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This mini-review analyzed two approaches to screening bacterial contamination 
and utilizing pathogen reduction technology (PRT) for Platelet concentrates 
(PCs). While the culture-based method is still considered the gold standard 
for detecting bacterial contamination in PCs, efforts in the past two decades 
to minimize transfusion-transmitted bacterial infections (TTBIs) have been 
insufficient to eliminate this infectious threat. PRTs have emerged as a crucial 
tool to enhance safety and mitigate these risks. The evidence suggests that the 
screening strategy for bacterial contamination is more successful in ensuring 
PC quality, decreasing the necessity for frequent transfusions, and improving 
resistance to platelet transfusion. Alternatively, the PRT approach is superior 
regarding PC safety. However, both methods are equally effective in managing 
bleeding. In conclusion, PRT can become a more prevalent means of safety 
for PCs compared to culture-based approaches and will soon comprehensively 
surpass culture-based bacterial contamination detection methods.
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1 Introduction

More than 100 million blood units are transfused annually, making blood transfusion one 
of the most common hospital procedures (1). Among these, platelet concentrate (PC) 
transfusion is vital in various hematological and oncological diseases. Studies show 9–30% of 
intensive care unit (ICU) patients receive platelet transfusions (2, 3).

Infections caused by bacteria entering the patient’s body, transfusion-transmitted bacterial 
infections (TTBIs), remain a significant cause of mortality and morbidity. According to the 
US Food and Drug Administration (US FDA) report, infections caused by bacterial 
contamination between 2012 and 2016 are the third cause of mortality caused by blood 
transfusion (4). Compared to viral infection, bacterial infection occurs 100 to 1,000 
times more.
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The testing for bacterial contamination in PCs is typically done 
through platelet fraction sampling, as PCs are more susceptible to 
bacterial contamination than other products (4, 5). Bacterial 
contamination can range from a very low titer to as high as 1010 
colony-forming units (CFUs) in each bag (6, 7).

While culture-based methods are still considered the gold 
standard in detecting bacterial contamination in PCs, they do not 
eliminate the risk of transmission of TTBIs (5, 8). There are two ways 
to increase the safety of PCs: pathogen reduction (PR) and bacterial 
screening (7, 9). Presently, three commonly used technologies—
INTERCEPT (confirmed by the US FDA), Mirasol, and 
THERAFLEX—employ exposure to ultraviolet (UV) light to reduce 
the risk of various pathogens (10).

In a previous review, we evaluated screening methods for bacterial 
contamination in PCs (5). This mini-review is based on the PubMed 
database to analyze the advantages and disadvantages of various PRTs 
and bacterial screening. All articles were collected until October 2023. 
This review focuses on identifying bacterial contamination in PCs, as 
traditional tests involve sampling the platelet portion.

2 Bacterial contaminations

Platelet concentrates (PCs) were first introduced as a therapeutic 
product in the 1960s and have since become a crucial component in 
treating thrombocytopenia, particularly in cases caused by 
chemotherapy (11). PCs include single donor platelets (SDPs) and 
whole blood platelets (WBPs). There are two methods for preparing 
whole blood platelets (WBPs): Buffy coat (BC) and platelet-rich 
plasma (PRP).

The primary contamination source is bacteria from the skin’s 
normal flora due to inadequate sterilization of equipment and 
surfaces. PCs may contain Gram-positive and Gram-negative bacteria 
(5, 12). Notably, Staphylococcus epidermidis, a Gram-positive 
bacterium, is the most frequently isolated organism in PCs (5).

PCs now have a 5-day shelf life, instead of 7, to comply with US 
FDA recommendations and prevent bacterial contamination (12). 
Some countries, such as Japan, have further reduced the lifespan of 
PCs from 5 days to 3 days to reduce bacterial contamination (13). 
However, it is essential to note that bacterial contamination is only 
sometimes detectable before PCs are injected. PCs are the most 
susceptible to infection and sepsis of all blood products, primarily 
because they are stored at room temperature (RT). However, PRT is 
an effective method for extending the shelf life of PCs by up to 
7 days (2).

