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Introduction: Primary sclerosing cholangitis (PSC) and primary biliary cholangitis 
(PBC) are characterized by ductular reaction, hepatic inflammation, and liver 
fibrosis. Hepatic cells are heterogeneous, and functional roles of different hepatic 
cell phenotypes are still not defined in the pathophysiology of cholangiopathies. 
Cell deconvolution analysis estimates cell fractions of different cell phenotypes in 
bulk transcriptome data, and CIBERSORTx is a powerful deconvolution method to 
estimate cell composition in microarray data. CIBERSORTx performs estimation 
based on the reference file, which is referred to as signature matrix, and allows 
users to create custom signature matrix to identify specific phenotypes. In the 
current study, we created two custom signature matrices using two single cell RNA 
sequencing data of hepatic cells and performed deconvolution for bulk microarray 
data of liver tissues including PSC and PBC patients.

Methods: Custom signature matrix files were created using single-cell RNA 
sequencing data downloaded from GSE185477 and GSE115469. Custom signature 
matrices were validated for their deconvolution performance using validation 
data sets. Cell composition of each hepatic cell phenotype in the liver, which was 
identified in custom signature matrices, was calculated by CIBERSORTx and bulk 
RNA sequencing data of GSE159676. Deconvolution results were validated by 
analyzing marker expression for the cell phenotype in GSE159676 data.

Results: CIBERSORTx and custom signature matrices showed comprehensive 
performance in estimation of population of various hepatic cell phenotypes. We 
identified increased population of large cholangiocytes in PSC and PBC livers, 
which is in agreement with previous studies referred to as ductular reaction, 
supporting the effectiveness and reliability of deconvolution analysis in this 
study. Interestingly, we identified decreased population of small cholangiocytes, 
periportal hepatocytes, and interzonal hepatocytes in PSC and PBC liver tissues 
compared to healthy livers.

Discussion: Although further studies are required to elucidate the roles of 
these hepatic cell phenotypes in cholestatic liver injury, our approach provides 
important implications that cell functions may differ depending on phenotypes, 
even in the same cell type during liver injury. Deconvolution analysis using 
CIBERSORTx could provide a novel approach for studies of specific hepatic cell 
phenotypes in liver diseases.
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1 Introduction

Primary sclerosing cholangitis (PSC) and primary biliary cholangitis 
(PBC) are bile duct disorders with cholestatic liver injury (1). These 
cholangiopathies are characterized by ductular reaction, peribiliary 
inflammation, and liver fibrosis (2). During cholestatic liver injury, 
various hepatic cells proliferate to compensate for the damaged or lost 
cholangiocyte populations (3, 4). The first one involves cholangiocyte self-
proliferation. Previous studies identified two distinct cholangiocyte 
phenotypes, large and small (5). Large cholangiocytes robustly proliferate 
as a response to biliary damage leading to ductular reaction (3, 4). Small 
cholangiocytes can differentiate into large cholangiocytes when large 
cholangiocytes are damaged in vivo (6–9). The second pathway is 
characterized by progenitor-derived cholangiocyte proliferation wherein 
liver stem cells, known as hepatic progenitor cells (HPCs), can differentiate 
into biliary phenotypes (10, 11). The last approach entails the 
transdifferentiation of hepatocytes. During severe biliary damage, 
hepatocytes transdifferentiate into cholangiocytes to compensate the 
damaged bile ducts (11, 12). Hepatic cells are heterogeneous and there are 
multiple phenotypes of cholangiocytes and hepatocytes. Previous studies 
demonstrated differences in functions and gene expressions between 
hepatocytes near the portal vein (Zone 1), those near the central vein 
(Zone 3), and those between Zone 1 and 3 (Zone 2) (13, 14). Single cell 
RNA sequencing (scRNA-seq) for liver tissues of deceased donors 
identified multiple cholangiocyte, HPC, and hepatocyte phenotypes with 
characteristic gene expression profiles (15, 16). However, the functional 
roles of different hepatic phenotypes in the pathophysiology of cholestatic 
liver injury are largely undefined. Ductular reaction in PSC and PBC is 
closely associated with peribiliary inflammation and liver fibrosis (4). 
Ductular reaction is an expanded reactive biliary phenotypes and can 
be  detected by immunoreactivity against bile duct markers, such as 
cytokeratin 19 (CK-19, KRT19) or CK-7 (KRT7) (3). Although ductular 
reactive cells are biliary phenotypes, their origins can be cholangiocytes, 
HPCs, or hepatocytes (3). Functions of ductular reactive cells can differ 
depending on the origins of cells, but it is not feasible to determine the 
origins of ductular reactive cells by immunostaining.

