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Background: Retinal detachment (RD) is a common sight-threatening condition 
in the emergency department. Early postural intervention based on detachment 
regions can improve visual prognosis.

Methods: We developed a weakly supervised model with 24,208 ultra-widefield 
fundus images to localize and coarsely outline the anatomical RD regions. 
The customized preoperative postural guidance was generated for patients 
accordingly. The localization performance was then compared with the baseline 
model and an ophthalmologist according to the reference standard established 
by the retina experts.

Results: In the 48-partition lesion detection, our proposed model reached 
an 86.42% (95% confidence interval (CI): 85.81–87.01%) precision and an 
83.27% (95%CI: 82.62–83.90%) recall with an average precision (PA) of 0.9132. 
In contrast, the baseline model achieved a 92.67% (95%CI: 92.11–93.19%) 
precision and limited recall of 68.07% (95%CI: 67.25–68.88%). Our holistic lesion 
localization performance was comparable to the ophthalmologist’s 89.16% 
(95%CI: 88.75–89.55%) precision and 83.38% (95%CI: 82.91–83.84%) recall. 
As to the performance of four-zone anatomical localization, compared with 
the ground truth, the un-weighted Cohen’s κ coefficients were 0.710(95%CI: 
0.659–0.761) and 0.753(95%CI: 0.702–0.804) for the weakly-supervised model 
and the general ophthalmologist, respectively.

Conclusion: The proposed weakly-supervised deep learning model showed 
outstanding performance comparable to that of the general ophthalmologist 
in localizing and outlining the RD regions. Hopefully, it would greatly facilitate 
managing RD patients, especially for medical referral and patient education.
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1 Introduction

Retinal detachment (RD) is a sight-threatening condition that 
occurs when the neurosensory retina is separated from the retinal 
pigment epithelium (1). Several population-based epidemiological 
studies of RD find an annual incidence of around 1 in 10,000 (2). It 
has been estimated that the lifetime risk of RD is about 0.1% (3, 4). 
However, early intervention facilitates the prevention of disease 
progression and improves prognosis. Clinically, scleral buckle, 
vitrectomy, and pneumatic retinopexy are the most common 
surgical approaches to repairing RD (5–7). Before the surgery, 
patients should be instructed to lie in the appropriate position to 
minimize the detachment extending and improve visual outcomes 
(6, 8, 9). Postural guidance is consistent with the localization of the 
lesion throughout the management. However, corresponding 
patient education is not often adequate in busy clinical situations 
which may lead to poor patient compliance (10). Therefore, an 
efficient and reliable method for localizing and estimating the 
detached retinal regions is fundamental for detailed postural 
instruction and medical referrals, especially in remote areas with 
insufficient fundus specialists.

In recent years, artificial intelligence (AI) models for RD detection 
based on color fundus photography (CFP) and optical coherence 
tomography (OCT) have been gradually established (11–14). However, 
the emergence of the ultra-widefield fundus (UWF) imaging system 
promotes the intelligent diagnosis of fundus diseases to a new height. A 
panoramic image of the retina with 200° views allows for detailed 
rendering of the peripheral retina, which compensates for the deficiency 
of traditional fundus images (15). Ohsugi et al. (16) made a pioneering 
attempt to diagnose rhegmatogenous RD with a small sample of UWF 
images based on deep learning algorithms. Later, Li et al. (17) proposed 
a cascaded deep learning system using UWF images for various RD 
detection and macula status discerning. Despite promising 
advancements, their work mainly focused on the presence or absence of 
the target disease. However, the concrete localization of the RD lesions, 
a crucial need for therapeutic decision-making including the 
preoperative posture and surgical options, is not fully emphasized 
(18–21).

Generally, the extent of the retinal lesion is obtained using the 
supervised models which requires elaborate labeling for most existing 
algorithms. Whereas, the equivocal boundaries of lesion, as well as the 
lack of expert annotations considerably hinder the efficient 
development of related models. In this context, weakly supervised 
learning, where the learning model can be trained with incomplete 
and simplified annotations, has attracted great attention (22). It 
typically fits for training lesion localization and segmentation models 
in medical images. For instance, Ma et  al. (23) resorted to 
classification-based Class Activation Maps (CAMs) to segment 
geographic atrophy in retinal OCT images. Monaro et  al. (24) 
proposed an architectural setting that enabled the weakly-supervised 
coarse segmentation of age-related macular degeneration lesions in 
color fundus images. The incorporation of lesion-specific activation 
maps provides more meaningful information for diagnosis with great 
explainability. In medical imaging, Gradient-weighted CAM (Grad-
CAM) (25) is one of the most commonly used techniques to generate 
coarse localization maps. However, most approaches derived from it 
only focus on the discriminative image regions but ignore much 
detailed information. To alleviate this issue, Qin et al. (26) proposed 