Storage PCs at a cold temperature (1–6°C) can also be effective 
in reducing the growth of bacteria, maintaining platelet function 
(14), and, at the same time, increasing their lifespan (11). Most 
studies in the last two decades found platelet concentrates cold 
storage (CS) is beneficial (15). Some studies have shown that CS can 
have harmful and even irreversible effects on their morphology and 
function (16, 17). There is also some concern about whether PRT 
can be  used on CS platelets without negatively affecting their 
therapeutic effectiveness (18). More research is needed to determine 
the effectiveness of CS platelets in treating acute bleeding despite 
their superiority over RT platelets (19, 20). The US FDA recently 
approved a 14-day shelf life of PCs to treat active bleeding only when 
RT platelets are unavailable (21).

The first prevention strategy involves screening and selecting 
donors based on their medical condition and asking about any recent 
antibiotic treatments (22). Immunological procedures to prevent 
transfusion-transmitted bacterial infections (TTBIs) begin with 
careful donor screening and blood testing for known pathogens (23). 
However, this approach cannot detect asymptomatic bacteremia (22, 
24). Another effective method is to remove a small amount of blood 
(around 10–20 mL) at the beginning of the collection process, which 
can significantly reduce the risk of bacterial contamination, especially 
from gram-positive bacteria, although it cannot eliminate it. The 
diversion method is a standard for preventing bacterial 
contamination (24).

Two other significant strategies include bacterial screening 
methods and pathogen reduction technologies (PRTs) (2). Table 1 
provides a detailed comparison of these strategies.

3 Discussion

3.1 Bacterial screening methods of platelet 
concentrates

While the reported frequency of bacterial contamination ranges 
from 1 in 750 to 1 in 2,500 blood units, both transfusion-transmitted 
bacterial infections (TTBIs) and sepsis transfusion reactions (STRs) 
are often underreported and can seriously threaten patients (2). One 
factor contributing to this issue is that many centers only perform 
aerobic blood cultures, which cannot detect anaerobic bacterial 
contamination (30). Additionally, some hospitals fail to quarantine 
PCs for the recommended 12 to 24 h, which increases the risk of STRs. 
However, even a 24-h quarantine may not eliminate slow-growing or 
non-multiplying bacteria in storage conditions.

TABLE 1 Comparison of advantages and disadvantages of two strategies 
of bacterial screening and pathogen reduction (PR) of platelet 
concentrates (PCs).

Bacterial 
screening

Pathogen 
reduction

References

Non-inferioritya 

of PCs

More Less (10, 25–27)

Platelet 

Refractoriness

Less More (28)

False-positive or 

-negative results

Yes No (29)

Logistical issues No/Yes (for 

culture-based 

methods)

Yes (29)

Timing of 

treatment

Significant Critical (29)

Shelf life of PCs 3–7 days 5–7 days (2)

Approach Non-proactive Proactive (2)

Safety level Variable: Low to 

high (for culture-

based methods)

The highest (29)

aNon-inferiority relates to platelet metabolic activity, physiology, function, and storage 
lesions in vitro.
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The second critical strategy in preventing the occurrence of 
bacterial, PC screening methods, can be divided into two categories: 
culture-based and non-culture-based.

First, non-culture-based methods offer the crucial advantage of 
being time-effective. Although culture-based methods will remain the 
gold standard, the significance of rapid methods for screening for 
bacterial contamination has increased. Rapid new methods provide 
powerful tools for improving the bacterial safety of blood components 
(6). The analytical sensitivity between the different detection methods 
ranged between 50 and 100,000 CFU/mL. The sample volume these 
testing systems use varies between 0.5 and 1.0 mL of PCs (31). 
Generally, non-culture-based methods are classified into 
low-sensitivity and high-sensitivity subgroups.

The high-sensitivity subset is composed of nuclear polymerase 
reaction (PCR) with a sensitivity of 10–103 colony forming unit (CFU) 
per milliliter of platelet concentrate (ml PC) and flows cytometry with 
a sensitivity of 10–103 CFU (mL PC) (32). Nonetheless, implementing 
non-culture techniques is complicated and costly regardless of the 
challenges of detecting bacterial contamination during the first few 
days of PC storage life.