Deconvolution methods are the computational techniques to 
calculate and estimate the abundance of different cell types from bulk 
transcriptome data (17). CIBERSORT is one of deconvolution 
methods (18), and CIBERSORTx is the updated version of 
CIBERSORT (19). CIBERSORTx can characterize cellular 
heterogeneity and gene expression profiles in specific cell types from 
bulk tissue transcriptomes, such as microarray data (19, 20). Previous 
studies compared multiple deconvolution methods and showed that 
both CIBERSORT and CIBERSORTx demonstrated robust and 
comprehensive performance in various experimental conditions 
compared to other deconvolution methods (21–24). CIBERSORTx 
performs deconvolution based on the reference data, which is referred 
to as signature matrix, and a signature matrix is created from 
scRNA-seq data (18, 19). CIBERSORTx has a default signature matrix 
file, LM22, which distinguishes 22 human hematopoietic cell 
phenotypes (18, 19). Previous studies performed deconvolution using 
CIBERSORT and LM22 to compare immune cell landscape between 
healthy liver and hepatocellular carcinoma tissues (25, 26). However, 
LM22 is only for immune cells and cannot identify hepatic cells, such 
as hepatocytes and cholangiocytes. CIBERSORTx allows users to 
create custom signature matrix using scRNA-seq data to perform 
deconvolution for specific cell phenotypes (19, 20).

It remains undefined whether a custom signature matrix for hepatic 
cell phenotypes can accurately estimate cell composition in bulk liver 
microarray data. Furthermore, there are no previous studies on 
performing deconvolution for hepatic cells in PSC and PBC. The current 
study aims to generate custom signature matrix files using liver scRNA-seq 
data and evaluate the effectiveness and reliability of CIBERSORTx with a 
custom signature matrix for hepatic cell phenotypes. To assess the 
accuracy of the cell composition estimated by CIBERSORTx, we compare 
it to established experimental data. For example, it is well known that 
intrahepatic bile duct mass is significantly increased during chronic liver 
diseases, such as cholangiopathies, which is referred to as ductular 
reaction (3). If cell deconvolution by CIBERSORTx successfully identifies 
elevated biliary phenotypes and ductular reaction in PSC and PBC livers, 
then CIBERSORTx has introduced a novel approach to estimate hepatic 
cell composition without performing cell sorting or scRNA-seq. In this 
study, we successfully applied the extensive performance of CIBERSORTx 
in deconvolution analysis for hepatic cell phenotypes and identified 
altered hepatic cell landscape in PSC and PBC liver tissues.

2 Materials and methods

2.1 Data collection

Transcriptome profiling data for human liver tissues were obtained 
from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/). GSE159676 contains microarray data of liver tissues for healthy 
controls (n = 6), patients with non-alcoholic steatohepatitis (n = 7), PSC 
(n = 12), PBC (n = 3), autoimmune hepatitis (n = 3), haemochromatosis 
(n = 1), and alcoholic liver disease (n = 1) (27). Data of controls, PSC, and 
PBC (total n = 21) were included in this study. GSE185477 contains 
scRNA-seq and single nucleus RNA-seq data of healthy liver tissues (15). 
scRNA-seq data generated from four liver tissues were used in this study. 
GSE115469 contains scRNA-seq data of five liver tissues (16), and all data 
were included in this study. GSE185477 and GSE115469 were used to 
create custom signature matrices, and GSE159676 was used as the target 
microarray data for deconvolution analysis.

2.2 Creation of custom signature matrix for 
CIBERSORTx

To create custom signature matrix files for CIBERSORTx, 
we selected GSE185477 and GSE115469 because: (i) original research 
articles for scRNA-seq data were available for characterization of each 
hepatic cell phenotype and associated gene profiles; (ii) processed data 
were available to download, and read counts were available 
(GSE185477) or information of normalization was available 
(GSE115469), since data normalization could impact the power of 
deconvolution in CIBERSORTx (19); (iii) scRNA-seq data were 
produced using cells of human fresh liver tissues; (iv) liver tissues were 
from neurologically deceased donors, and they were healthy 
individuals (GSE185477) or the authors in the original study 
confirmed normal histological patterns, so these livers were acceptable 
for liver transplantation (GSE115469). Therefore, these livers in both 
data series are suitable to be used as control livers; (v) both data series 
contain data of liver tissues from multiple deceased donors (n = 4 for 
GSE185477, n = 5 for GSE115469) to cover heterogeneous hepatic cell 
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phenotypes in the liver; and (vi) both data series included all hepatic 
cells from total liver homogenates and did not select specific cell types, 
such as immune cells. Both used relatively a large number of hepatic 
cells to produce reliable hepatic cell atlas (73,295 cells in GSE185477, 
8,444 cells in GSE115469) (15, 16).

R version 4.2.2 was used in this study. For GSE185477, 
we downloaded Seurat Objects containing read counts processed and 
uploaded by the authors from Dropbox1 using the Seurat package (28). 
GSE185477 contains data of single cell and single nucleus RNA-seq, and 
we used only scRNA-seq data. We extracted scRNA-seq data from the 
entire data, and gene and cluster annotations were used as the authors 
determined in their original study (15). Data were normalized and 
converted to transcripts per million (TPM) using the biomaRt package 
(29). For GSE115469, we downloaded processed and normalized data 
from GEO manually. Since data were in log2CPM (counts per million) 
format and CIBERSORTx suggests nonlog data (18, 19), we processed all 
data as: processed data = 2(log2CPM values) – 1. We eliminated data of erythroid 
cells for custom signature matrix of GSE115469 because: (i) data of 
erythroid cells caused messy and unreliable output in deconvolution (data 
not shown); (ii) erythroid cells are minor cells in hepatic cell population; 
and (iii) GSE185477 does not classify any cells as erythroid cells, and 
elimination of erythroid cells from GSE115469 does not change 
consistency with GSE185477. For all data from GSE185477 and 
GSE115469, we downloaded data that the authors uploaded and used in 
their original studies (15, 16). It means that data set integration, quality 
control, and cell classifications and annotations were performed by the 
authors, and we did not change annotations and classifications that the 
authors determined. Total hepatic cells used in this study for generation 
of signature matrix files are 26,372 cells for GSE185477 and 8,351 cells 
for GSE115469.

