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Radiomics analysis of pancreas 
based on dual-energy computed 
tomography for the detection of 
type 2 diabetes mellitus
Wei Jiang 1†, Xianpan Pan 2†, Qunzhi Luo 1, Shiqi Huang 1, 
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1 Department of Radiology, Liuzhou Municipal Liutie Central Hospital, Liuzhou, China, 2 Shanghai 
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Objective: To utilize radiomics analysis on dual-energy CT images of the 
pancreas to establish a quantitative imaging biomarker for type 2 diabetes 
mellitus.

Materials and methods: In this retrospective study, 78 participants (45 with type 
2 diabetes mellitus, 33 without) underwent a dual energy CT exam. Pancreas 
regions were segmented automatically using a deep learning algorithm. From 
these regions, radiomics features were extracted. Additionally, 24 clinical 
features were collected for each patient. Both radiomics and clinical features 
were then selected using the least absolute shrinkage and selection operator 
(LASSO) technique and then build classifies with random forest (RF), support 
vector machines (SVM) and Logistic. Three models were built: one using 
radiomics features, one using clinical features, and a combined model.

Results: Seven radiomic features were selected from the segmented pancreas 
regions, while eight clinical features were chosen from a pool of 24 using the 
LASSO method. These features were used to build a combined model, and its 
performance was evaluated using five-fold cross-validation. The best classifier 
type is Logistic and the reported area under the curve (AUC) values on the 
test dataset were 0.887 (0.73–1), 0.881 (0.715–1), and 0.922 (0.804–1) for the 
respective models.

Conclusion: Radiomics analysis of the pancreas on dual-energy CT images 
offers potential as a quantitative imaging biomarker in the detection of type 2 
diabetes mellitus.
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1 Introduction

The anatomy of the human pancreas is closely related to its endocrine and exocrine 
functions. In individuals diagnosed with type 1 or type 2 diabetes, alterations in the pancreas 
have been observed (1). Chronic inflammation of the pancreas can cause damage to the 
insulin-producing cells, potentially leading to the development of diabetes. Pancreatitis and 
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type 2 diabetes share similar risk factors (1). Several imaging 
techniques, such as computed tomography (CT), magnetic resonance 
imaging (MRI), and ultrasound (US), have been used in various 
studies to investigate pancreatic changes in individuals with diabetes. 
These studies aim to assess the size (diameter, area, or volume) as well 
as the fat content of the pancreas using these imaging modalities. The 
comparisons are made between individuals with type 1 diabetes 
(T1DM) and/or type 2 diabetes (T2DM) and healthy controls (2).

These imaging studies hold significant potential for providing 
reliable insights into diabetes mellitus (DM). Between 2008 and 2013, 
a total of 1,478 lean individuals without diabetes underwent CT scans 
(3). The presence of fatty pancreas was evaluated using a validated 
histological method, which measured the attenuation of the pancreas 
on CT scans conducted at the beginning of the study. Lower pancreas 
attenuation values indicate higher fat content in the pancreas (3). 
Furthermore, a study aimed to investigate abdominal CT biomarkers 
for type 2 diabetes mellitus using advanced automated deep learning 
techniques within a substantial clinical dataset (4). The analysis 
demonstrated a correlation between the diagnosis of type 2 diabetes 
mellitus and specific abdominal CT biomarkers, particularly 
measurements related to pancreatic CT attenuation and visceral fat 
(4). Dual-energy CT (DECT) has shown promise in providing more 
precise quantitative information compared to conventional methods 
by utilizing two different X-ray beams with distinct absorption 
characteristics (5).