There are several low-sensitivity methods to detect bacterial 
contamination in PCs. These methods include gram staining, acridine 
orange, glucose consumption, pH measurement, pan genera detection 
(PGD), and bio-responsive polymers. Gram staining and acridine 
orange have similar sensitivity levels (105–106  CFU/mL PC) but 
require significant time and expertise to perform accurately. Moreover, 
their favorable detection rates are low (33). Glucose consumption and 
pH measurement methods are not commonly used in clinical settings 
due to their high rate of false positives (34). However, using these 
methods shortly before injection can enhance PCs’ safety (35). The 
PGD method is a qualitative immunological technique that detects 
lipopolysaccharide (LPS) in gram-negative bacteria and lipoteichoic 
acid in Gram-positive bacteria. Bio-responsive polymers use enzyme 
reactions to detect bacterial contamination (36). Of all the methods 
listed, only the PGD approach is approved by the US FDA. It is used 
to ensure the safety of blood distribution points and for quality control 
measurements. This test extends the lifespan of PCs from 5 days to 
7 days by measuring them within 24 h of injection on day 6 or 7 (or 
both) (2, 6).

Non-culture-based methods are generally known for having high 
false positive results and needing to be more laborious and costly (2). 
The visual inspection method can effectively identify bacterial 
contamination in its place (37). Sample collection should occur in the 
final 48 h of PC storage or just before product injection due to their 
lower sensitivity for non-culture-based methods. The key benefit of 
these methods is their ability to produce rapid results before PC 
injection (31).

Second, culture-based methods are currently considered the most 
reliable way to detect bacterial contamination. These methods can 
be used to check for contamination during the storage period of PCs 
or shortly before they are given to patients. However, waiting until 
before injection may be  too late to prevent contamination. It is 
recommended to check for contamination on the third or fourth day 
of the platelet product’s storage period (38). However, these methods 
require a large sample and an incubation time of more than 24 h (39). 
The BacT/ALERT and eBDS systems have been approved by the FDA.

Culture-based systems generally have a high sensitivity and can 
detect 1–10 CFU per ml. However, their sensitivity may need to 

be revised and can vary depending on the age of the product being 
tested (8). Most culture-based systems may not be  effective in 
detecting biofilm-producing bacteria (6, 13). Bacterial culture quality 
control in PCs is primarily carried out through culture-based 
methods. However, these methods are time-consuming and are not 
considered rapid screening methods. Research has shown that sepsis 
caused by PCs cannot be entirely prevented, regardless of the age of 
the product (37).

3.2 Pathogen reduction technologies

Pathogen reduction (PR) is a highly effective third strategy that 
has proven particularly useful in reducing bacterial contamination in 
PCs. PR technologies (PRTs) that employ ultraviolet (UV) rays are 
commonly used in blood products to eliminate contamination and 
prevent TTBIs. The irreversible prevention of DNA replication and 
RNA transcription by UV rays is highly effective in targeting viruses, 
bacteria, parasites, protozoa, and other nucleated cells, such as 
leukocytes (2). In addition, PRT is a proactive approach compared to 
donor screening strategies and PC screening (9).

PRT can effectively prolong the shelf life of PCs (to 7 days). Platelet 
activation and storage lesions (PSLs) are inherent to PR technologies. 
Further studies are necessary to improve the safety and efficacy of 
platelet recovery treatments, as these lesions can be large enough to 
affect post-transfusion platelet survival. A platelet additive solution 
(PAS) has not entirely solved these problems (40). Other studies have 
revealed that PR’s effect on platelet function during storage of PCs is 
minimal depending on time, particularly in the last days (5th and 
later) and technology employed. However, PRT treatment may require 
more injections at shorter intervals and may be  associated with 
increased platelet resistance and alloimmunization (28). On the other 
hand, most studies indicate that PRT has the necessary safety 
standards for injection to patients (41–46).

Despite the challenge posed by the cost of these technologies (47), 
data have shown that they can be cost-effective compared to other 
blood safety interventions (48). Results of a review study revealed that 
PCs have the highest safety standards in countries such as Belgium, 
Switzerland, and France, where PR is performed. However, there are 
logistical challenges (centralized vs. peripherally localized platelet 
product preparation sites, hospital-based vs. regionally or nationally 
organized blood services, etc.), potential risks of pyrogenic 
compounds, insufficient killing of sporulating and biofilm-producing 
bacteria, time of treatment, as well as additional costs that need to 
be considered. Although some of these challenges, such as additional 
cost and logistical issues, may also be  seen in other strategies, 
especially culture-based methods (29). Finally, the anticipated benefits 
of PRT should be carefully evaluated before making a decision (49).