The Docker version of CIBERSORTx2 was downloaded and used 
in this study. We created custom signature matrix files for processed 
data of GSE185477 and GSE115469 using the Fractions function of 
CIBERSORTx with following parameters: G.max, 50,000; replicates, 4 
for GSE185477, 5 for GSE115469; fraction, 0; batch correction, 
B-mode. We performed B-mode batch correction for CIBERSORTx 
analysis because performance of B-mode is better than S-mode if a 
signature matrix file is available, as reported previously (30). Heatmaps 
for created signature matrix was generated by CIBERSORTx to 
visually check expression profiles for each hepatic cell phenotype.

2.3 Validation of custom signature matrix

We created data to be  used for deconvolution (referred to as 
mixture files) for validation of custom signature matrix files. 
We shuffled GSE185477 and GSE115469 data, which were used for 
signature matrix creation, and selected data values of 3,000 cells 
randomly. We  generated three validation mixture files for each 
signature matrix. For deconvolution to calculate cell composition 
from mixture files, we used CIBERSORTx Fractions with following 
parameters: permutations, 1,000; batch correction, B-mode.

1 https://www.dropbox.com/sh/sso15ehqmrrh6mk/AACKHOsSlZW0_Zy9cb 

CkOmMfa?dl=0

2 https://cibersortx.stanford.edu/

2.4 Analysis of bulk microarray data using 
CIBERSORTx

Raw microarray data of GSE159676  in CEL formats were 
downloaded from GEO manually. We read CEL files and performed 
background correction and quantile normalization using the oligo 
package. Since microarray for GSE159676 was performed using 
Affymetrix Human Gene 1.0 ST Array, gene annotation was carried 
out using the hugene10sttrancriptcluster.db package. Data were 
exported in a text file, and we used it as the mixture file. We performed 
deconvolution for the GSE159676 mixture file using signature matrix 
of GSE185477 or GSE115469. CIBERSORTx Fractions were used with 
following parameters: permutations, 1,000; batch correction, B-mode. 
GSE185477 and GSE115469 classified hepatic cell phenotypes with 
characteristic marker gene expression identified in their studies (15, 
16). CIBERSORTx calculates deconvolution p-values as quality 
control metrics, and fraction data with p  < 0.0001 were used. 
Normalized read counts for these phenotype-associated marker genes 
were extracted from GSE159676 data to validate estimated cell 
composition with marker expression.

2.5 Statistical analysis

We performed Pearson correlation analysis between estimated cell 
population in percentage (fraction × 100) by CIBERSORTx and actual 
cell population in 3,000 cells using Prism version 9.5.1 (GraphPad 
Software, Boston MA). We also perform unpaired student’s t-test to 
compare cell fractions and marker gene expression levels between 
Healthy and PSC/PBC groups using Prism. Mean ± standard error of 
the mean (SEM) was plotted and differences with p < 0.05 were 
considered as statistically significant.

3 Results

3.1 Creation and evaluation of custom 
signature matrices for GSE185477 and 
GSE115469

CIBERSORTx calculates cell composition based on the signature 
matrix file, which is generated by scRNA-seq data (19). CIBERSORTx 
includes the default signature matrix, LM22, but LM22 is a leukocyte 
gene signature matrix designed to distinguish 22 human 
hematopoietic cell phenotypes and not suitable to distinguish 
hepatic cell phenotypes (18). This study aims to perform 
deconvolution using CIBERSORTx to estimate cell composition in 
liver tissues (Figure 1). We first generated custom signature matrix 
files using scRNA-seq data of human liver tissues. CIBERSORTx 
Fractions allows users to generate custom signature matrix and 
we successfully generated signature matrix files for GSE185477 and 
GSE115469, and these signature matrices are referred to as sc18sig 
and 11sig, respectively, in this study (Figure  2A). There are 29 
hepatic cell phenotypes identified in sc18sig according to the original 
scRNA-seq study (15): 6 biliary phenotypes—Cholangiocytes, B-cell 
lymphoma 2 (BCL2) + Cholangiocytes, Bipotent Progenitors, 
Hepatocyte Progenitors 1, Hepatocyte Progenitors 2, CV 
Hepatocytes; 6 hepatocyte phenotypes – PP (periportal) 1, PP2, CV 
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(central venous) 1, IZ (interzonal) 1, IZ2, Unidentified; 7 
mesenchymal cell or hepatic stellate cell (HSC) phenotypes—Mes1 to 
Mes7; 3 endothelial cell phenotypes—Periportal LSEC (liver 
sinusoidal endothelial cell), Central Venous LSEC, Portal 
Endothelial; and 7 immune cell phenotypes—αβ T cells, γδ T cells, 
Mature B cells, Plasma cells, Inflammatory Macs (macrophages), 
Non-Inflammatory Macs, NK (natural killer) cells. Nineteen hepatic 
phenotypes were identified in 11sig (16): 1 biliary phenotype—
Cholangiocytes; 6 hepatocyte phenotypes—Hepatocyte_1 to 
Hepatocyte_6; 1 HSC phenotype—Hepatic_Stellate_Cells; 3 
endothelial cell phenotypes—Periportal_LSECs, Central_venous_
LSECs, Portal_endothelial_Cells; and 8 immune cell phenotypes—
αβ_T_Cells, γδ_T_Cells_1, γδ_T_Cells_2, Mature_B_Cells, Plasma_
Cells, Inflammatory_Macrophage, Non-inflammatory_Macrophage, 
NK-like_Cells.