Radiomics analysis has made significant advancements in the 
field of medical image analysis in recent years (6). This approach 
enables the extraction of numerous features from medical images, 
facilitating the quantification of phenotypic characteristics of 
tumors (7). These quantifications play a crucial role in various 
areas such as diagnosis, clinical prognosis, treatment selection, and 
decision support. By optimizing the selection of features and 
utilizing machine learning algorithms, it becomes possible to 
effectively differentiate between patients with similar outcome 
conditions and establish personalized prediction models based on 
scientific and data-driven analyses for treatment outcomes. The 
emerging field of radiomics also holds promise in identifying 
previously undetectable characteristics and assisting in the 
diagnosis and prediction of diabetes through pancreas imaging. 
For instance, a study focused on evaluating the diagnostic accuracy 
of a Dual-Energy Computed Tomography (DECT)-based 
technique that utilizes iodine quantification and fat fraction 
analysis for early detection of acute pancreatitis (8). The results 
indicated that DECT with iodine quantification exhibits higher 
sensitivity in diagnosing early acute pancreatitis compared to 
standard image evaluation methods (8). Furthermore, another 
study aimed to assess whether an AI model based on pancreas 
radiomics can identify the CT imaging pattern associated with type 
2 diabetes (9). The findings showed that the model successfully 
detects the imaging pattern linked to type 2 diabetes. However, 
further enhancements and validation are necessary to evaluate its 
potential for identifying type 2 diabetes in the millions of CT scans 
conducted annually.

Our previous study investigated the clinical value of pancreatic fat 
fraction measured on DECT images for the detection of type 2 
diabetes mellitus (10). Given the burgeoning evidence linking 
pancreatic imaging characteristics with DM and the advancements in 
imaging and analytical technologies, we hypothesize that radiomics 

analysis of dual-energy CT images of the pancreas can identify specific 
imaging biomarkers that quantitatively differentiate individuals with 
type 2 diabetes mellitus from non-diabetic controls. This approach 
aims to establish a novel, quantitative imaging biomarker for T2DM, 
leveraging the precision of DECT and the analytical power of 
radiomics to enhance early detection and intervention strategies for 
diabetes mellitus.

2 Materials and methods

2.1 Study population

This retrospective study received approval from the Ethics 
Committee of Liuzhou Municipal Liutie Central Hospital (Approval 
No. 2021033), and the requirement for informed consent was waived. 
We conducted a search in our medical information database for cases 
that occurred between September 2021 and July 2022. Eligible patients 
meeting the following criteria were included in the study: (1) those 
who underwent dual-energy abdominal CT with a non-contrast 
phase; (2) individuals who had blood tests done within 3 days before 
and after DECT; and (3) patients whose electronic medical records 
clearly indicated either “type 2 diabetes” or “non-diabetes.” Patients 
with malignant tumors (n = 12), pancreatitis (n = 5), or significant 
pancreatic atrophy without visible pancreatic parenchyma (n = 4) were 
excluded from the study.

2.2 Datasets

2.2.1 DECT images
Abdominal DECT was conducted using a Dual-source CT 

scanner (SOMATOM Drive, Siemens Healthineers, Forchheim, 
Germany). The tube voltages used were 100 kV and Sn140 kV, with 
average effective tube currents of 250 mAs and 193 mAs. Automatic 
tube current modulation technology (CARE Dose 4D) was employed 
for dose control. The CT parameters were as follows: detector 
collimation of 32 × 0.6 mm, pitch of 0.6, gantry rotation time of 0.5 s, 
and matrix size of 512 × 512. Reconstruction of the CT image was 
performed using an iterative reconstruction technique called Adaptive 
Model-based Iterative Reconstruction (ADMIRE) with the Q30f 
algorithm, resulting in a reconstructed image thickness of 1.5 mm (see 
Figure 1).

