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Background: Type 2 diabetes (T2D) frequently co-occurs with respiratory system 
diseases such as chronic obstructive pulmonary disease (COPD), bronchial 
asthma, lung cancer, interstitial lung disease, and pulmonary tuberculosis. 
Although a potential association is noted between these conditions, the available 
research is limited.

Objective: To investigate the causal relationship between patients with T2D 
and respiratory system diseases using two-sample Mendelian randomization 
analysis.

Methods: Causal relationships were inferred using a two-sample Mendelian 
randomization (MR) analysis based on publicly available genome-wide 
association studies. We  employed the variance inverse-weighted method as 
the primary analytical approach based on three key assumptions underlying 
MR analysis. To bolster the robustness and reliability of our results, we utilized 
MR Egger’s intercept test to detect potential pleiotropy, Cochran’s Q test to 
assess heterogeneity, funnel plots to visualize potential bias, and “leave-one-
out” sensitivity analysis to ensure that our findings were not unduly influenced 
by any single genetic variant.

Result: The inverse variance weighted (IVW) analysis indicated a causal 
relationship between T2D and COPD [Odds Ratio (OR)  =  0.87; 95% Confidence 
Interval (CI)  =  0.82–0.96; p  <  0.05]. No significant heterogeneity or pleiotropy 
were observed through their respective tests (p  >  0.05), and the statistical power 
calculations indicated that the results were reliable. The IVW analysis showed 
a negative causal relationship between T2D and bronchial asthma [OR  =  0.85; 
95% CI  =  0.81–0.89; p  <  0.05]. However, the IVW under the random-effects 
model indicated heterogeneity (p  <  0.05), suggesting instability in the results and 
requiring cautious interpretation. The study found a positive causal relationship 
between T2D and pulmonary tuberculosis (OR  =  1.24, 95% CI  =  1.05–1.45, 
p  <  0.05). However, they exhibited pleiotropy (p  <  0.05), indicating their instability. 
No correlation between T2D and interstitial lung disease or lung cancer was 
observed.

Conclusion: T2D is negatively associated with COPD, suggesting that T2D may 
reduce the risk of developing COPD. A negative causal relationship between T2D 
and bronchial asthma has been observed, but the results exhibit heterogeneity. 
There is a positive causal relationship between T2D and pulmonary tuberculosis, 
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yet the findings suggest the presence of pleiotropy. No significant causal 
relationship between T2D and lung cancer or interstitial lung disease was 
observed.
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1 Introduction

Respiratory system diseases, including chronic obstructive 
pulmonary disease (COPD), bronchial asthma, lung cancer, interstitial 
lung disease, and pulmonary tuberculosis (PTB), present notable 
global health challenges. These conditions collectively contribute to 
substantial morbidity and mortality, resulting in considerable socio-
economic impacts (1, 2). Diabetes is a common chronic metabolic 
disease that had a global prevalence of 9.3% in 2019, which is projected 
to increase to 10.9% by 2045 (3). Prolonged hyperglycemia can lead 
to a range of serious complications, including cardiovascular diseases, 
nephropathy, retinopathy, and neuropathy (4). These complications 
substantially increase the disease burden and the risk of premature 
death in patients, placing a tremendous economic strain on healthcare 
systems (5).

Respiratory system diseases are also prevalent and are typically 
influenced by multiple factors, including smoking, indoor and 
outdoor air pollution, allergens, occupational factors, and genetics (1). 
Type 2 diabetes (T2D) accounts for over 95% of diabetes cases and 
frequently coexists with respiratory system diseases, thus suggesting 
a potential association between them. For instance, a cross-sectional 
study found that after adjusting for confounding factors, patients with 
T2D had an increased risk of developing COPD [Odds Ratio 
(OR) = 1.45; 95% Confidence Interval (CI) = 1.23–1.71; p < 0.05] and 
bronchial asthma (OR = 1.38; 95% CI = 1.24–1.53; p < 0.05) (6). 
Additionally, author study showed that patients with T2D are more 
susceptible to PTB (7). Furthermore, two prospective cohort studies 
in the United States have found that T2D is associated with a higher 
risk of lung cancer (8). However, a prospective cohort study from 
Shanghai, China, observed no association between T2D and lung 
cancer risk in men [HR (Hazard Ratio) = 0.87, 95% CI 0.62–1.21] or 
women (HR = 0.92; 95% CI 0.69–1.24) (9). The limited number of 
studies and inconsistent results may be  due to methodological 
differences, insufficient sample sizes, varying interpretations of the 
results, or inadequate control of confounding factors.

