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Objective: To investigate the performance of multiparametric magnetic 
resonance imaging (MRI)—based radiomics models in differentiating early stage 
of cervical cancer (Stage I-IIa vs. IIb-IV).

Methods: One hundred patients with cervical cancer who underwent 
preoperative MRI between June 2020 and March 2022 were retrospectively 
enrolled. Training (n  =  70) and testing cohorts (n  =  30) were assigned by stratified 
random sampling. The clinical and pathological features, including age, 
histological subtypes, tumor grades, and node status, were compared between 
the two cohorts by t-test or chi-square test. Radiomics features were extracted 
from each volume of interest (VOI) on T2-weighted images (T2WI) and apparent 
diffusion coefficient (ADC) maps. The data balance of the training cohort was 
resampled by synthesizing minority oversampling techniques. Subsequently, 
the adiomics signatures were constructed by the least absolute shrinkage and 
selection operator algorithm and minimum-redundancy maximum-relevance 
with 10-fold cross-validation. Logistic regression was applied to predict the 
cervical cancer stages (low [I-IIa]) and (high [IIb–IV] FIGO stages). The receiver 
operating characteristic curve (area under the curve [AUC]) and decision curve 
analysis were used to assess the performance of the radiomics model.

Results: The characteristics of age, histological subtypes, tumor grades, and 
node status were not significantly different between the low [I-IIa] and high [IIb–
IV] FIGO stages (p  >  0.05 for both the training and test cohorts). Three models 
based on T2WI, ADC maps, and the combined were developed based on six 
radiomics features from T2WI and three radiomics features from ADC maps, 
with AUCs of 0.855 (95% confidence interval [CI], 0.777–0.934) and 0.823 (95% 
CI, 0.727–0.919), 0.861 (95% CI, 0.785–0.936) and 0.81 (95% CI, 0.701–0.918), 
0.934 (95% CI, 0.884–0.984) and 0.902 (95% CI, 0.832–0.972) in the training 
and test cohorts.

Conclusion: The radiomics models combined T2W and ADC maps had good 
predictive performance in differentiating the early stage from locally advanced 
cervical cancer.
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1 Introduction

Cervical cancer (CC) is one of the most common malignant 
among women worldwide and also the second leading cause of cancer 
deaths among women in China (1–3). Although evidence shows that 
the incidence of CC in developed countries is declining (3, 4), the 
age-standardized morbidity and mortality of CC in China have shown 
a significant upward trend (3). In China, the incidence rate of CC has 
increased from 10 to 40% over the past 30 years (3).

International Federation of Obstetrics and Gynecology (FIGO) 
staging of CC has always been the staging system commonly used in 
clinical diagnosis and treatment. CC is primarily managed by surgical 
treatment or radiotherapy, with chemotherapy as a valuable adjunct. 
Surgery is the first choice for treating stage IA1, IA2, IB1, IB2, and IIA1 
lesions (5). Concurrent chemoradiation is the standard treatment for 
stages IB3, IIA2, III, and IV diseases. A radical trachelectomy can 
be performed for young women interested in preserving their fertility, 
and it is suitable for stage IA2–IB1 tumors with a maximum diameter 
of no more than 2 cm (5). Given the excellent prognosis of early-stage 
CC and that as many as 40% of the women affected by these tumors are 
of reproductive age, fertility-sparing surgery has become a priority (6).

Magnetic resonance imaging (MRI) can noninvasively assess 
tumor size and the extent of invasion owing to its merits of 
multiparametric and multidirectional imaging with high soft tissue 
resolution (7, 8). Therefore, imaging is complementary to clinical 
assessment with MRI, which is accepted as the optimal modality for 
staging CC. Important information about the morphology and extent 
of interstitial invasion of CC can be  obtained from T2-weighted 
(T2W) images (9). The apparent diffusion coefficient (ADC) maps 
provide information about water fluidity and tissue cell structure to 
characterize cancer quantitatively (10).

The heterogeneity of CC is inconsistent among different FIGO 
stages, histological subtypes, and tumor grades (9). It is an essential 
factor that can predict tumor aggressiveness and could also be reflected 
in MRI. However, these heterogeneities may be considered similar just 
by visual assessment of MRI with the radiologist’s naked eye. Radiomics 
is an evolving field that involves extracting many quantitative features 
from images, such as MRI, computed tomography, and ultrasound, and 
using a high-throughput process that effectively transforms images into 
quantitative data to provide more valuable information (11). A series 
of quantitative features that have been generated can be further used to 
measure intra-tumor heterogeneity. Currently, several recent studies 
have described the use of radiomics in CC, mostly on 
clinicopathological characteristics (9, 12), parametrial invasion (13), 
pelvic lymph node metastases (14, 15), and predictive performance (16, 
17). However, few studies have assessed the performance of radiomics 
in predicting the stage of cervical cancer, which essentially influences 
treatment decision-making in the clinical setting. Thus, this study 
aimed to investigate the predictive performance of multiparametric 
MRI-based radiomics models in differentiating the low (I-IIa) and high 
(IIb–IV) FIGO stages of cervical cancer.