2.2.2 Clinical variables
The following 24 clinical data were collected: (1) categorical 

variables: gender, lipid turbidity index, hemolysis index, jaundice 
index, and clinical manifestations (now the criteria for the diagnosis 
of diabetes include the patient exhibiting symptoms of polydipsia, 
polyuria, polyphagia, and weight loss (referred to as “three excesses 
and one deficiency”), along with elevated blood glucose levels and 
the presence of glucose in the urine (which should not be found in 
normal urine). So if the subject has these manifestations the 
category of the subject is “positive”); (2) normally distributed 
variables: age, albumin, globulin, systolic blood pressure, total 
cholesterol, and high-density lipoprotein; (3) non-normally 
distributed variables: hematocrit, low-density lipoprotein. Others 
are listed in Table 1.
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2.3 Pancreas segmentation on DECT 
images

In our previous work (11), we  implemented a deep learning 
framework that utilized a cascade coarse-to-fine segmentation 
approach with an attention mechanism to segment organs. In this 
study, we applied this deep learning framework specifically to segment 
the pancreas from fusion DECT images. The segmentation process 
was carried out using the uAI Research Portal (United Imaging 
Intelligence, China) (12), which is a clinical research platform based 
on the Python programming language (version 3.7.3). Figure  2 
displays the original pancreas DECT image and the corresponding 
segmentation results. In our previous work (11), we  conducted a 
quantitative analysis comparing the DECT results between the 
diabetes and control groups. Figure 2 demonstrates that the head of 
the pancreas exhibited lower density and higher fat fraction compared 
to the body and tail of the pancreas in the diabetes group. Finally, all 
delineations were reviewed by a highly experienced chief radiologist 
with 8 years of expertise in abdominal imaging.

2.4 Radiomics extraction and selection

A total of 2,264 radiomic features were extracted from each 
pancreas region. These features consisted of 104 original features, 
which were further categorized into 18 first-order statistics, 14 
shape features, and 21 texture features. The texture features included 

Gray-Level Co-occurrence Matrix (GLCM), Gray-Level 
Run-Length Matrix (GLRLM), Gray-Level Size-Zone Matrix 
(GLSZM), Gray-Level Dependence Matrix (GLDM), and 
Neighboring Gray-Tone Difference Matrix (NGTDM). Additionally, 
14 image filters including Box Mean, Additive Gaussian Noise, 
Binomial Blur Image, Curvature Flow, Box Sigma Image, LoG with 
sigma values of 0.5, 1, 1.5, and 2 were applied to generate derived 
images. Derived images were further processed using Wavelet filters 
(LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH), Normalize, 
Laplacian Sharpening, Discrete Gaussian Mean Speckle Noise 
Recursive Gaussian and Shot Noise to extract first-order statistics 
and texture features within the pancreas regions. This resulted in a 
total of 2,160 derived features.

Figure 3 illustrates the flowchart of the radiomics analysis. First, 
radiomic features were calculated from the region of interest (ROI) on 
each DECT image. All the radiomic features were then normalized 
using Z-score. Next, the least absolute shrinkage and selection 
operator (LASSO) technique was applied to sift through these 
normalized radiomic features, with the aim of identifying those with 
the highest predictive reliability for type 2 diabetes mellitus (T2DM). 
This critical step focused on isolating features that are predictive of the 
binary outcome of diabetes presence (yes or no). Then a similar 
LASSO selection process was conducted for the clinical features 
gathered from the study participants. The radiomic and clinical 
features deemed significant through these selection processes were 
then amalgamated. A final round of LASSO selection was performed 
on this combined set to refine and identify a comprehensive feature set.

FIGURE 1

Flowchart of the study including diabetes patients enrolled with dual-energy CT images.
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LASSO selection was employed to identify the most reliable 
predictive radiomic features. Finally, another round of LASSO selection 
was performed to evaluate clinical features. The selected radiomic and 
clinical features were merged and subjected to another round of LASSO 
selection to obtain a comprehensive combined feature set.

2.5 Model construction

Three machine learning models were developed for binary 
classification (diabetes or not) using three classifiers: random forest 
(RF), support vector machine (SVM), and logistic regression (LR). 
The models were built based on the selected features and/or clinical 
features. The input data for the detection model came from one of the 
three feature sets: (1) radiomic features with 7 variables, (2) clinical 
features with 8 variables, or (3) a combination of all features with 8 
variables. To enhance performance, a grid search was performed to 

fine-tune the parameters for different features and classification  
algorithms.

