, GSE135251, GSE58979,and the combined
AS dataset,GSE97210, GSE57691, GSE163154 datasets respectively.
We established ROC curves through the pROC (21) version 1.18.4
package, calculated the AUC value, and evaluated the ability of core
genes to diagnose steatosis, NASH, and AS, respectively.

Construction of NAFLD-related AS
diagnostic model

Expression profiles of the core diagnostic genes were obtained
from the GSE100927 dataset. We constructed a nomogram
diagnostic model (22, 23) based on gene expression, AS, and control
samples to confirm the diagnostic value of these genes.

GSEA of individual genes

We assessed core genes using GSEA (24) and the ClusterProfiler
package in R. Samples of steatosis, NASH and AS were classified
based on high or low expression of core genes. A series of
core DEGs was determined using the limma package. We then
compared KEGG pathways among the three diseases using GSEA.
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Correlations between core genes and
immune cells

We explored the relationship between immune cell types with
different degrees of infiltration and diagnostic markers of NAFLD
and AS using CIBERSORT (25) and the preprocessCore version
1.62.1, parallel version 4.3.1, and e1071 packages in R.

Statistical analysis

Statistical analysis of all data was performed using R and
Wilcoxon tests were used for analyzing differential gene expression.
Differences among the control, steatosis, and NASH groups were
compared by measuring immune infiltration and analysis of
variance. More detailed statistical methods for data processing were
introduced in the previous section. P values greater than 0.05 were
considered statistically significant.

Results

Identification of co-expressed gene
modules in NAFLD

We obtained gene expression profiles from 14 patients with
steatosis, 18 with NASH, and 14 healthy individuals in the NAFLD
datasets. The samples were assigned to steatosis, NASH and control
groups. We ensured that the constructed scale-free network had
biological significance as follows. We removed the outlier sample
GSM1179010 from the NAFLD dataset, and selected nine as the
soft threshold power β for the NAFLD dataset on the basis of a
scale-free R2 (0.8). We also calculated GS (correlation between a
gene and a sample) and MM (correlation between gene expression
and genes with a modular signature; ME) to correlate these modules
with clinical features. Figures 2A-D shows that the NAFLD dataset
genes were clustered into 27 modules visualized in different colors.
Among them, light green, dark turquoise, light cyan, yellow, and
white co-expressed gene modules were closely associated with
NAFLD. The light green and dark turquoise modules were most
associated with NASH, and light cyan and white were most
associated with steatosis. The light green, dark turquoise, light cyan,
and yellow modules were related to inflammation and fibrosis. The
dark turquoise, light cyan were related to fat and nas. Therefore,
we selected these five NAFLD-related gene modules as targets
and found 1,129 genes (NAFLD_WGCNA), which is shown in
Supplementary Table 2.

Identification of DEGs in AS

We compared DEGs between patients with AS and healthy
individuals using GSE100927 datasets. With the difference analysis,
625 DEGs (Supplementary Table 2) were selected between AS and
healthy controls based on combination and normalization of the
microarray data (p < 0.05 and | log2 FC| ≥ 1; Figure 2E, volcano
plot; Supplementary Figure 2, heatmap). The Venn diagram

revealed 47 intersecting genes between AS and NAFLD (Figure 2F).
Thus, these two diseases have 47 genes in common.

Functional enrichment analysis

Functional enrichment of AS_DEGs and NAFLD_WGCNA
was analyzed. Figures 3A-D shows that the NAFLD_WGCNA
genes were concentrated in the PI3K-AKT signaling pathway,
focal adhesion, ECM-receptor interaction, and other pathways. The
AS_DEGs were primarily enriched in the activation of immune
responses, leukocyte-mediated immunity, B cell receptor signaling,
and other pathways. Collectively, these diseases appear to be
mediated by inflammation and immunity.