an activation modulation and recalibration (AMR) scheme. The 
combination architecture of a compensation branch and spotlight 
branch could achieve better performance on image-level weakly 
supervised segmentation tasks. Given our purpose of achieving lesion-
specific holistic localization, working under coarse image-level 
annotation instead of bounding box annotation is highly desirable (22, 
27–29). Moreover, incorporating the AMR scheme mentioned above 
with our approaches could generate high-quality activation maps to 
compensate for previous detail-loss issues.

Therefore, we proposed a weakly supervised learning model to 
generate localization maps that outline the RD lesions based on UWF 
images. Relying on the localization maps, the potential diagnostic 
evidence will be  instantaneously transmitted to the clinicians for 
reference. Furthermore, individual postural guidance will be generated 
for healthcare reference to the patients.

2 Materials and methods

This study was conducted adhering to the tenets of the Declaration 
of Helsinki. It was approved by the Medical Ethics Committee of the 
Second Affiliated Hospital of Zhejiang University, School of Medicine.

2.1 Data acquisition

A total of 30,446 UWF images were retrospectively obtained from 
visitors presenting for ophthalmic examinations between 1 May 2016 
and 15 August 2022, at Eye Center, The Second Affiliated Hospital, 
School of Medicine, Zhejiang University. Images insufficient for 
interpretation were excluded, including (1) Poor-view images, 
referring to images with significant deficiencies in focus or 
illumination, visibility of the optic disc, or over one-third of the field 
obscured by the eyelashes or eyelids. (2) Poor-position images, 
referring to images with significantly off-center optic disc and macula 
due to incorrect gazing in the image capture process. The UWF images 
were captured using an OPTOS nonmydriatic camera (OPTOS 
Daytona, Dunfermline, United Kingdom) with 200-degree fields of 
view. The subjects underwent the examinations without mydriasis. All 
of the UWF images were anonymized before being involved in 
this study.

2.2 Image labeling and the definition of RD 
regions

A professional image labeling team was recruited to generate the 
ground truth. The team consisted of two retinal specialists with more 
than 5 years of clinical experience and one senior specialized 
ophthalmologist with over 20 years of clinical experience.

At first, the included UWF images were annotated with image-
level labels after quality filtration. Two specialists, respectively, 
classified all images into two types: RD and Non-RD. The ground 
truth was determined based on their consensus. Any divergences were 
finally arbitrated by the senior specialized ophthalmologist. Figure 1 
illustrates the workflow of image classification.

Then, the uninvolved fovea of each RD image (Macula ON) was 
marked manually to further obtain the specific anatomical zone for 
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postural guidance. Besides, the RD regions of images in the test set 
were independently contoured by two specialists. The ground truth of 
the RD region was determined based on the intersection of their 
labeled areas. Any image with less than 0.9 intersection-over-union 
(IOU) of the labeled RD regions was confirmed by the senior 
specialized ophthalmologist.

2.3 Development of the weakly-supervised 
deep learning model to localize the RD 
regions

UWF images incorporate a vast of critical information about the 
profile and distribution of the lesions, which is essential for the 
healthcare of RD patients. Clinically, typical RD is recognized by an 
elevated and corrugated retinal appearance accompanied by retinal 
breaks, and such features can often be recognized by the deep learning 
algorithm. Based on this rationale, we propose a model that enables 
the localization of RD regions based on weakly supervised training. 
The design of the model consisted of two sections: localizing the RD 
lesions and generating postural guidance according to the anatomical 
zone of the lesion.

In the localization section, an attention modulation module 
(AMM) (26) was involved in our scheme to realize recalibration 
supervision and generate lesion-specific activation maps. In the first 

place, it was necessary to extract the fundus’ region of interest (ROI). 
The four corners (left and right top, left and right bottom) in a UWF 
image were called irrelevant areas since there was no fundus 
information in these four regions. These irrelevant regions from 
different images were variable in texture but highly similar in extent. 
We manually crafted an ROI template to erase pixels in these irrelevant 
regions. Local contrast enhancement (CLAHE) was applied to image 
augmentation afterward.