Using Mendelian randomization (MR) method to investigate this 
relationship offers a unique opportunity to elucidate potential causal 
links. MR is often referred to as “nature’s randomized double-blind 
trial.” This approach offers three key advantages. First, genetic 
information serves as an instrumental variable that is less susceptible 
to confounding factors. Secondly, MR is less affected by reverse 
causality. Finally, MR results can provide insights into the 
directionality of the relationship between exposure and outcome, 
extending beyond mere associations.

Considering the current gaps and uncertainties in the existing 
literature, this study aimed to employ MR techniques to systematically 

explore the potential connection between T2D and respiratory 
system diseases.

2 Materials and methods

2.1 Study design and data source

Mendelian randomization (MR) techniques were used to assess 
the causal relationship between type 2 diabetes (T2D) and common 
respiratory system diseases. The instrumental variable was T2D, and 
the outcome variables included chronic obstructive pulmonary 
disease (COPD), bronchial asthma, lung cancer, interstitial lung 
disease, and pulmonary tuberculosis (PTB).

Exposure-and outcome-related datasets were derived from a 
genome-wide association study (GWAS), as indicated in Table 1. All 
participants were recruited under the Japanese Biobank Project (BBJ) 
(10, 11). Diagnoses of all study participants’ diseases were made in 
collaboration with hospital physicians. Written informed consent was 
obtained from all participants with approval from the RIKEN Center 
for Integrative Medical Sciences and the Ethics Committee of the 
University of Tokyo School of Medicine.

2.2 The selection and validation of SNPs

MR analysis necessitates the fulfillment of three crucial 
assumptions (Figure 1). First, SNPs must exhibit strong associations 
with the exposure variable (Assumption 1). Second, SNPs should not 
influence the outcome through other confounding factors 
(Assumption 2). Third, they should solely impact the outcome 
through the exposure variable (Assumption 3). To adhere to these 
three key assumptions, we  selected SNPs that were significantly 
associated with T2D at the whole-genome level (using a filtering 
threshold of p < 5 × 10−8).

To ensure independence among the SNPs, we eliminated linkage 
disequilibrium (LD) by requiring R2 < 0.001 and a window size of 
10,000 kb. To uphold Assumption 2, which posits that genetic 
variation is unrelated to potential confounders, we conducted a query 
in the Phenoscanner database to confirm that the included SNPs were 
unrelated to known confounding factors (smoking, indoor or outdoor 
air pollution, allergens, HIV infection, occupational and genetic 
factors, lung function (FEV1, FEV1/FVC), eosinophils, 
socioeconomic status, and immunosuppression). Finally, 
we computed F-test values to validate the strength of the individual 
SNPs. When the F-statistics were greater than 10, the SNPs were 
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considered powerful enough to mitigate the influence of 
potential bias.

2.3 Mendelian randomization analysis

We employed the inverse variance weighted (IVW) method to 
conduct a two-sample MR analysis to explore the causal relationships 
between these variables. Additionally, we utilized the MR-Egger and 
weighted median approaches for further analysis.