Machine learning

We extracted expression data for 47 genes from the common
gene expression profiles of NAFLD and AS. Five, 20, and 20 genes
were respectively selected as biomarkers associated with NAFLD
and AS using the LASSO, SVM-RFE, and random forest algorithms
(Figures 4A-D, Supplementary Table 3 and Supplementary
Figure 3). Overlapping genes derived from the three algorithms
were considered diagnostic for NAFLD-AS comorbidities, and we
identified them as RPS6KA1, SERPINA3, JAML, SYNPO2, and
LMCD1 (Figure 4E).

Differentially expressed genes and ROC
curves

We investigated the diagnostic value of the five common genes
screened in clinical practice, by analyzing differences among them
between the NAFLD and AS datasets. Figures 5A-J shows that three
diagnostic genes significantly differed between the NAFLD and AS
datasets whereas SERPINA3 and SYNPO2 did not. The LMCD1
gene correlated negatively, whereas RPS6KA1 and JAML correlated
positively with NAFLD and AS. We then plotted ROC curves for
the NAFLD and AS datasets. Figures 5K-O shows that all AUC
values were > 0.6, indicating that these five genes have clinical
diagnostic value.

Five diagnostic genes and NAFLD
progression

We further explored relationships between these diagnostic
genes and NAFLD progression. We found that RPS6KA1
expression differed between the steatosis and NASH groups, with all
AUCs being > 0.7, whereas LMCD1 expression differed only in the
steatosis group. The expression of SYNP02, JAML, and SERPINA3
differed only in the NASH group, with all AUCs being > 0.7,
while there was no difference in the steatosis group, with their
AUC values all less than 0.7 (Figures 6A-F, Supplementary
Figure 4). Therefore, we selected the RPS6KA1 and LMCD1 genes
as diagnostic for steatosis and AS, and the RPS6KA1 SYNP02, JAML
and SERPINA3 genes as diagnostic for NASH and AS.
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FIGURE 2

Difference analysis and WGCNA. (A-C,E) Construction of WGCNA co-expression network in GSE48452. (A) Sample clustering dendrogram.
(B) Sample dendrogram and trait heatmap. (C) Soft threshold β = 9 and scale–free topological fit index (R2). (D) Volcano plot of DEGs in GSE100927.
Red nodes indicate upregulated DEGs, blue nodes indicate downregulated DEGs, green nodes indicate p < 0.05 and | log2 FC| > 3, and black nodes
indicate genes that are not significantly differentially expressed. (E) Heat map of module–trait correlations. (F) Common genes overlap in
WGCNA_NAFLD and AS_DEGs.

Verification of core genes

We validated the accuracy of five common genes using DEGs
from GSE89632 and GSE57691. Figures 6A–H and Supplementary
Figure 4 shows that the expression of RPS6KA1, SERPINA3,

JAML, and LMCD1 differed in the combined AS datasets and
the ROC curve results showed that they had significant value for
a diagnosing AS. Similarly, we have also seen similar results on
other AS datasets. The expression of RPS6KA1 and SERPINA3
differed in the steatosis and NASH groups in the GSE89632 and
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FIGURE 3

Enrichment analysis of NAFLD_WGCNA and AS_DEGs. GO (A) and (B) KEGG pathway enrichment of NAFLD_WGCNA. GO (C) and KEGG pathway
(D) enrichment of AS_DEGs.

GSE58979 dataset, with AUCs being > 0.7. These results indicated

that RPS6KA1 and SERPINA3 have significant value for diagnosing

NAFLD (steatosis and NASH). Therefore, RPS6KA1 might be

a promising marker for diagnosing NAFLD and AS, whereas

RPS6KA1 and SERPINA3 might be promising for diagnosing

NASH and AS.
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FIGURE 4

Machine learning. (A) LASSO coefficient profiles in GSE48452. (B) Log (λ) value determined by ten-fold cross-validation in GSE48452. Core genes
(C) selected by SVM-RFE and (D) screened by Random Forest algorithm in GSE48452 and (E) Venn diagram.