Various factors, including the timing of treatment (50) and the 
entity of bacteria present, such as growth speed (fast-growing vs. slow-
growing) (51) or sporulation, can directly affect the effectiveness of 
PRT. If PR is delayed after blood collection, bacteria may grow and 
reach high levels, potentially breaking through the system function 
(52). For example, A study showed that the delay of treatment with 
Mirasol from 26 to 32 h post-WB collection affects the efficiency of PR 
for Klebsiella pneumoniae strains (53). Following PR, endospore 
bacteria such as Bacillus subtilis and Bacillus cereus showed PC growth 
and could be detected using RT-PCR and automated culture (54). 
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Furthermore, post-manufacturing contamination of pathogen-
reduced PLT may have been caused by environmental sources or 
inherent/acquired bag defects (55). In contrast to late bacterial culture, 
treating PC with PR methods early is essential to avoid high bacterial 
loads (29, 56). It has been suggested that in cases where PR cannot 
be performed immediately after preparation, a combination of PR 
technology with a rapid bacterial screen test on the 4th or 5th day after 
donation may offer a potential solution further to mitigate the risk of 
bacterial transmission by transfusion (56).

Since 1990, several techniques have been developed to reduce 
pathogens that may be chemically present in PCs. Table 2 provides an 
overview of the characteristics of three common PRTs that are 
compatible with platelets (2, 55). These technologies differ regarding 
the UV wavelengths, doses, energy levels, and photosensitive 
compounds employed (Figure  1). Typically, a lower wavelength 
accompanied by a higher energy level is more effective in causing 
damage to the pathogen cells. The three technologies are INTERCEPT, 
Mirasol, and THERAFLEX. In the case of the first two technologies, 
a photosensitive compound is added to the PCs before UV exposure. 
For THERAFLEX, short-wavelength UV is employed (23).

INTERCEPT technology, developed by Cerus Corporation based 
in Concord, CA, United States, has received FDA approval for its use 
of Amotosalen as a photosensitizing compound in the process of 
exposing PCs to ultraviolet A (UV A) light ranging from 320 to 
400 nm. To minimize the potentially toxic effects, we have a process to 
remove residual Amotosalen safely. Any remaining Amotosalen 
(synthetic psoralen) is then safely removed through absorption. This 
process is typically completed within 24 h of platelet donation within 
the blood collection department (2, 55). The INTERCEPT system was 
not 100% effective for high concentrations of certain Klebsiella 
pneumoniae strains or spore-forming Bacillus cereus. Like other PR 
systems, this technology has limitations for fast-growing and spore-
forming bacteria (56). Data has demonstrated that the use of 
INTERCEPT technology does not harm the metabolism or function 
of CS platelets (30). Using PCs containing triple sugar (TS) and 
platelet additive solution III or IIIM (PAS-III or PAS-IIIM) is relatively 
safe (58). INTERCEPT technology is more effective than Mirasol 
technology in maintaining the quality of platelets in vitro, and 7 days 
of storage are achieved based on quality criteria using INTERCEPT 
technology (59). However, there is also the possibility of microbial 
resistance (60).

In Mirasol technology (Terumo BCT, Lakewood, CO, 
United  States), riboflavin (vitamin B2) is used as a light-sensitive 
compound, followed by ultraviolet B/A/C spectrum (265–370 nm). 
Unlike Amotosalen, there is no need to remove residual riboflavin. Its 
action mechanism strongly depends on reactive oxygen species, and 
guanine bases are selectively targeted. This technology, which received 
European conformity Class IIB (CE class IIB) in 2007, is used in over 
20 countries (2, 55, 61). It is currently in a phase III clinical trial in the 
United States (47). In this technology, riboflavin is mixed with PC and 
then exposed to UV light for less than 10 min (62). Studies show the 
impact of this technology on different bacterial species (41). Based on 
plate count, the PR capability of the Intercept method is greater than 
that of the Mirasol method (63). Platelet loss level is significantly 
higher in the INTERCEPT units than in the Mirasol units. 
Additionally, the harmful impact and level of platelet loss are more 
elevated in WBPs than in single SDPs (59). However, this technology 
is only partially effective in deactivating biofilm-producing species 
such as Staphylococcus epidermidis (64).