2.6 Statistical analysis

The receiver operating characteristic curve (ROC) was generated 
to evaluate the performance of the detection model, and several 
performance metrics such as sensitivity (SEN), specificity (SPE), 
accuracy (ACC), F1-Score, and area under the curve (AUC) were 
computed. The confidence intervals for cross-validated AUC were 
computed to estimate the performance of each model. The 
demographic data was processed using the uAI Research Portal to 
examine significant differences in variables between the training set 
and the validation set. Python (version 3.6) was utilized for 
programming the training, validation of the prediction model, and 
conducting statistical analysis.

TABLE 1 Clinical variables of the study population.

Indicators Control group 
(n =  33)

Diabetic group (n =  45) p-value Note

Categorical variables

Gender, Female:Male 12:21 19:26 0.601

Clinical manifestations None:Present 33:0 36:9 0.006

Lipid turbidity index 6:26:1:0 4:38:2:1 0.535 0:1:2:3

Hemolysis index 20:12:0:1 36:7:2:0 0.065 0:1:2:3

Jaundice index 2:28:2:1 2:37:6:0 0.483 0:1:2:3:4

Normal distribution variables

Age (years) 59 ± 14 64 ± 10 0.083

Albumin 28.2 ± 5.0 28.6 ± 7.4 0.771

*Globulin 40.6 ± 3.6 35.8 ± 5.0 0.000

Systolic blood pressure 135.8 ± 22.6 137.3 ± 21.5 0.755 mmHg

Total cholesterol 4.8 ± 0.9 5.0 ± 1.6 0.416 mmol/L

High-density lipoprotein 1.3 ± 0.3 1.3 ± 0.3 0.721 mmol/L

Non-normally distributed variables

Endogenous creatinine clearance rate (%) 72.2 (38.9) 90.2 (38.2) 0.004

Hematocrit (%) 42.6 (5.2) 40.6 (9.6) 0.055

Albumin/Globulin ratio (%) 1.4 (0.5) 1.3 (0.4) 0.005

Low-density lipoprotein 2.7 (1.1) 2.7 (1.7) 0.903 mmol/L

Indirect bilirubin 6.7 (4.6) 7.1 (4.5) 0.980

AST 18.0 (8.0) 17.0 (13.5) 0.598 IU/L

ALT 18.0 (9.5) 19.0 (17.5) 0.567 IU/L

*Total protein 69.5 (9.9) 63.8 (7.4) 0.002

Triglycerides 1.3 (0.9) 1.5 (1.2) 0.482 mmol/L

Total bilirubin 12.2 (7.7) 11.9 (5.2) 0.561 μmol/L

Direct bilirubin 4.4 (2.1) 4.3 (2.7) 0.675 μmol/L

Creatinine 73.0 (17.5) 71.0 (36.0) 0.992 μmol/L

Diastolic blood pressure 78.0 (16.5) 80.0 (15.0) 0.689 mmHg

ALT, alanine transaminase; AST, aspartate transaminase; clinical manifestations, polyphagia, polydipsia, polyuria, and weight loss; categorical variables, described using sample proportions; 
normal distribution variables, described using mean ± standard deviation; non-normally distributed variables, described using median (interquartile range).
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3 Results

Based on Harrell’s guideline, the number of selected features 
should be  less than 10% of the sample size. Consequently, in our 
experiment involving the radiomic and clinical features, as well as the 
final combination of radiomic and clinical features, the number of 
selected features was less than 10% of the sample size (13, 14).

3.1 Assessment of radiomic and clinical 
features

A total of 2,264 radiomic features were computed using the uAI 
Research Portal for each pancreas region. These features were then 
normalized using the Z-score approach. The feature selection method, 
Lasso, was employed to reduce dimensionality. Ultimately, 7-dimensional 
features were selected for the subsequent classification modeling. The 
names and corresponding importance coefficients of these 7 features 
calculated by Lasso are illustrated in Figure  4A. The selection of 

coefficient values was computed using the least square method. Each 
coefficient signifies the average impact of the corresponding feature on 
the selection results. In simpler terms, a higher value indicates a greater 
importance of the feature for the detection model.