To validate custom signature matrix files, we  performed 
deconvolution using CIBERSORTx Fractions with custom signature 
matrix and mixture files that were generated for validation. Both 
signature matrices show significant (p < 0.0001) correlation between 
estimated and actual cell population (Figure  2B), indicating that 
deconvolution using these signature matrices, especially in the case of 
GSE185477 (sc18sig), can estimate cell composition accurately 
in CIBERSORTx.

3.2 Cholangiocyte composition was 
increased in PSC/PBC liver tissues

We performed deconvolution to estimate hepatic cell phenotypes 
in healthy, PSC, and PBC liver tissues of GSE159676 using 
CIBERSORTx and our custom signature matrices. Both sc18sig and 
11sig identified the elevated phenotype of “Cholangiocytes” in PSC 
and PBC livers compared to healthy liver tissues (Figure 3A). Ductular 
reaction is the expansion of CK-19+ or CK-7+ cells (i.e., 
cholangiocytes) commonly observed in PSC/PBC liver sections (3, 4). 
Therefore, elevation of cholangiocyte fraction in PSC/PBC livers was 
expected and identical to previous studies. Signature matrices identify 
the specific phenotypes with characteristic marker expression profiles 
(18, 19). For example, In GSE115469, the phenotype “Cholangiocytes” 
is recognized as cells with high expression of KRT7, KRT19, SRY-box 
transcription factor 9 (SOX9), and epithelial cell adhesion molecule 
(EPCAM), which are typical cholangiocyte markers (16). GSE185477 
shows that cholangiocytes (Chol-4) are matured cholangiocytes with 
typical biliary marker expression, such as KRT7, as well as other 
markers such as osteopontin or secreted phosphoprotein 1 (SPP1) and 
CD24 (15). To confirm the estimated fractions by CIBERSORTx, 
we  analyzed expression levels of these cholangiocyte markers in 
GSE159676 microarray data. Markers of mature cholangiocytes were 

FIGURE 1

Outline of cellular deconvolution using CIBERSORTx in this study. Data of scRNA-seq (GSE185477 and GSE115469) were downloaded and used to 
create custom signature matrices (sc18sig and 11sig, respectively). Microarray data of human liver tissues (GSE159676) were downloaded and used as 
mixture, which is the target data for deconvolution. CIBERSORTx calculates cell composition in liver tissues of GSE159676 using sc18sig and 11sig.
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significantly upregulated in PSC and PBC patients’ liver samples 
compared to healthy liver tissues (e.g., KRT19, p < 0.05 PSC vs. healthy, 
Figure  3B), supporting increased populations of cholangiocytes 
during cholestatic liver injury. In sc18sig, BCL2+ Cholangiocytes were 
significantly decreased in PSC/PBC liver tissues compared to healthy 
liver (p  < 0.01 PSC vs. healthy and p  < 0.001 PBC vs. healthy, 
Figure 3C). Previous studies demonstrated that small but not large 
cholangiocytes express BCL2 (31). Small cholangiocytes turn into 
large when the large is damaged, showing the progenitor cell-like 
features of small cholangiocytes (6–9). GSE185477 identified the 
BCL2+ cholangiocyte phenotype and demonstrated that these cells 
express progenitor-associated markers (15). Elevated composition of 
Cholangiocytes (large cholangiocytes) and decreased fraction  
of BCL2+ Cholangiocytes (small cholangiocytes) could be the result 
of transition of small cholangiocytes into large cholangiocytes during 
cholestatic liver injury. However, in GSE159676 data, expression levels 

of BCL2 were upregulated, not downregulated, in PSC/PBC livers 
(Figure 3D). For progenitor-associated markers, E-cadherin (CDH1) 
was significantly (p  < 0.01) downregulated in PSC/PBC, but no 
difference was identified between groups for other progenitor markers 
(Figure 3D). Unlike CK-19 and CK-7 for large cholangiocytes, there 
are no specific markers that are extensively expressed in small 
cholangiocytes. Hepatocytes express BCL2 (32, 33), and the 
population of small cholangiocytes is relatively lower than that of 
hepatocytes in the liver. For instance, the populations of small 
cholangiocytes and hepatocytes including all phenotypes in sc18sig 
are 0.1 and 75.1%, respectively. Therefore, it is not feasible to confirm 
the results of CIBERSORTx by analyzing marker expression in 
GSE159676. Although there are other progenitor cell phenotypes in 
sc18sig (Bipotent Progenitors and Hepatocyte Progenitors 1/2), no 
significant difference in cell fractions or marker expression was 
identified in our study (data not shown).