A ResNet-101 (30) was pre-trained to identify RD cases with 
a learning rate of 0.01 and focal loss (alpha was set to 0.65, gamma 
was set to 1.15). Then, AMM was employed to emphasize region-
essential features for the segmentation task between every two 
stages, as shown in Figure 2. Features from the discriminative 
regions were considered to be the most sensitive features, and the 
minor features referred to features that are important but easily 
ignored (31). The AMM can rearrange the distribution of the 
feature importance to highlight sensitive and minor activations, 
which is crucial to generating semantic segmentation masks. The 
ResNet-101 with AMMs was fine-tuned with a learning rate of 
0.001. Probability maps were generated based on feature maps 
from stage 4 by Grad-CAM and resampled to the original 
size afterward.

In the guidance section, the coarse segmentation of the RD 
region with pseudo labels obtained from localization maps with a 
probability threshold of 0.5 was carried out. As shown in Figure 2, a 

FIGURE 1

The workflow of developing a weakly supervised learning model for the localization of RD region based on UWF images. RD, retinal detachment; UWF, 
ultra-widefield fundus.
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coordinate system was constructed based on the recognition of fovea 
marked manually and optical disc segmented by U-Net (32). Details 
on the established zoning principles are presented below. The 
primary zone label is assigned corresponding to the largest number 
of RD pixels. Then, the predicted label was output based on the 
coarse lesion segmentation results to generate the customized 
postural guidance.

2.4 Zoning principles

The panoramic retinal view is divided into four zones centered on 
the manually labeled macula fovea. It is calibrated with a horizontal 
line through the fovea and optic disc center. In a clockwise direction, 
we designate 2–4 o’clock as the right zone, 10–2 o’clock as the superior 
zone, 8–10 o’clock as the left zone, and 4–8 o’clock as the inferior zone. 
In addition, we pay more attention to the posterior pole, designated 
as the circle centered on the macula and including the optic disc (33), 

which is closely associated with the surgical option and visual 
prognosis (4, 6). To further evaluate the holistic localization 
performance, each zone was divided clockwise by 15° to obtain 48 
anatomical regions defining the entire retina as shown in Figure 2. 
Each image has a 48-length vector label for 48-partition localization. 
The label is assigned as 1 when more than 50 RD pixels fall into 
this partition.

2.5 Sensitivity analysis

Given that difference in image resolution of input data may have 
impacts on the localization outcome. We  implemented sensitivity 
analyses based on three common image resolutions including 
256 × 256, 512 × 512, and 1,024 × 1,024 pixels. We  evaluated the 
48-partition localization performance of our weakly-supervised 
model in these contexts separately and selected the optimal resolution 
model for further evaluation.

FIGURE 2

The schema of the overall study. The brief illustration of RD region localization and corresponding postural guidance (A). The retina was divided into 48 
anatomical regions to evaluate the holistic localization performance. The final four-zone overlaid image was generated for postural guidance (B). RD, 
retinal detachment; M, macula zone; S, superior zone; R, right zone; I, inferior zone; L, left zone.
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2.6 Comparisons of the proposed model 
with the baseline model and general 
ophthalmologist

A comparison experiment with the proposed model was 
conducted using a baseline model without AMM to explore the 
performance enhancement that comes with the AMR scheme. 
Meanwhile, to evaluate our weakly-supervised deep learning model 
in the localization of the RD region, we  recruited a general 
ophthalmologist with 3 years of clinical experience. It is challenging 
to clearly define the contours of the RD region, considering its 
equivocal borders, even for clinicians. Given that the final localization 
is the essential factor for postural instruction, we  evaluated their 
performance of lesion body localization rather than the edge 
segmentation performance. According to the defined ground truth, 
we compared the localization performance of the proposed model 
with that of the baseline model and general ophthalmologist based on 
the test set, respectively.

2.7 Statistical analysis

The precision, recall, F1 score, sensitivity, specificity, and accuracy 
of the models and general ophthalmologist were calculated according 
to the reference standard. The F1 score is the harmonic mean of 
precision and recall, which is calculated as:

 
F score

Precision Recall

Precision Recall
1

2
=

∗ ∗
+

The precision-recall curve was generated to visualize the 
localization performance of the deep learning models. The Cohen’s 
Kappa value of the model and general ophthalmologist compared with 
the reference standard for the four-zone localization was calculated to 
evaluate the consistency. All statistical analyses for the study were 
conducted using SPSS 26.0 (Chicago, IL, United States) and Python 
3.7 (Wilmington, DE, United States).