Additionally, for each patient, a total of 24 clinical features were 
digitized and normalized using the Z-score method. Employing a 
similar feature selection procedure with Lasso, 8 clinical features were 
chosen. The names and coefficients of each clinical feature are featured 
in Figure 4B.

Moreover, a combination of all extracted radiomic features (2,264) 
and clinical features (24) resulted in a total of 2,288 features. Through 
Lasso computation, an optimal subset of 8 features was obtained, 
consisting of 6 radiomic features and 2 clinical features. Detailed 
information regarding all selected features is presented in Figure 4C.

3.2 Evaluation of models

The feature selection step automatically chose the most 
significant features for this classification task. In this step, all 

FIGURE 2

Illustration of pancreas DECT images, dual-energy fat map, and the segmentation results (each row from top to bottom) of the healthy subject and 
diabetes patient. (A) Healthy subject. (B) Diabetes patient.
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features were given equal priority and underwent Z-score 
normalization as a preprocessing step before using LASSO. To 
avoid overfitting, the LASSO parameter α was set to 0.05. The 
logistic regression classifier was then used to construct the 
detection model with the following parameter settings: a penalty 
factor C of 1.0, no class weight, L2 penalty type, a threshold of 0.5, 
and a tolerance of 1 × 10−4.

To effectively assess the performance of the detection models, the 
five-fold cross-validation technique was implemented due to the 
limited amount of data. Cross-validation is a widely accepted statistical 
technique used to evaluate predictive models by partitioning the 
original dataset into a training set to train the model, and a testing set 
to evaluate it. In the context of our study, we divided the complete 
dataset into five equal (or nearly equal) parts randomly. During the 
validation process, four of these subsets are combined to form the 
training set, and the remaining one subset is used as the testing set. 
This process is repeated five times (folds), with each of the five subsets 
serving as the testing set exactly once.

LR, RF, and SVM classifiers were constructed for each fold 
using the selected features, which consisted of radiomic features, 
clinical features, and combined features. The overall performance 
was summarized by calculating the mean AUC, sensitivity, 
specificity, accuracy, and F1 score for both the training set and 
testing set. The results are presented in Table 2, we can found that 
LR get the best performance among these three models (RF, SVM, 
and Logistic) in AUC 0.922, Specificity 0.886, Accuracy 0.862, and 
F1 Score 0.871 indexes on test dataset with combined model, which 
demonstrate LR model having a robust classification ability. Then 
we do some other tests in the LR model, according to the Delong 
test, there was no statistically significant difference in the area 

under the ROC curve between the training set and testing set (as 
shown in Figure 5).

3.3 Regenerate response

The performance of the models built with radiomic features, 
clinical features, and combined features shown in Table 2.

4 Discussion

In our previous study (10), we calculated the fat fraction and CT 
value of the head, body, and tail of the pancreas from dual-energy CT 
images of 45 patients with type 2 diabetes mellitus (T2DM) and 33 
control subjects. The experimental results demonstrated a significant 
association between the fat content of the pancreas and diabetes (10). 
While our focus was on fat fraction measurements, there are 
numerous other quantitative parameters that can be derived from 
dual-energy CT data. Hence, further studies could evaluate additional 
parameters such as radiomic features.

This retrospective study aims to establish a quantitative imaging 
biomarker for type 2 diabetes mellitus using dual-energy CT images 
of the pancreas. We have constructed three models using radiomic 
features, clinical features, and combined features, obtained through 
the LASSO regression approach, as shown in Table 3. The coefficients 
listed in Table 3 were derived from LASSO regression and represent 
the average impact of each corresponding feature on the classification 
results. A higher coefficient value indicates greater importance of the 
feature for the detection model.

FIGURE 3

Flowchart of radiomics analysis on pancreas DECT images.
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The description and explanation of each feature for the three 
models are as follows: these radiomics features are linked to the focus 
of the doctor’s attention, such as image texture, gray level intensity, 
local homogeneity, and etc.