FIGURE 2

Characteristics of created custom signature matrices. Two signature matrices were created in this study: one using scRNA-seq data of GSE185477 
(sc18sig), and one based on data of GSE115469 (11sig). (A) Heatmaps of sc18sig and 11sig generated by CIBERSORTx in the process of custom signature 
matrix creation. (B) Validation of sc18sig and 11sig. Deconvolution was performed using signature matrices and validation mixture files. Estimated cell 
fraction was multiplied by 100 to obtain estimated cell population, and Pearson correlation analysis was performed with actual population in validation 
mixture data.
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3.3 HSC populations were increased in 
PSC/PBC liver tissues

GSE185477 identified 7 mesenchymal cell phenotypes (Mes1-7) 
and showed that Mes2 and Mes4 were myofibroblast-like cells (15). 
Deconvolution using sc18sig showed elevated composition of Mes2 and 
Mes4  in PSC/PBC liver tissues, indicating increased populations of 
activated HSCs leading to liver fibrosis (Figure  4A). GSE115469 
identifies only one mesenchymal cell phenotypes, Hepatic_Stellate_
Cells (16). Elevated cell fractions for Hepatic_Stellate_Cells were 
observed in 11sig, supporting the increased HSC composition in PSC/
PBC (Figure 4A). Mes1 is recognized as quiescent HSCs in GSE185477, 
and sc18sig exhibited decreased Mes1 composition in PSC/PBC livers, 
although data were not statistically significant (Figure 4B). Analysis of 
expression levels of HSC-associated markers in GSE159676 
demonstrated that genes associated with myofibroblasts and hepatic 
fibrogenesis, such as collagen type I alpha 1 chain (COL1A1), were 
significantly (p  < 0.05) upregulated in PSC and PBC liver tissues 
compared to healthy controls (Figure  4C). On the other hand, the 
markers associated with quiescent HSCs, such as parathyroid hormone 
1 receptor (PTH1R), were significantly downregulated in PSC/PBC liver 
tissues (p  < 0.0001 PSC vs. healthy and p  < 0.05 PBC vs. healthy), 
indicating increased activation of HSCs leading to elevated fractions for 
myofibroblast type cells (Figure  4C). Ductular reaction is closely 
associated with activation of HSC and hepatic fibrogenesis in liver 
diseases (4). Activated and proliferative HSCs (myofibroblasts) are the 
major source of extracellular matrix secretion contributing to liver 
fibrosis, and their populations are increased during cholestatic liver 

injury (34). In addition to the increased fraction of large cholangiocytes, 
we observed the increased composition of activated HSCs, which are in 
agreement with previous studies. This consistency indicates the accuracy 
and reliability of the deconvolution analysis using CIBERSORTx.

3.4 Specific types of immune cells were 
increased in PSC/PBC liver tissues

During cholestatic liver injury, bone marrow-derived macrophages 
infiltrate into the liver and macrophage population is increased compared 
to healthy livers (35, 36). Macrophages secrete proinflammatory 
cytokines leading to peribiliary inflammation, and population of 
inflammatory macrophages is increased in liver tissues of cholestatic 
model mice (37). In the current study, sc18sig did not identify significant 
differences between groups, but 11sig showed elevated population of 
inflammatory macrophages in PSC and PBC livers compared to healthy 
tissues (Figure 5A). Markers associated with inflammatory macrophages 
were significantly upregulated (p < 0.01 or p < 0.001) in PSC/PBC livers 
in GSE159676, supporting the increased fraction of inflammatory 
macrophages during cholestatic liver injury (Figure 5B).

A previous study demonstrated that natural killer (NK) cells were 
increased in the peripheral blood of PBC patients compared to control 
individuals (38). Protein expression in NK cells is altered during PSC, 
which is associated with functions and cytotoxic capacity of NK cells, 
indicating the functional roles of NK cells in cholestatic liver injury 
(39, 40). CIBERSORTx identified significantly (p < 0.05 or p < 0.01) 
elevated cell fractions for NK cells in PSC/PBC liver tissues compared 

FIGURE 3

Cell composition for biliary phenotypes estimated by CIBERSORTx. Deconvolution was performed using CIBERSORTx with signature matrices, sc18sig 
and 11sig, and the mixture file of GSE159676. (A) Estimated fraction for the “Cholangiocytes” phenotype. (B) Microarray data of GSE159676 for genes 
associated with cholangiocytes. (C) Estimated fraction for “BCL2+ Cholangiocytes,” which are recognized as small cholangiocytes. (D) Expression for 
progenitor-associated genes in GSE159676. Mean  ±  SEM, *p  <  0.05, **p  <  0.01, and ***p  <  0.001 vs. Healthy. Sample numbers are 7 for Healthy, 12 for 
PSC, and 3 for PBC.
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to healthy livers, using both sc18sig and 11sig (Figure 5C). NK cell 
markers were also upregulated in PSC/PBC livers in microarray data 
(Figure 5D). These findings strongly support the hypothesis that NK 
cell population is increased during cholestatic liver injury, which 
could be associated with its pathophysiology.

Although previous studies indicated that plasma cells are increased 
in PSC and PBC, functional roles of plasma cells in cholestatic liver 
injury are still undefined (41–43). CIBERSORTx showed significantly 
(p < 0.01) increased plasma cell fractions in PBC with sc18sig and 
11sig (Figure 5E). Although increased composition of plasma cells in 
PSC was not statistically significant (Figure 5E), markers for plasma 
cells were significantly (p < 0.05) upregulated in both PSC and PBC 
liver tissues compared to healthy controls (Figure 5F). These results 
indicate that specific immune cell phenotypes, inflammatory 
macrophages, NK cells, and plasma cells, are increased and could 
be involved in the pathogenesis of cholestatic liver injury.