3 Results

3.1 Data characteristics

In total, 30,446 images were obtained for preliminary model 
development. After filtering 6,238 poor-quality images that are insufficient 
for interpretation, 24,208 eligible images were annotated. Two thousand 
four hundred and three were classified as RD, while the remaining 21,805 
images were classified as non-RD. The dataset was randomly split in 80:20 
ratios according to the Pareto principle, with 19,365 (80%) images as a 
training set and 4,843 (20%) as a test set. The baseline characteristics of 
collected images are summarized in Table 1.

3.2 Evaluation of the weakly-supervised 
deep learning model to localize the RD 
regions

In the test set, the associated lesions of 480 RD images are 
successfully localized with activation maps. Only two cases have been 
missed due to the inconspicuous shallow detachment. In 467 
Macula-ON RD images, the entire retina is divided into 48 anatomical 
regions based on the location of the optic disc and macula fovea, as 
illustrated in Figure 2, to evaluate the holistic localization of the RD 
region in the test set. The following anatomical localization evaluation 
will be specific to these 467 RD images.

Table  2 exhibited the holistic localization performance of our 
weakly supervised model with three image resolutions for sensitivity 
analysis. The results showed that the image resolution of 1,024 × 1,024 
pixels had the highest precision of 89.14% (95%CI: 88.52–89.73%). 
However, the image resolution of 512 × 512 pixels achieved the highest 
recall of 83.38% (95%CI: 82.91–83.84%) and acceptable precision with 
an optimal F1 score of 84.81% (95%CI: 84.26–85.35%). As a result, the 
following localization evaluation adopted the image resolution of 
512 × 512 uniformly.

The performance of the baseline model, the proposed model, and 
general ophthalmologist to identify whether the posterior pole is 

TABLE 1 Baseline characteristics of the training and test datasets.

Training set (80%) Test set (20%)

(n  =  19,365) (n  =  4,843)

RD Non-RD RD Non-RD

Total no. of images 1,921 17,444 482 4,361

No. of OD images 1,019 9,163 256 2,325

No. of OS images 902 8,281 226 2,036

RD, retinal detachment; OD, right eye; OS, left eye.

TABLE 2 The holistic localization performance of our weakly-supervised model with different image resolutions.

Resolutions (pixels) Precision (95%CI)1 Recall (95%CI)1 F1 score (95%CI)1

256 × 256 0.8718 (0.8653–0.8780) 0.7381 (0.7304–0.7457) 0.7994 (0.7931–0.8055)

512 × 512 0.8642 (0.8581–0.8701) 0.8327 (0.8262–0.8390) 0.8481 (0.8426–0.8535)

1,024 × 1,024 0.8914 (0.8852–0.8973) 0.7284 (0.7206–0.7361) 0.8017 (0.7955–0.8078)

1The localization performance of the weakly-supervised deep learning model was evaluated with a probability threshold of 0.5. 
The bold values are the optimal indicator results of different resolutions.
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involved or not is shown in Table 3. The general ophthalmologist had 
an 86.49% (95%CI: 85.85–87.10%) sensitivity and an 86.30% (95%CI: 
85.63–86.93%) specificity, whereas the model had an 82.49% (95%CI: 
81.50–83.44%) sensitivity and a 91.16% (95%CI: 90.34–91.91%) 
specificity with a probability threshold of 0.5. Despite a high specificity 
of 91.89% (95%CI: 91.13–92.59%) achieved, the baseline model 
showed limited sensitivity of 74.53% (95%CI: 73.39–75.64%) for 
early identification.

As for localizing RD lesions in 48 anatomical regions, the 
general ophthalmologist had an 89.16% (95%CI: 88.75–89.55%) 
precision and 83.38% (95%CI: 82.91–83.84%) recall. In contrast, 
our model had an 86.42% (95%CI: 85.81–87.01%) precision and 
an 83.27% (95%CI: 82.62–83.90%) recall with an average precision 
(AP) of 0.9132. Though the baseline model achieved a 92.67% 
(95%CI: 92.11–93.19%) precision which could be attributed to the 

most discriminative response region, it showed limited recall of 
68.07% (95%CI: 67.25–68.88%). For visualizing the model 
performance when different probability thresholds are applied, 
the precision-recall curve of the model is shown in Figure 3. The 
performance of localizing RD lesions in all 48 anatomical regions 
by the proposed model and general ophthalmologist is shown in 
Table 4.