 1. Informational Measure of Correlation (IMC) 1: IMC1 evaluates 
the correlation between the probability distributions of variables 
i jand , using mutual information I i j,( ). This feature quantifies 
the complexity of the texture within the region of interest (ROI).

 2. Minimum: This is a first-order feature that represents the 
minimum gray level intensity within the ROI.

 3. Inverse Difference Normalized (IDN): IDN is a measure of the 
local homogeneity within the ROI.

 4. 90 Percentile: This is a first-order feature that represents the 
number of voxels exceeding 90% of the voxel values in the set 
of all voxel values within the ROI.

 5. Median: This first-order feature represents the median gray 
level intensity within the ROI.

 6. Maximum 2D Diameter Slice: This shape feature is defined as 
the largest pairwise Euclidean distance between organ 
surface mesh vertices in the row-column plane (typically 
axial plane).

FIGURE 4

The selected features and their corresponding importance coefficients calculated by Lasso. (A) Selected Radiomic features. (B) Selected clinical 
features. (C) Combined features.

https://doi.org/10.3389/fmed.2024.1328687
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Jiang et al. 10.3389/fmed.2024.1328687

Frontiers in Medicine 08 frontiersin.org

For the clinical model, diabetes is primarily characterized by 
hyperglycemia and metabolic disturbances. Its key clinical 
manifestations include increased appetite, excessive thirst, frequent 
urination, and unintended weight loss (i.e., more than three kilograms 
but less than one kilogram). In terms of serum biochemical markers, 
triglycerides, aspartate aminotransferase, endogenous creatinine 
clearance, low-density lipoprotein cholesterol, total bilirubin, and 
albumin are all intricately linked to human metabolism.

For the combined model, two additional features were listed 
as follows:

 1. Informational Measure of Correlation (IMC) 2: IMC2 also 
evaluates the correlation between the probability distributions 
of variables i jand , similarly quantifying the complexity of the 
texture within the region of interest (ROI).

 2. Busyness: This feature measures the change from a voxel to its 
neighbor. A high value for busyness indicates a “busy” image, with 
rapid changes in intensity between voxels and their neighborhood.

These additional features contribute to capturing more detailed 
information about texture complexity and local intensity variations in 
relation to diabetes detection.

From the selected features above, it is evident that some of them 
quantify the complexity of the texture of the pancreas. This suggests 
that there are rapid changes in intensity between voxels and their 
neighborhood in the medical images of patients with type 2 diabetes 
mellitus. These texture complexities may be indicative of underlying 
structural or compositional changes in the pancreas associated with 
diabetes. The identification and quantification of such changes can 

potentially provide valuable insights into disease progression and aid 
in the development of imaging biomarkers for diabetes diagnosis 
and monitoring.

Radiomics has indeed gained widespread utilization in clinical 
diagnosis. It has emerged as a valuable tool for auxiliary diagnosis by 
converting clinical images into mining data with high fidelity, 
repeatability, and minimal redundancy. This is achieved through the 
extraction of mathematical structural features from quantitative 
images. With the focus on personalized precision diagnosis and 
treatment, radiomics has played a pivotal role in advancing medical 
imaging beyond being just a diagnostic tool. It has become a 
fundamental instrument that provides specific and effective guidance 
for clinical diagnosis and treatment. By leveraging radiomic features, 
medical professionals can gain deeper insights into diseases, enabling 
them to make more accurate and personalized decisions regarding 
patient care (15). The integration of radiomics into clinical practice 
holds great promise for improving patient outcomes, optimizing 
treatment strategies, and facilitating precision medicine approaches.