3.5 Population of interzonal and periportal 
hepatocytes was decreased in PSC/PBC 
livers

Although previous studies suggested that protein expression is 
different in hepatocytes on different location (44, 45), functional roles 

of hepatocyte zonation in cholestatic liver disease are largely unknown. 
In the current study, sc18sig showed that hepatocyte phenotypes, PP1, 
PP2, and IZ2, which are classified as interzonal or periportal 
hepatocytes, were decreased in PSC and PBC liver tissues compared 
to Healthy control (Figure 6A). In GSE115469, Hepatocyte_4 (Cluster 
6) is classified between periportal and interzonal, and Hepatocyte_6 
(Cluster 15) is classified as interzonal hepatocytes (16). In 11sig, 
periportal/interzonal hepatocytes were significantly decreased in PSC 
(p < 0.01) and PBC (p < 0.05) livers, which is identical to results with 
sc18sig (Figure 6B). Markers associated with periportal hepatocytes 
and interzonal hepatocytes were significantly (p < 0.05) downregulated 
in the liver tissues of interest, supporting the reduced composition of 
periportal and interzonal hepatocytes during cholestatic liver injury 
(Figures 6C,D). We did not identify any differences between groups 
for central venous hepatocytes using sc18sig or 11sig (data not shown).

4 Discussion

The current study successfully demonstrated extensive 
performance for deconvolution analysis to distinguish hepatic cell 
phenotypes in bulk microarray data using CIBERSORTx and custom 
signature matrices (Figure 7). This approach shows the potential of 
computational approach in estimation of cell composition in liver 

FIGURE 4

Cell composition for mesenchymal phenotypes estimated by CIBERSORTx. (A) Estimated fraction for myofibroblast-like HSCs (Mes2 and Mes4) 
using sc18sig and for “Hepatic_Stellate_Cells” using 11sig. (B) Estimated fraction for quiescent HSCs (Mes1) using sc18sig. (C) Expression for 
genes associated with quiescent and activated HSCs in GSE159676. Mean ± SEM, *p  < 0.05, and ****p  < 0.0001 vs. Healthy (n  = 7 for Healthy, n  = 12 
for PSC, n  = 3 for PBC).
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diseases. There are various cell deconvolution methods, and it is 
unclear which methods are suitable for hepatic phenotypes. It is also 
undefined whether deconvolution using CIBERSORTx with custom 
signature matrix can produce reliable and accurate results, consistent 
with experimental evidence using human or rodent liver tissues 
reported in previous studies. CIBERSORTx is one of the deconvolution 
methods that show reliable performance in various experimental 
conditions (21–24). In our study, we created two signature matrices, 
sc18sig and 11sig, and deconvolution results showed significant 
correlation with actual cell composition for both signature matrices, 
showing their extensive performance to estimate the population of 
each hepatic cell phenotype (Figure 2). Deconvolution results were 
consistent between sc18sig and 11sig in many cases, such as increased 
NK cells and HSCs in PSC and PBC livers. Although data processing 
for scRNA-seq, such as data integration, clustering, and annotation, 
differ between GSE185477 and GSE115469, results of deconvolution 
analysis were identical or similar between sc18sig and 11sig. These 
findings support the reliability of results in cell fraction estimation 
using CIBERSORTx and custom signature matrices. We validated the 

deconvolution results by analyzing expression levels of markers 
associated with specific hepatic cell phenotypes. Notably, the marker 
expressions were consistent with the deconvolution results (e.g., 
increased estimated NK cell composition and NK cell markers, such 
as NKG7, in PSC/PBC liver tissues). In addition, deconvolution results 
were in agreement with previous studies. For example, an increased 
population of large cholangiocytes was estimated and validated in this 
study, meanwhile proliferative large cholangiocytes were identified in 
cholestatic rats, which is now known as ductular reaction (4). These 
results strongly support that deconvolution using CIBERSORTx 
provides accurate estimation for cell composition of bulk liver 
microarray data without performing cell sorting or scRNA-seq. This 
approach can be  useful to estimate cell composition for not only 
cholangiopathies but also for other liver diseases, such as metabolic 
dysfunction-associated fatty liver disease (MAFLD) (46) or 
steatohepatitis (MASH) (47). Since the current study is based only on 
computation using publicly available data series, scRNA-seq for PSC 
and PBC livers is required to determine actual hepatic cell composition 
during cholestatic liver injury. Our custom signature matrices were 

FIGURE 5

Increased fractions of specific immune cells estimated by CIBERSORTx. (A) Estimated composition for inflammatory macrophages using sc18sig and 
11sig. (B) Expression levels of genes associated with inflammatory macrophages. (C) Estimated fractions for NK cells. (D) Marker expression associated 
with NK cells. (E) Estimated fractions for plasma cells. (F) Expression levels for plasma cell markers. Mean  ±  SEM, *p  <  0.05, **p  <  0.01, and ***p  <  0.001 
vs. Healthy (n  =  7 for Healthy, n  =  12 for PSC, n  =  3 for PBC).
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created using scRNA-seq data of control/healthy liver tissues, and cell 
clustering and annotations were depending on original studies (15, 
16). GSE115469 identifies only one biliary phenotype and one HSC 
phenotype, “Cholangiocytes” and “Hepatic_Stellate_Cells,” 
respectively; therefore, 11sig can estimate cell fractions only for 
“Cholangiocytes” and “Hepatic_Stellate_Cells.” To estimate fractions 
of various hepatic cell phenotypes, it is required to use scRNA-seq data 
with more detailed cell classifications and annotations for signature 
matrix creation. To distinguish hepatic cells in diseased conditions, 
scRNA-seq data of PSC or PBC liver tissues may be  required for 
custom signature matrix.