Sensitivity analyses were conducted from multiple perspectives to 
assess the robustness of results. First, we performed a heterogeneity 
assessment using the Cochran Q test, with results indicating 
heterogeneity at p < 0.05. In such cases, we analyzed the data using the 
IVW method with a random-effects model. Otherwise, we utilized the 
IVW and MR-Egger methods under a fixed-effects model. Second, 
we  applied leave-one-out sensitivity analysis and funnel plot 
techniques to investigate potential heterogeneity in the results. Finally, 
we conducted a pleiotropy assessment using MR-Egger regression, 
with significance set at p < 0.05, indicating the presence of pleiotropy. 

Beyond sensitivity analysis, we  employed funnel, leave-one-out, 
scatter, and forest plots to visualize the results.

All statistical analyses were performed using two-tailed Student’s 
t-tests. Statistical significance was set at p < 0.05 indicated statistical 
significance. All statistical analyses were performed using the 
“TwoSampleMR” package within R version 4.3.1.

2.4 Statistical power

The statistical power of the MR analysis was assessed using the 
online tool, mRND (12) to validate the reliability of the results.

3 Results

A total of 92 SNPs met the three fundamental criteria of Mendelian 
randomization (MR) and achieved genome-wide significance. All 
F-statistics were greater than 10 (Supplementary Table S1).

TABLE 1 Study overview: sample size and pooled GWAS for each outcome of interest.

Consortia Year Sample size 
(case/control)

Number of SNPs Population Dataset

Exposure

T2D BBJ 2019 210,865 (40,250/170615) 8,885,694 East Asian bbj-a-153

Outcome

COPD BBJ 2019 204,907 (3315/201592) 8,885,538 East Asian bbj-a-103

Asthma BBJ 2019 209,808 (8216/201592) 8,885,667 East Asian bbj-a-88

Interstitial lung disease BBJ 2019 424,100 (212,453/211647) 8,885,805 East Asian bbj-a-127

Lung cancer BBJ 2019 420,856 (212,453/208403) 8,885,805 East Asian bbj-a-133

Pulmonary tuberculosis BBJ 2019 424,357 (212,453/211904) 8,885,805 East Asian bbj-a-149

T2D, type 2 diabetes. COPD, chronic obstructive plumonary disease. BBJ, BioBank Japan.

FIGURE 1

Mendelian randomization analysis must adhere to three key assumptions: 1. SNPs are stongly associated with the exposure (type 2 disbetes), 2. SNPs 
do not influence the outcome through other confounders, 3. SPNs only affect the outcomes through the exposure.

https://doi.org/10.3389/fmed.2024.1332664
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1332664

Frontiers in Medicine 04 frontiersin.org

3.1 The causality between type 2 diabetes 
and chronic obstructive pulmonary disease

The inverse variance weighted (IVW) analysis results indicate a 
causal relationship between T2D and COPD (OR = 0.87, 95%CI 0.82–
0.96, p < 0.05). The weighted-median and MR-Egger conclusions were 
inconsistent with the IVW results (p > 0.05) (Figure  2). Tests for 
heterogeneity and pleiotropy suggested no significant heterogeneity or 
pleiotropy (p > 0.05) (Table  2). The funnel plot did not show any 
apparent bias (Supplementary Figure S1) and the results remained 
consistent when individual SNPs were progressively removed from the 
leave-one-out analysis (Supplementary Figure S2). The scatter and forest 
plots also aligned with these results (Figure 3; Supplementary Figure S4).

3.2 The causality between T2D and asthma, 
lung cancer, interstitial lung disease, and 
pulmonary tuberculosis

The IVW analysis results indicate a negative causal relationship 
between T2D and bronchial asthma (OR = 0.85, 95% CI 0.81–0.89, 

p < 0.001; Figure 2). This conclusion is consistent with those of the 
weighted-median and MR-Egger methods. However, both the fixed-
effects model and IVW under the random-effects model suggested the 
presence of heterogeneity (p < 0.05; Table 2). T2D was found to have a 
positive causal relationship with PTB (Figure 2), but exhibited pleiotropy 
(p < 0.05; Table 2). There was no correlation between T2D and interstitial 
lung disease or lung cancer (Figure 2). Additional funnel, leave-one-out, 
scatter, and forest plots are shown in Supplementary Figures S1–S4.