Radiomics has been widely utilized in various diseases. van 
Griethuysen et al. (16) extracted radiomic features from 429 different 
lung lesions, including 48 texture features, 310 logarithmic features, 
and 158 wavelet features, to differentiate between benign and 
malignant nodules in the lungs. Their analysis revealed a correlation 
between image-based subtypes and the benign or malignant status of 
lung lesions. In another study, Grimm et  al. (17) analyzed 275 
preoperative breast MRI images of breast cancer patients and extracted 
a total of 56 imaging features encompassing morphology, texture, and 
dynamic characteristics for each patient’s image. Utilizing multivariate 
analysis, they determined the correlation between these imaging 

TABLE 2 The performance of the models built with radiomic features, clinical features, and combined features.

Methods Methods AUC (95% CI) Sensitivity Specificity Accuracy F1 score

A. Performance of the models on train dataset

Clinical model

LR 0.918 (0.857–0.985) 0.85 0.795 0.827 0.85

RF 0.871 (0.788–0.958) 0.778 0.788 0.782 0.805

SVM 0.96 (0.925–1) 0.933 0.812 0.882 0.901

Radiomics model

LR 0.928 (0.87–0.993) 0.883 0.894 0.888 0.901

RF 0.945 (0.897–0.997) 0.894 0.818 0.862 0.883

SVM 0.861 (0.764–0.958) 0.833 0.749 0.798 0.827

Combined model

LR 0.955 (0.918–0.999) 0.861 0.94 0.894 0.904

RF 0.97 (0.94–1) 0.922 0.879 0.904 0.917

SVM 0.891 (0.801–0.981) 0.878 0.849 0.866 0.883

B. Performance of the models on test dataset

Clinical model

LR 0.881 (0.715–1) 0.822 0.757 0.795 0.819

RF 0.719 (0.441–0.967) 0.711 0.61 0.67 0.709

SVM 0.876 (0.704–1) 0.8 0.752 0.782 0.807

Radiomics model

LR 0.887 (0.73–1) 0.844 0.876 0.86 0.873

RF 0.794 (0.596–0.975) 0.822 0.638 0.745 0.779

SVM 0.856 (0.679–1) 0.844 0.762 0.809 0.835

Combined model

LR 0.922 (0.804–1) 0.844 0.886 0.862 0.871

RF 0.889 (0.748–1) 0.822 0.733 0.784 0.81

SVM 0.902 (0.773–1) 0.867 0.767 0.823 0.85

The bold meaning is the best performance.
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features and molecular subtypes of breast cancer. The findings revealed 
a significant association between radiomic features derived from 
dynamic contrast-enhanced MRI and the molecular subtypes of 
luminal A and luminal B hormone receptor-positive breast cancers.

Kaissis et al. (18) retrospectively analyzed preoperative CT images 
of 207 patients diagnosed with pancreatic ductal adenocarcinoma. They 
developed a random forest machine learning algorithm to accurately 
predict the molecular subtype of pancreatic cancer based on radiomic 
features. The classification algorithm demonstrated high sensitivity 
(0.84 ± 0.05) and specificity (0.92 ± 0.01). Furthermore, the area under 
the receiver operating characteristic curve (AUC-ROC) was determined 
to be  0.93 ± 0.01, indicating that preoperative CT image radiomics 
analysis utilizing machine learning holds promise in predicting 
molecular subtypes closely associated with the survival outcomes of 
pancreatic cancer patients. Xue et al. (19) retrospectively analyzed CTA 
images and clinical data of 170 cases involving the head and radiomic 
features in conjunction with elevated levels of homocysteine and 
hypertension. Both the Rad-score model and joint model were 
established to investigate associations with symptomatic carotid plaque. 
Their findings demonstrated that hyper-homocysteinemia and 
hypertension exhibited independent associations with symptomatic 
carotid plaque. These studies highlight the potential of radiomics in 
various disease contexts, including lung lesions, breast cancer, pancreatic 
cancer, and carotid plaque. Radiomics analysis can provide valuable 
insights into disease characterization, subtype classification, and 
prediction of clinical outcomes.