Construction of diagnostic model for
NAFLD-related AS

We evaluated the performance of the prediction model
by basing a nomogram on the diagnostic genes, RPS6KA1
and SERPINA3, and using calibration, decision curve analysis
(DCA), and clinical impact curves (Figures 7A-D). The ROC
curve in Figure 7E indicates that the nomogram has powerful
diagnostic value for NAFLD-associated AS. The calibration curves
in Figure 7C indicated that the prediction probability of the
nomogram diagnostic model was similar to that of the ideal model,
and the DCA in Figure 7D showed that NAFLD-associated AS
diagnoses were more beneficial when based on the nomogram
model rather than on a single gene.

GSEA analysis of single gene

To further discuss the potential role of the core genes RPS6KA1
and SERPINA3 in steatosis, NASH and AS, we analyzed pathways

associated with a single gene using GSEA-KEGG. In the group with
high expression, RPS6KA1 might activate fatty acid metabolism,
lipid and atherosclerosis, and TNF signaling, chemokine signaling,
and focal adhesion pathways (Figures 8A-F), whereas SERPINA3
might activate NF-κB signaling, Toll-like receptor signaling, and
FoxO signaling pathways, apoptosis, fatty acid metabolism, lipid
and atherosclerosis.

Analysis of immune cell infiltration

The results of immune cell infiltration in patients with using
CIBERSORT revealed differences in the expression of activated
NK cells, M0 macrophages, and resting mast cells among the
steatosis, NASH, NAFLD, and AS groups compared with controls
(Figures 9A, B). This trend was consistent, with significantly
increased M0 macrophages and significantly decreased NK cell
activation and resting mast cells. The results of correlation analyses
between diagnostic RPS6KA1 and SERPINA3 gene expression
and immune cells showed that RPS6KA1 correlated positively
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FIGURE 5

Differential expression analysis of core genes and ROC curves. Differential expression of core genes between control and NAFLD in GSE48452 (A–E)
and between control and AS in GSE100927 (F-J). ROC curves of core genes in GSE48452 and GSE100927 (K-O). *P < 0.05 and ***P < 0.001. ns
indicates not significant (p > 0.05).

with macrophages and SERPINA3 correlated negatively with
macrophages and mast cells in patients with NAFLD (Figure 9C),
whereas RPS6KA1 and SERPINA3 respectively correlated positively
and negatively with macrophages and mast cells in patients with AS
(Figure 9D).

Discussion

The principal purpose of this study was to determine crosstalk
genes between NAFLD and AS using bioinformatics. We identified
RPS6KA1 and SERPINA3 as the core crosstalk genes in NAFLD
and AS, with far higher AUC values than numerous genes.
Inflammatory activation participated in crosstalk between NAFLD
and AS due to the co-expression of macrophages and mast
cells, and that hub genes correlated to a greater degree with
different immune cells.

The important identified gene, RPS6KA1, also called P90RSK,
belongs to the RSK family of serine/threonine kinases (26). Upon
activation induced by H2O2, P90RSK inhibits transcriptional
activation of ERK5 and adjusts the subsequent expression of
KLF2-eNOS and VCAM-1, thus inhibiting endothelial cells (ECs)
inflammation and modulating the function of the ECs, which
is responsible for atherosclerosis. However, this inhibitory effect
was reversed by the P90RSK inhibitor (27). Blood flow disorder
can easily progress to endothelial cell dysfunction, stimulate

P90RS0K phosphorylation, induce SENP2 nuclear export, diminish
SENP2 activity, enhance the sumoylation of ERK5 and tumor
protein P53, and increase the expression of inflammatory and
pro-apoptotic factors in ECs, which in turn decrease apoptosis
and inflammatory responses that lead to their dysfunction; this
ultimately results in the formation of atherosclerotic plaques (28–
30). However, P90RSK1 and P90RSK2 gene knockout completely
suppressed the appearance of such plaques. The mouse strain
WTP90RSK -MTG that overexpresses P90RSK in bone marrow
cells has far more atherosclerotic lesions and necrotic cores than
non-transgenic littermate controls mice. In contrast, DNP90RSK -
MTG mice expressed dominant-negative P90RSK in myeloid cells
and have fewer obvious plaques and less developed necrotic cores.
These results indicated that the activation of RPS6KA1 (P90RSK)
accelerates the formation of atherosclerotic plaques by influencing
ECs function (31).