3.3 Statistical power

The relevant data were input into the mRND online tool, yielding 
a statistical power of 1, indicating the high reliability of the MR 
analysis results for T2D and respiratory system diseases.

4 Discussion

This study identified a negative causal association between type 2 
diabetes (T2D) and bronchial asthma, but with significant 

FIGURE 2

Associations of genetically predicted type 2 diabetes with respiratory system diseases. CI, condidence interval; OR, odds ratio; T2DM, type 2 diabetes 
mellitus, COPD, chronic obstructive pulmonary disease.

TABLE 2 Heterogeneity and pleiotropy analysis for the effect of T2D on the risk of respiratory system diseases.

Exposure Outcomes Methods Heterogeneity Pleiotropy

Q p value Egger_
intercept

p value

T2D COPD
MR Egger 99.4 0.211*

0.0006 0.929
IVW 99.4 0.233*

T2D Asthma
MR Egger – –

0.0070 0.195
IVW – 1.48 × 10–9#

T2D Pulmonary tuberculosis
MR Egger 89.5 0.464*

−0.0473 0.007
IVW 97.4 0.280*

*p-values under a fixed effects model; #,p-values under a random effects model.
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heterogeneity. This may be  because of several reasons. First, 
conducting a stratified analysis of the data could potentially identify 
characteristic populations. Second, chronic obstructive pulmonary 
disease (COPD) is generally characterized by neutrophilic 
inflammation, whereas asthma is characterized by eosinophilic 
inflammation (13). Diabetes predominantly hinders neutrophil 
migration and phagocytosis (14), indicating a close association with 
COPD. Third, from an immunological perspective, persistently high 
blood sugar levels can negatively affect immune system function, 
reducing its responsiveness to infections and inflammation (15). 
Persistent immunosuppression manifests as sustained irreversible 
airflow limitation during airway inflammation, whereas asthma 
presents as reversible airflow limitation.

In relation to pulmonary tuberculosis (PTB), Clinical studies have 
demonstrated that patients with T2D are more susceptible to PTB 
infection (7, 16) and have a higher risk of mortality (17). This 
increased risk is likely due to the compromised immune function and 
reduced immune response associated with T2D (18). Some 
confounding factors such as low socioeconomic status, poor living 
conditions, and impaired immunity (19, 20), which are common risk 
factors for both T2D and PTB, were not excluded from these studies. 
Our Mendelian randomization (MR) study also identified a positive 
causal relationship between T2D and PTB, but showed pleiotropy, 
indicating unstable results. Notably, although we  excluded SNPs 
related to socioeconomic status, living conditions, and immunity 
when selecting the exposure-related SNPs, there may still be some 
confounding factors or indirect influences through other intermediate 
phenotypes. Metformin is the first-line therapy for T2D and most of 
the diabetes patients might have taken metformin. Metformin has 
been shown to reduce the risk of many bacterial and viral infections 
including zika virus (21), dengue virus (21), Hepatitis C virus (22), 
Streptococcus pneumoniae (23) and PTB (24). The use of metformin 

in many of the patients with T2D might have modified and attenuated 
the positive association between T2D and PTB. This could be  a 
contributing factor to the pleiotropy observed in our study. The 
evidence regarding the association between T2D and lung cancer is 
limited and inconsistent. A real-world study from Shanghai, China 
showed an increased risk of lung cancer in patients with T2D (25) and 
an epidemiological follow-up of a population-based cohort of diabetes 
patients of the Chinese ethnicity living in Taiwan over a 12-year 
period from 1995 to 2006 strongly supported an increased mortality 
from lung cancer in the diabetes patients while compared to the 
general population (26). However, an MR study involving European 
populations found no association between diabetes and lung cancer 
(27). Our finding of a lack of association between diabetes and lung 
cancer might be due to use of the databases not derived from the 
Chinese ethnicities. Research on the association between T2D and 
interstitial lung disease is limited. A MR study on T2D and idiopathic 
pulmonary fibrosis showed no significant association (28). Future 
large-scale prospective studies are warranted to further explore 
causality, considering various demographic characteristics (such as 
age, genetics, and lifestyle) through subgroup analyses in 
different populations.