Compared with the ground truth, the unweighted Cohen’s κ 
coefficients were 0.710 (95%CI: 0.659–0.761) and 0.753 (95%CI: 
0.702–0.804) for the weakly-supervised model and the general 
ophthalmologist, respectively. The four-zone location accuracy of 
our model is 0.8051 (95%CI: 0.7656–0.8395), which is slightly 
inferior to the general ophthalmologist’s accuracy of 0.8437 
(95%CI: 0.8068–0.8748). The confusion matrixes are shown in 
Figure 4.

TABLE 4 The performance of localizing RD lesions in 48 anatomical regions by the baseline model, weakly-supervised model, and the general 
ophthalmologist, compared with the ground truth in the test set.

Index Precision (95%CI) Recall (95%CI) F1 score (95%CI)

Baseline model (without AMM)1 0.9267 (0.9211–0.9319) 0.6807 (0.6725–0.6888) 0.7849 (0.7785–0.7912)

Weakly-supervised model1 0.8642 (0.8581–0.8701) 0.8327 (0.8262–0.8390) 0.8481 (0.8426–0.8535)

General ophthalmologist 0.8916 (0.8875–0.8955) 0.8338 (0.8291–0.8384) 0.8617 (0.8564–0.8668)

1The localization performance of the weakly-supervised deep learning model was evaluated with a probability threshold of 0.5. The image resolution of the input data is 512 × 512 pixels.
AMM, attention modulation module.

TABLE 3 The localization of RD in the posterior pole area by the weakly-supervised deep learning model and the general ophthalmologist compared 
with the ground truth in the test set.

Index Sensitivity (95%CI) Specificity (95%CI) Accuracy (95%CI)

Baseline model (without AMM)1 0.7453 (0.7339–0.7564) 0.9189 (0.9113–0.9259) 0.8295 (0.8224–0.8363)

Weakly-supervised model1 0.8249 (0.8150–0.8344) 0.9116 (0.9034–0.9191) 0.8651 (0.8586–0.8713)

General ophthalmologist 0.8649 (0.8585–0.8710) 0.8630 (0.8563–0.8693) 0.8639 (0.8593–0.8683)

1The localization performance of the weakly-supervised deep learning model was evaluated with a probability threshold of 0.5. The image resolution of the input data is 512 × 512 pixels.
AMM, attention modulation module.

FIGURE 3

The precision-recall curve of holistic localization performance of RD region based on the weakly-supervised model and general ophthalmologist, 
compared with the ground truth in the test set. AP, average precision. RD, retinal detachment. AMM, attention modulation module.
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4 Discussion

RD is a typical ophthalmic emergency. Early medical 
interventions based on the precise localization of lesions could 
increase the success rate of surgical repair and avoid permanent 
visual impairment (6, 34). Here, we  established a standardized 
procedure for RD localization from UWF images using a weakly-
supervised approach. It could provide a corresponding medical 
reference to both clinicians and RD patients throughout the early-
stage management. Compared with the baseline model which only 
focused on the most discriminative regions with limited recall, our 
weakly supervised model incorporated the AMR scheme. For this 
reason, the generated localization maps yielded a comprehensive 
presentation of RD lesion-related information. The four-zone 
anatomical localization performance of our model, which was highly 
related to posture regimens (6, 35, 36), showed substantial 
consistency with the specialists according to the unweighted Cohen’s 
kappa coefficients of 0.710(95%CI: 0.659–0.761). The human-model 
comparisons also demonstrated its localization performance with 
high precision and recall, almost equaled to a general 
ophthalmologist’s judging ability. In general, our model exhibits 
acceptable performance for the holistic localization of the RD 
regions. To the best of our knowledge, this is the first attempt to 
precisely localize the RD regions.

Previously, several deep learning systems in identifying RD in 
fundus images presented favorable performance (16, 17, 37, 38). 
Similarly, our model also showed a perfect capacity of discernment for 
RD from UWF images. Nevertheless, previous deep learning models 
were mainly proposed for classification tasks, and CAMs were 
employed for post-hoc interpretability. Since such heatmaps were 
classification-oriented, they tended to resort to some discriminative 
regions instead of the holistic bound of the whole object. Even though 
Li et al. (17) attempted to visualize the decisive regions with saliency 
maps and embedded an arrow according to the hot regions for head 
positioning guidance, the most decisive regions in the heatmaps may 