Direct investigations of RPS6KA1 and NAFLD are limited.
Currently, RPS6KA1 plays an indeterminate role in chronic liver
disease and might be involved in lipid metabolism and NAFLD.
Inhibiting RPS6KA1 and STAT3 genes can impact the selective
autophagic degradation of KLF3 mediated by CEBPB hat weakens
adipogenesis (32).

Serine proteinase inhibitor A3 (SERPINA3) is also a key gene
that belongs to the serpin superfamily (33). Most studies of
SERPINA3 have focused on tumors, and few have investigated
NALFD and AS, whereas the mouse homologue SERPINA3C
is related to two diseases in more studies. Plasma levels of
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FIGURE 6

Verification of core genes. (A-E) Values for ROC and AUC of each hub gene among control, steatosis and NASH in GSE48452, GSE89632 and
between control and AS in the combined AS dataset; (F-H) Differentially expressed core genes among control, steatosis and NASH in GSE48452,
GSE89632 and between control and AS in the combined AS dataset. *P < 0.05, **P < 0.01, and ***P < 0.001. ns indicates not significant (p > 0.05).

the acute-phase protein SERPINA3 increase substantially during
inflammation (34). However, we found obviously diminished
SERPINA3 expression in patients compared with controls in the
NAFLD and AS datasets, suggesting that SERPINA3 has an anti-
NAFLD (35) and anti-AS (36) effects. The anti-inflammatory role
of SERPINA3 is consistent with the results of its mouse homologue
SERPINA3C (human homologue is SERPINA3) in NAFLD and AS.

Double knockout of APO and SERPINA3C substantially
increased lipogenic SREBP1 and SCD1 gene expression in the
livers of mice fed with a high-fat diet. These mice developed lipid
accumulation, and steatosis compared with only APO knockout.
Serum AST and ALT levels are significantly increased in double-
knockout mice, and macrophage infiltration and ECM content
expression are also increased in their liver tissues (37). The
increased expression of JNK and P65 proteins in the liver activates
the JNK/NF-κB signaling pathway, which leads to enhanced
expression of adhesion molecules and proinflammatory factor.

All factors cause further liver inflammation and fibrosis, and
significantly aggravate liver injury. Additionally, SERPINA3C
can also resist hepatocyte necrotic apoptosis by inhibiting
the β-catenin/Foxo1/TLR4 signaling pathway (37). A deficiency
of SERPINA3C strengthens liver sensitivity to lipid toxicity
and promotes necrotic apoptosis, which, in turn, promotes
inflammation and fibrosis in NASH (38). In summary, SERPINA3C
can inhibit the expression of genes associated with lipogenesis,
curb lipogenesis and hepatocyte necrotic apoptosis through the
JNK/NF-κB and Wnt/β-catenin signaling pathways, diminish
inflammation and fibrosis in the liver, and inhibit the development
of more severe NASH. This is consistent with our findings of
significantly reduced SERPINA3 expression in NASH in GSE89632,
GSE48452, GSE58979 NAFLD datasets but did not significantly
change in steatosis. Although we did not see similar results in the
GSE130970 and GSE135251 validation sets, considering that there
are more control samples in the GSE48452 and other datasets, and
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FIGURE 7

Nomogram model. (A) Nomogram model predicting AS based on two hub genes in GSE100927. The multiple regression analysis results between
multiple predictive factors and the dependent variable, ***P < 0.001. (B) Calibration curves for nomogram. (C) DCA of nomogram and each hub
gene. (D) Clinical impact curve of nomogram. (E) Validation of nomograms using ROC curves.

only 4 control samples in GSE130970, we also consider it as a core
gene. Thus, SERPINA3 might be a promising marker for a diagnosis
of NASH syndrome and AS.