More importantly, our results indicate that T2D may reduce the 
risk of developing COPD. A one-half standard deviation increase in 
genetically predicted T2D was associated with a decreased likelihood 
of COPD (OR = 0.87, 95% CI 0.82–0.96, p < 0.05), without 
heterogeneity or pleiotropy, suggesting more stable results. Clinical 
studies on the relationship between T2D and COPD are limited. Some 
studies have suggested an increased risk of future COPD among 
patients with T2D (29), a view that has relatively more support (30). 
However, the results of a few studies are consistent with those of this 
study. A retrospective case–control study matched 29,217 patients 
with T2D with controls in a 1:1 ratio and followed them for 8 years, 

FIGURE 3

Genetic associations between type 2 diabetes and chronic obstructive disease.
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showing a decreased risk of COPD among patients with T2D (HR 
0.89, 95% CI 0.79–0.93) (31). It is noteworthy that in some East Asian 
study populations, T2D was associated with restrictive lung 
impairment, but not with obstructive lung impairment (32, 33). These 
findings suggest that T2D is not associated with an increased risk of 
COPD. We  observed that reduced lung function precedes and 
significantly predicts the future development of T2D (34, 35), 
consistent with studies assessing the association between T2D and 
COPD, focusing on the timing of diagnosis, as in our study. There are 
several possible explanations for the decreased incidence of COPD 
associated with T2D.

Regarding common risk factors, substantial evidence indicates 
that smoking is a causative factor of COPD. Additionally, smoking 
also plays a role in the progression of T2D (36). Individuals diagnosed 
with T2D were more likely to receive smoking cessation advice from 
healthcare professionals than those without T2D. This leads to a 
reduced risk of COPD in this population. Secondly, T2D involves 
metabolic disturbances that can weaken the inflammatory response.

Secondly, T2D involves metabolic disturbances that can lead to 
weakened inflammatory responses. First, chronic hyperglycemia can 
compromise immune system function (15), diminishing the immune 
system’s ability to respond to infections and inflammation. For 
instance, high blood sugar levels can inhibit neutrophil migration and 
phagocytosis, and suppress superoxide production and microbial 
killing (14), which is detrimental to the anti-inflammatory action of 
white blood cells, such as macrophages and T cells. Second, high 
blood sugar levels lead to increased oxidative stress, resulting in 
excessive production of reactive oxygen species within the body. 
Reactive oxygen species can damage cells and tissues, and stimulate 
inflammatory responses. Prolonged oxidative stress can disrupt the 
immune system, making it difficult to cope with inflammation (37). 
Finally, a high blood sugar level can impair the function of endothelial 
cells (inner lining of blood vessels), leading to vascular inflammation 
(38). This affects tne adhesion and migration of immune cells, thereby 
weakening the inflammatory response of the immune system.

Third, metformin is a first-line medication for patients with 
T2D. It inhibits gluconeogenesis by activating AMP-activated protein 
kinase, which is a crucial mechanism in diabetes and related 
metabolic disorders (39). Increasing evidence suggests that 
metformin can benefit patients with COPD. Animal studies 
suggested that metformin protects against cigarette smoke-induced 
lung inflammation and emphysema. Compared to participants not 
treated with metformin, those receiving metformin therapy showed 
a slower progression in the percentage of emphysema (adjusted 
difference-in-difference of −0.92%; 95%CI, −1.7 to −0.14%) and 
experienced an attenuation of the decrease in lung density decrease 
(adjusted difference-in-difference of 2.2 g/L; 95% CI, 0.43 to 4.0 g/L) 
at 5 years (39). Observational studies have revealed the preventive 
effects of metformin on COPD in T2D patients, especially when 
metformin use exceeds 2 years. This beneficial effect demonstrated a 
dose-dependent trend, and sensitivity analyses consistently 
supported this conclusion (40). Moreover, metformin can reduce the 
risk of acute exacerbation (41) and mortality (42, 43) in 
COPD. Pioglitazone primarily increases the sensitivity of the body 
to insulin. In a mouse model of emphysema, adipose-derived stem 
cells (ASCs) pretreated with pioglitazone showed a more effective 
therapeutic effect than ASCs without pretreatment (44). 
Retrospective cohort studies have shown that pioglitazone can 