Identification of specific cell types is generally carried out by 
immunostaining targeting a marker (e.g., CK-19 for cholangiocytes); 
however, immunostaining cannot determine the origin of the cells. 
For example, ductular reaction can be identified by CK-19 staining, 
but it is not feasible to conclude if CK-19+ cells are self-proliferating 
large cholangiocytes, small-derived large cholangiocytes, or 
cholangiocytes differentiated from hepatocytes, only by 

immunostaining. To trace specific cell types and identify 
transdifferentiation during cholestatic liver injury, cell labelling 
techniques are required, such as adeno-associated virus (48, 49). 
Computation using CIBERSORTx estimates cell fraction in bulk 
microarray data and allows to speculate the roles of cell phenotypes. 
Our study demonstrated that large cholangiocytes were increased, 
but small cholangiocytes (BCL2+ cholangiocytes) and interzonal and 
periportal hepatocytes were decreased in liver tissues of PSC and 
PBC patients, compared to those from healthy individuals. Although 
this does not prove the transition of small cholangiocytes and 
interzonal/periportal hepatocytes into large cholangiocytes, these 
findings provide important implications: (1) there are multiple 
phenotypes in cholangiocytes and hepatocytes, and their functions 
could differ depending on the phenotypes; (2) PSC and PBC are bile 
duct disorders, but hepatocytes on the specific location may play a 
vital role in the pathophysiology of cholangiopathies; (3) 
experimental procedures should be carefully designed, as the analysis 
of the whole liver tissues or isolated cholangiocytes/hepatocytes 

FIGURE 6

Decreased composition of periportal and interzonal hepatocytes in PSC/PBC livers. (A) Estimated composition for periportal and interzonal 
hepatocytes using sc18sig. (B) Estimated composition for periportal/interzonal hepatocytes using 11sig. (C) Marker expression associated with 
periportal hepatocytes. (D) Expression levels of marker genes for interzonal hepatocytes. Mean  ±  SEM, *p  <  0.05, **p  <  0.01, ***p  <  0.001 vs. Healthy 
(n  =  7 for Healthy, n  =  12 for PSC, n  =  3 for PBC).
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including all phenotypes may potentially overlook critical findings. 
For example, if periportal hepatocytes, but not central venous and 
interzonal hepatocytes, are hypothesized to play an essential role in 
the pathogenesis of cholangiopathies, it may be necessary to design 
the experiments that specifically target periportal hepatocytes. In 
such cases, isolated hepatocytes from fresh liver tissues containing all 
cell phenotypes may not be appropriate. Therefore, cell sorting or 
laser-capture microdissection will be required in those cases.

CIBERSORTx is a powerful tool to estimate cell composition from 
bulk transcriptome data. CIBERSORTx performs deconvolution and 
fraction estimation using signature matrix, which is a critical data file for 
reliable results (19). LM22 is a default signature matrix provided by 
CIBERSORTx and it is used to estimate fractions of immune cells (18). 
Previous studies demonstrated deconvolution using CIBERSORT or 
CIBERSORTx revealing the immune cell landscape in liver tissues of 
patients with hepatocellular carcinoma or biliary atresia (25, 26, 50). 
However, this approach has certain limitations. For instance, LM22 was 
developed using data from peripheral blood mononuclear cells (18), and 
immune cells in the liver may exhibit different gene expression profiles; 
therefore, the deconvolution analysis of hepatic cells using LM22 may lack 
accuracy and reliability. In our study, we performed deconvolution for 
GSE159676 mixture using CIBERSORTx and LM22 but could not obtain 
consistent data, such as increased macrophage population (data not 
shown). Since portal infiltration and increased macrophage population 
during cholestatic liver injury are well known phenomena (35), this 
indicates that LM22 cannot estimate hepatic cell composition in the 
GSE159676 liver microarray dataset. In addition, LM22 is only for 
immune cells, and custom signature matrix is required to estimate 
fractions of different cell phenotypes, such as cholangiocytes. Our 
approach utilizing sc18sig and 11sig demonstrated extensive 
deconvolution performance, yielding results that align consistently 
between the two signature matrices and with experimental findings 

reported in the literature. Our study is the first to underscore the 
promising potentials of deconvolution analysis for estimation of hepatic 
cell phenotypes in cholestatic liver tissues.