not be the primary location of RD lesions. The classifiers may only 
focus on a small part of the target lesions (26, 39). Moreover, the 
limited localization results from true-positive samples had yet to 
be thoroughly evaluated for general feasibility. In contrast to simply 
utilizing classification-oriented heatmaps, our model presents the 
edge of providing lesion-specific holistic activation maps to localize 
RD regions. For digging out the regions that are essential but easily 
ignored for lesion segmentation by the weakly supervised algorithm, 
we introduce AMM to our scheme to provide recalibration supervision 
and task-specific concepts. The lesion information of clinical interests 
provided by this interpretable method complies with cognitive law, 
which could indicate the diagnostic reference to the clinicians and 
could be  verified easily. Moreover, in the coordinates established 
above, the model could elaborate on the anatomical zones of the RD 
lesions. According to the most affected zone, a supine preoperative 
position is advised for RD in the superior zones and a sitting position 
for RD in the inferior zones (9). Patients with RD lesions in the right 
or left zones were positioned flat on the right or left side of the affected 
eye, respectively (40). The involvement of the posterior pole is almost 
suggestive of a relatively poor vision prognosis if emergency repair 
surgery is not available before the macula is involved (4, 7, 41). 
Patients should maintain a supine position during this time and take 
an urgent referral.

In our research, most cases can realize holistic localization of RD 
lesions with great satisfaction. As shown in Figure 5, the corrugated 
retinal appearance of RD lesions makes them more distinguishable, 
whereas the shallow RDs are easily missed due to their atypical 
appearance. In addition, interference from irrelevant factors can also 
be misleading for automatic localization. The OPTOS camera pads 
and artifacts with RD-similar edges may result in mistaken highlights 
in  localization maps. In future work, these problems could 
be  improved by further training based on large-scale images with 
corresponding issues.

This study has several limitations. First, blurred border and 
texture feature differences within the RD regions made it difficult for 

FIGURE 4

The confusion matrixes of four-zone RD localization performance based on the weakly-supervised model (A) and the general ophthalmologist (B), 
compared with the ground truth in the test set. RD, retinal detachment.
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the activation maps to highlight the whole area of the lesion. The 
regions with inconspicuous texture features were easily missed even 
though the advanced AMM module had been incorporated, which 
may result in some inconsistency in anatomical localization. Strictly, 
the localization of breaks of the rhegmatogenous RD had more 
significance for posture instructions. However, the small breaks in 
the retina were not always visible, especially in the peripheral 
regions. Given most of the breaks are within the detached retina, the 
localization of the RD region could extend its clinical applications 
considerably. In addition, the determination of whether the posterior 
pole was involved may not represent the status of the macula, 
especially when the macula was located near the borderline of the 
RD regions. Hence, further work is warranted to accurately discern 
the status of the macula for determining operation time and 
predicting visual prognosis. Furthermore, automatic postural 
guidance had a relatively limited application range due to the high-
quality images required for anatomical localization. The anatomical 
localization of RD was highly dependent on the clear presentation 
of the retina. Those fundus images with significant opaque refractive 
media, inappropriate illumination, and invisible optic disc were not 
eligible for inclusion in this study. Finally, our model was developed 
based on single-center retrospective datasets with limited 

generalization. The evaluation of localization accuracy was 
conducted on a single-disease dataset and was not strictly validated 
in the cases of fundus comorbidities. In the future, we expect to 
explore more advanced methods to aid the full-stage management 
of RD, incorporating the medical history and other imaging data. 
Meanwhile, we  will expand the training samples of fundus 
comorbidity images and facilitate the evaluation based on the large-
scale test scenario.

5 Conclusion

In this study, we developed a weakly-supervised deep learning 
model to localize RD regions based on UWF images. The lesion-
specific localization maps could be incorporated into the diagnostic 
process and personalized postural guidance of RD patients for 
reference. Moreover, the implementation of this task considerably 
surmounted the current “label-hunger” difficulty. It would greatly 
facilitate managing RD patients when insufficient specialists are 
available, especially for medical referral and postural guidance. The 
application of this model could significantly equilibrate medical 
resources and improve healthcare efficiency.

FIGURE 5

Visualization of representative cases. The corrugated retina and the edge of breaks are highlighted in lesion-specific maps, the detached regions were 
demonstrated in 48-partition localization maps and four-zone localization maps (A). The shallow retinal detachments are not detected in the inferior 
quadrant, while OPTOS camera pads are highlighted. Artifacts caused by opaque refractive media are highlighted in localization maps (B). The red 
arrowheads indicate the borders of the RD region.
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