significantly reduce the risk of COPD (HR = 0.778, 95% CI 0.667–
0.908, p < 0.05), and this effect is more pronounced when used for 
>11 months (45).

Finally, the MR analysis typically utilizes genetic variations to 
simulate causal relationships. It is possible that certain unknown 
genetic factors reduce the risk of COPD in individuals with 
T2D. We know that there is a strong association between smoking and 
COPD. In an Asian dataset, some SNPs associated with T2D, such as 
rs10906115, rs459193, rs4607103, and rs4607517, exhibited significant 
interactions with smoking (46). In particular, the polymorphism 
rs5015480 in HHEX has been reported to be associated with serum 
glucose levels in multiple East Asian datasets (46–49), and interacts 
significantly with smoking (46, 47). This warrants further exploration 
and is an important direction for future research.

Our study has some limitations. First, although we excluded SNPs 
known to be associated with confounding factors such as smoking, 
lung function, environmental pollution, allergens, and occupational 
factors during SNP selection, we  did not exclude SNPs related to 
antidiabetic drugs, which may have influenced the interpretation of 
our results. Studies have shown associations between medications 
such as metformin, pioglitazone, and insulin and respiratory system 
diseases, but the conclusions vary. For instance, some studies found 
no association between antidiabetic drugs and the risk of lung cancer 
(50), while others suggested a possible increased risk of insulin use 
(51), decreased risk with pioglitazone (52), and no significant 
association with lung cancer for pioglitazone (53). Data on the 
associations between insulin, pioglitazone, and PTB or interstitial lung 
diseases are limited. Currently, specific SNP information related to 
antidiabetic drugs is not available in the PhenoScanner database. 
Therefore, while excluding all SNPs related to antidiabetic drugs might 
be an option, it could reduce the statistical power, making it difficult 
to detect smaller effects. Additionally, the drug effects predicted based 
on genetics may not align with the actual treatment outcomes, as 
clinical drug use involves specific doses, durations, and timings, which 
our study could not capture regarding exposure to antidiabetic drugs 
during specific life stages. Thus, we  hope that future studies will 
integrate clinical medication data for a more comprehensive  
investigation.

Regarding other limitations, first, since we used summary-level 
data, we were unable to conduct subgroup analyses, which limited our 
ability to explore causal relationships among different subgroups (e.g., 
age, sex, or diabetes severity). Second, there was sample selection bias. 
The use of the Japanese Biobank Project and differences in antidiabetic 
drugs used across different ethnicities and countries for T2D 
treatment may limit the applicability of our findings to the Chinese 
population. The study participants were of East Asian descent and may 
not represent the entire population. Given this, we extracted recent 
European datasets from GWAS for statistical analysis but did not find 
any causal association (Supplementary Table S2).

In conclusion, this study used MR analysis to reveal that T2D may 
serve as a protective factor against COPD. T2D is negatively associated 
with COPD, suggesting that T2D may reduce the risk of developing 
COPD. A negative causal relationship between T2D and bronchial 
asthma has been observed, but the results exhibit heterogeneity. There 
is a positive causal relationship between T2D and pulmonary 
tuberculosis, yet the findings suggest the presence of pleiotropy. No 
significant causal relationship between T2D and lung cancer or 
interstitial lung disease was observed. In the future, it would 
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be  worthwhile to conduct large-scale multicenter prospective 
randomized controlled studies to further validate these findings.
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