Our approach using CIBERSORTx has certain limitations and 
weaknesses: (i) we analyzed GSE159676 data as mixture, but sample 
numbers are relatively low, especially for PBC patients (n = 6 for healthy 
control, n = 12 for PSC, and n = 3 for PBC). Differences between groups 
were not statistically significant in some cases, probably due to small 
sample size; (ii) it is hard to validate results obtained from microarray 
data for minor cells. Expression levels of genes associated with interzonal 
and periportal hepatocytes were decreased in microarray data of 
GSE159676, supporting the decreased fractions of these hepatocyte 
phonotypes. However, small cholangiocytes are very minor hepatic cells 
(only 0.1% in sc18sig), microarray data for genes associated with small 
cholangiocytes, such as BCL2, were not consistent to CIBERSORTx 
results. Further studies are required to elucidate the roles of small 
cholangiocytes and the transition into large cholangiocytes during 
cholestatic liver injury; (iii) there are certain hepatic cell phenotypes that 
remain unidentified by this approach. For example, previous studies 
demonstrated that mast cells play a key role in the pathogenesis of PSC, 
and mast cell numbers are increased in PSC liver sections (51). However, 
both GSE185477 and GSE115469 did not classify any cells as resting or 
activated mast cells, and hence sc18sig and 11sig were unable to provide 
estimates of mast cell fractions in the GSE159676 dataset; and (iv) this 
approach is not suitable for tumor tissues because both signature 
matrices are generated using control liver data. A new signature matrix 
file is needed to be generated from scRNA-seq data of liver tissues with 
tumors to distinguish normal and malignant hepatic cells. In addition, 
PSC is a common risk factor for cholangiocarcinoma (CCA) (52), but 
detailed mechanisms of biliary tumorigenesis mediated by cholestatic 
liver injury are still undefined. Therefore, there may be novel hepatic cell 
phenotypes in PSC livers, such as a precursor phenotype of CCA, and 

FIGURE 7

Alteration of cell composition during cholestatic liver injury. Previous studies and estimation using CIBERSORTx indicate that some specific hepatic cell 
phenotypes are increased or decreased in PSC and/or PBC compared to healthy conditions. Increased large cholangiocytes lead to ductular reaction, 
and increased activated HSCs and inflammatory macrophages lead to hepatic fibrogenesis or inflammation, respectively.
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our approach in this study may not be  able to distinguish these 
phenotypes from normal cholangiocytes. Our approach may not 
be suitable for liver tissues of late stage PSC or early stage CCA.

The current study focuses on PSC and PBC, but our approach can 
also be applied to other liver diseases or conditions. However, specific 
hepatic cell phenotypes may emerge only during the diseased conditions 
or may be very rare in normal liver tissues, making their identification 
challenging in scRNA-seq. For example, previous studies demonstrated 
that activated HSCs and portal fibroblasts contribute to hepatic 
fibrogenesis during cholestatic liver injury (53, 54). GSE185477 used 
healthy liver tissues, and identified 7 mesenchymal phenotypes, Mes1 
to Mes7 (15). The authors referred to Mes2 and Mes4 as myofibroblast-
like cells, but it is unclear if they are activated HSCs or portal fibroblasts. 
To generate sc18sig, data of total 26,372 hepatic cells were used, and 65 
cells (0.2%) were identified as Mes2, and 17 cells (0.06%) were Mes4. 
Only 4–8 cells (0.01–0.03%) were found in sc18sig as Mes3, 5, 6, and 7, 
suggesting that healthy liver tissues may not naturally contain 
substantial numbers of mesenchymal cells. Consequently, a signature 
matrix created from healthy livers may not be effective in distinguishing 
between various mesenchymal phenotypes due to their low numbers 
under healthy conditions. Hepatic macrophages have two origins, 
Kupffer cells and bone marrow-derived macrophages, and multiple 
phenotypes, such as M0, M1, and M2 subsets (35, 55, 56). However, 
both GSE185477 and GSE115469 can identify only two macrophage 
phenotypes, non-inflammatory and inflammatory. Therefore, sc18sig 
and 11sig were unable to estimate the fractions for M0, M1, or M2 
subsets or distinguish their origins. Although it is essential to create a 
signature matrix encompassing various macrophage phenotypes and 
origins, achieving this using healthy liver tissues may not be feasible 
because some phenotypes may not emerge in the normal conditions. It 
is also possible that there could be  novel biliary or hepatocyte 
phenotypes during cholestatic liver injury that are not yet known. 
Ductular reaction is characteristic in cholangiopathies, such as PSC, and 
is mediated by proliferative and reactive biliary phenotypes leading to 
the expansion of intrahepatic bile ducts (3, 4). However, elevated 
cellular senescence is also commonly identified in biliary phenotypes in 
PSC (57, 58), which is closely associated with liver fibrosis in 
cholangiopathies (59, 60). It is possible that there may be different 
biliary phenotypes only present in cholestatic liver tissues, such as 
proliferating cholangiocytes and senescent cholangiocytes, and these 
biliary phenotypes may not be found in healthy livers. Deconvolution 
using sc18sig and 11sig may miss these disease-specific hepatic 
phenotypes. Further studies involving scRNA-seq for diseased liver 
tissues, such as PSC/PBC livers, are required to identify all hepatic cell 
phenotypes during liver injury and comprehensively assess the cell 
composition for each phenotype in the liver at diseased states.

In conclusion, the current study demonstrated that population of 
specific hepatic cell phenotypes was altered during PSC or PBC, which 
may be  associated with the pathophysiology of cholangiopathies. 
Further studies are required to elucidate the detailed roles of these 
phenotypes in cholestatic liver injury.
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