In this study, a total of 2,264 radiomic features were extracted from 
pancreatic dual-energy CT images. A feature selection procedure similar 
to Lasso was employed to identify 7 optimal features. Simultaneously, 24 
clinical features were digitized and normalized. Out of these, 8 
representative clinical features were selected. The radiomic features were 
integrated with the clinical features, resulting in an optimal subset 
comprising of 8 calculated features determined by the Lasso algorithm. 
Subsequently, three models were constructed: one solely based on 
radiomic features, another solely based on clinical features, and the third 

model incorporating both types of features. The performance evaluation 
of these models was conducted using cross-validation. In the test set, the 
area under the curve (AUC) values were 0.887 (0.73–1), 0.881 (0.715–1), 
and 0.922 (0.804–1), respectively. When compared with previous studies 
(10), the sensitivity (0.844, 0.822, 0.844), specificity (0.876, 0.757, 0.886), 
accuracy (0.86, 0.795, 0.862), and F1 score (0.873, 0.819, 0.871) of this 
study showed significant improvement in performance.

Furthermore, we  evaluated the performance of the combined 
model using three clinical features: average blood glucose, duration of 
diabetes, and diabetic complications. The feature “average blood 
glucose” was used for the diagnosis of diabetes patients, which is 
consistent with the ground truth. Regarding diabetes duration, all 
patients who were classified incorrectly by the combined model had a 
disease duration of less than 10 years. This interesting finding may 
be due to the selected feature not being able to capture the difference 
between healthy controls and diabetes patients with a duration of less 
than 10 years as shown in Figure 6. Additionally, when classifying 
patients with (25 patients) or without (20 patients) diabetic 
complications, 2 patients were classified into the complication group.

There are several limitations to our study. Firstly, the sample size 
was relatively small, and further expansion of the sample size is 
necessary to enhance the credibility of the results. Secondly, we only 
analyzed the imaging features of all patients using dual-energy 
pancreatic plain scans without considering differences in pancreatic 
imaging features during different enhanced phases. Additionally, 
we  solely selected axial pancreatic images for analysis, potentially 
resulting in the omission of certain characteristic radiomics data.

5 Conclusion

After a comprehensive analysis, the three models constructed 
based on CT radiomic features demonstrate the potential of pancreatic 
dual-energy CT images as quantitative imaging biomarkers for 
detecting type 2 diabetes.

FIGURE 5

The ROC curves of different models using LR method, including radiomic features, clinical features, and combined features on train and test datasets, 
respectively. (A) ROC curve on train dataset. (B) ROC curve on test dataset.
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FIGURE 6

Statistical graph of the disease duration for 45 diabetes patients.

TABLE 3 The significance of radiomic features, clinical features, and combined features to build three models.

Models Features Coefficient

Radiomics model

wavelet_glcm_wavelet-HLH-Imc1 0.125

boxsigmaimage_firstorder_Minimum 0.057

wavelet_glcm_wavelet-HLH-Idn 0.052

log_firstorder_log-sigma-4-0-mm-3D-90Percentile 0.046

wavelet_firstorder_wavelet-LHH-Median −0.046

normalize_glcm_Imc1 −0.056

original_shape_Maximum2DDiameterSlice −0.077

Clinical model

Clinical manifestations 0.112

Triglycerides 0.053

Aspartate aminotransferase 0.034

Endogenous creatinine clearance 0.034

LDL cholesterol 0.018

Total bilirubin −0.027

White/ball −0.043

*albumin −0.132

Combined model

wavelet_glcm_wavelet-HLH-Imc1 0.024

Clinical manifestations 0.006

boxsigmaimage_firstorder_Minimum 0.002

original_shape_Maximum2DDiameterSlice −0.003

binomialblurimage_ngtdm_Busyness −0.007

curvatureflow_ngtdm_Busyness −0.011

wavelet_glcm_wavelet-LLH-Imc2 −0.016

*albumin (clinical feature) −0.059

The specific calculation method of each feature can be found from Pyradiomics website (https://pyradiomics.readthedocs.io/en/latest/features.html).
The bold meaning is the best performance.
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