The THERAFLEX technology, developed by Macopharma in 
Mouvaux, France, does not require a photosensitive compound for 
PCs. Instead, it uses short wavelength UV C light (254 nm) in PCs 

TABLE 2 An overview of the comparison of the features of three leading 
pathogen reduction technologies (PRTs) (2, 55, 57).

Technology INTERCEPT Mirasol THERAFLEX

Manufacturer Cerus 

Corporation, 

Concord, CA, 

United States

Terumo BCT, 

Lakewood, CO, 

United States

Macopharma, 

Mouvaux, France

UV wavelength 

and dose

UVA, 320–

400 nm, 3 J/cm2

UVB/UVA/UVC 

(100%/60%/20%), 

265–370 nm, 

6.2 J/mL

UVC, 200–

280 nm, 0.2–0.3 J/

cm2

Photosensitizer Amotosalen 

(S-59)

Riboflavin (B2 

vitamin)

None

Adduct S-59 intercalation 

inter-and intra-

strand cross-

linking

8-oxodG strand 

breaks

6,4 thymine 

dimers

Additional steps Filtration, post 

illumination

None None

How it prevents 

DNA 

proliferation

Intercalation in 

helical regions

Oxido-reductive 

damage

Pyrimidine 

dimerization

Typical 

consequences

Amotosalen 

remains on 

platelets due to 

lipid binding

Increases platelet 

anaerobic 

metabolism rates

“Primes” platelets 

for activation due 

to reduced 

disulfide bonds

Pathogens 

targeted

Bacteria (Gram-

positive and 

Gram-negative), 

viruses 

(enveloped and 

non-enveloped), 

parasites

Bacteria (Gram-

positive and 

Gram-negative), 

viruses 

(enveloped and 

non-enveloped), 

parasites

Bacteria (Gram-

positive and 

Gram-negative), 

viruses 

(enveloped and 

non-enveloped), 

parasites

Degree of 

reduction of 

Staphylococcus 

epidermidis in 

Log

≥6.6 4.2 4.8

Formation of 

bacterial biofilm

Significant Significant Not significant

Availability Commercial Commercial Not yet in routine 

use

Maximum 

approved storage

5–7 days 

(platelets)

7 days (platelets) 5 days (platelets)

2 years at ≤30°C 

(plasma)

2 years at ≤30°C 

(plasma)

2 years at ≤30°C 

(plasma)

CE mark approval CE class III CE class IIB class IIB

FDA approval for 

platelets

Yes No (Phase III 

Clinical Trial in 

the United States)

No

CE, European Conformity; US FDA, US Food and Drug Administration; UV, ultraviolet.
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with agitation. This light gets absorbed by nucleic acids, forming 
pyrimidine dimers that stop nucleic acid transcripts’ elongation. 2009, 
this technology was awarded the European Conformity of class IIB 
(CE class IIB). Using a wavelength of 265 nm effectively inactivated 
bacteria, especially Staphylococcus aureus and Bacillus cereus (8). 
Several studies have assessed the impact and effectiveness of 
THERAFLEX technology in PCs (25). According to the available data, 
bacterial biofilm formation is not a significant concern in the context 
of the THERAFLEX UV-Platelets procedure. Proper pre-treatment 
with PI is crucial in this process, followed by the transfer of platelets 
to the illumination bag. Biofilms can provide a protective layer to 
encapsulated bacteria, making them less susceptible to inactivation by 
reducing the penetration of UV light or photochemical (64).

In conclusion, PRTs can be highly efficient in eliminating various 
pathogens. However, they may need to be more practical, completely 
inactivating pathogens in PCs. PRTs can impact platelets’ activation, 
function, and survival and may encounter Microbic resistance. The 
platelet additive solution (PAS) is a partial approach to solving them. 
Through extensive research, identifying and resolving preclinical and 
clinical shortcomings, and optimizing their advantages, PRTs will 
soon comprehensively surpass culture-based bacterial contamination 
detection methods. An important reason is that the maximum safety 
of PCs in using PRT has been shown in countries such as France, 
Switzerland, and Belgium compared to Germany, Italy, Bulgaria, and 
Poland without mandatory use (29). To promote widespread adoption, 
reinforcing preclinical and clinical safety standards of PRTs 
is imperative.
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