Otherwise, SERPINA3C has also been implicated in the
development of AS. Thrombin activity is inhibited by SERPINA3C,
which in turn weakens the inhibition of intracellular ERK1/2 and
JNK phosphorylation, thereby declining the abnormal proliferation
and migration of VSMCs. Excessive VSMC proliferation generates
new intima and plaques, and facilitates the progression of

atherosclerosis (39). These indicate that SERPINA3C is a novel
thrombin inhibitor that protects against the development of
atherosclerosis.

Atherosclerosis and NAFLD are the results of chronic
inflammatory reactions, and pathological development mainly
involves macrophages and mast cells (40). Immune infiltration
analysis revealed an increased abundance of macrophages and mast
cells in patients with AS and those with NAFLD. Accumulated
mast cells in plaques promotes the progression of atherosclerosis
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FIGURE 8

Single-gene GSEA of RPS6KA1 and SERPINA3. Signaling pathways of RPS6KA1 determined from single-gene GSEA in (A) steatosis, (B) NASH and
(C) AS. Signaling pathways of SERPINA3 determined from single-gene GSEA of in (D) steatosis, (E) NASH, and (F) AS.

by secreting pro-inflammatory factors and chemokines (41).
Macrophages absorb low-density lipoprotein particles that have
been modified by lipases and proteases and are trapped in the
intima of blood vessels to form foam cells, which comprise
the hallmark of early plaque formation (42). The continual
accumulation of foam cells in the vascular intima aggravates
local inflammatory responses by constantly secreting inflammatory
factors and chemokines. Activation of P90RSK in macrophages

guides the expression of pro-inflammatory genes like TNF-
α, which in turn facilitates atherosclerosis. Moreover, P90RSK
overexpression in macrophages is involved in atherosclerotic and
necrotic core formation.

Our results indicated that lipid metabolism, endothelial
dysfunction, and inflammatory responses play vital roles in NAFLD
and AS pathogenesis. Endothelial cell dysfunction is an initial
stage of atherosclerosis (43, 44). The abundance of ECs expressing
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FIGURE 9

Immune infiltration assessed using CIBERSORT. Boxplots show comparisons of 22 immunocyte subtypes in (A) GSE48452, and (B) GSE100927.
Heatmaps show correlation coefficients between hub genes and immunocyte subtypes in (C) GSE48452 and (D) GSE100927. *P < 0.05, **P < 0.01,
and ***P < 0.001. ns indicates not significant (p > 0.05).

cell adhesion molecules such as E-selectin, increases upon contact
with a multitude of hazardous factors for atherosclerosis. These
adhesion molecules then release chemokines that induce the
recruitment and infiltration of monocytes and lymphocytes. The
adhesion of monocytes and lymphocytes to ECs constitutes a
proportion of atherosclerotic lesions, augments the recruitment
of white blood cells and activates proinflammatory factors in
ECs. This leads to inflammation that ultimately exacerbates
atherosclerosis.

During the progression from simple steatosis to more
severe NASH, Endothelial dysfunction and inflammation are

important role (10, 45). Hepatic sinusoidal endothelial cells
activate NF-κB signaling through TLR9 to reinforce secretion
of CCR2 and CXCR4, recruit macrophages to inflammatory
sites, and release inflammatory factors during this period.
These inflammatory factors might cause vascular endothelial
cell dysfunction, which in turn results in atherosclerosis
(46, 47).

As both NAFLD and AS are manifestations of end-organ
damage in metabolic syndrome, they have several similarities.
However, the common mechanisms of NAFLD with different stages
and AS has not been explored until now. Based on the WGCNA
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and MLAs, we identified characteristic genes that will help to
further elucidate the mechanisms of action that are common to
NAFLD with different stages and AS of progression. Our study
was retrospective, and further experimental and clinical data are
required to confirm our results. We will collect cases of NAFLD
combined with AS in clinical practice, which will be our future
research. The expression and diagnostic models based on two
signature genes functioned well in the external validation sets
for NAFLD with different stages and AS of progression, which
increased confidence in our results. We revealed new biomarkers
of an association between NAFLD with different stages and
AS of progression.
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