2 Materials and methods

2.1 Patients enrollment

This study was approved by the institutional ethics review board 
of our hospital (approval no. 2022–027), and the informed consent 

requirement was waived due to the retrospective study. The patients 
were enrolled through the following inclusion criteria: (a) patients 
with histologically confirmed CC; (b) patients who have not 
undergone therapy (neoadjuvant chemotherapy, radiotherapy, or 
conization) before MRI examination; (c) patients undergoing 
T2-weighted imaging (T2WI) with fat suppression, and DWI with 
ADC maps; and (d) classify the cases based on the 2018 FIGO system. 
The exclusion criteria were as follows: (a) patients with tumors that 
were too small for the region of interest (ROI) to be accurately drawn, 
(b) patients with poor MRI image quality resulting from artifacts, (c) 
patients with incomplete clinicopathological data, and (d) patients 
with rare histological subtypes. Between June 2020 and March 2022, 
100 patients with CC participated in our study. According to the 
proportion of 7:3, the 100 patients were randomly divided into two 
independent cohorts, a training and a test cohort (Figure 1).

All patients’ clinical and pathologic features, including age, 
treatment, FIGO stage, pathological information, and serum 
squamous cell carcinoma antigen (SCC-Ag) levels before treatment, 
were derived from the medical records. The treatments were divided 
into surgical and non-surgical treatments. FIGO stages were 
dichotomized into low (I-IIa) and high (IIb–IV) FIGO stages. The 
assessed pathological information comprised histological subtypes, 
tumor grades, invasion depth, and lymphovascular space invasion 
(LVSI) according to the World Health Organization Classification of 
Tumors of Female Reproductive Organs. There are two histological 
subtypes of squamous cell carcinoma (SCC) and adenocarcinoma 
(ACA). Tumor grades were divided into three groups: well (G1), 
moderately (G2), and poorly differentiated (G3). Invasion depth was 
classified into inner, middle, and outer layers. After reviewing the MRI 
of all patients, the node status was recorded by two radiologists with 
five and more than ten years of experience in gynecological cancer 
diagnosis, respectively. Any disagreements were resolved by discussion 
and consensus. Nodal status was based on T2WI. The positive lymph 
node was defined as the short axis of the lymph node >10 mm, 
spiculated or lobulated margin, or internal necrosis (9).

2.2 MRI acquisition

All preoperative MR examinations were performed with a 3.0 T 
platform with respiratory gating technology and an eight-channel 
phased array body coil (Siemens Medical Solutions, Verio 3.0, 
Germany). All recruited patients underwent T2W fat-suppressed and 
diffusion-weighted imaging (DWI) sequences acquired before surgery 
or chemoradiation. The ADC was calculated according to the 
traditional single exponential model, and patients were advised to fast 
for 5–6 h before examination (9). Conventional MRI comprised 
oblique axial T2W images (echo time [TE], 82 ms; repetition time 
[TR], 3,800 ms; gap, 2 mm; slice thickness, 5 mm; field of view [FOV], 
320 × 320 mm) with fat suppression and transverse DWI (TE, 52 ms; 
TR, 3900 ms; gap, 2 mm; slice thickness, 5 mm; FOV, 320 × 256 mm; 
and b values, 50 and 800 s/mm2).

2.3 Image segmentation and radiomics 
feature extraction

The solid lesions’ three-dimensional volumes of interest (VOIs) 
were manually segmented using ITK-SNAP (version 3.8.0), a free and 
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open-source software. A junior radiologist (with five years of 
experience in diagnosing gynecologic cancer) manually delineated the 
low-signal rim of the tumor from adjacent normal tissue, excluding 
high-signal areas within the lesion, on high-spatial-resolution axial 
T2W images. The VOI segmentation was performed on DWI with a 
b value of 800 s/mm2 and then mapped into the ADC image. All 

segmented VOIs were confirmed and corrected by a senior radiologist 
(with >10 years’ experience in gynecological tumor diagnosis). The 
radiologists were blinded to the clinicopathological results. Another 
junior radiologist (three years of experience in diagnosing 
gynecological diseases) independently performed manual 
segmentation of these lesions to analyze interobserver reproducibility. 

FIGURE 1

Schematic diagram for patient selection.
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The radiologists performed manual segmentation blinded to 
diagnostic information such as clinical and histopathology.

Python (version 3.7.5) with the PyRadiomics package (https://
github.com/AIM-Harvard/pyradiomics.git, version 3.0.1) extracted 
radiomics features from T2W and ADC images. All radiomics features 
were extracted from the original image and wavelet-filtered image, 
which could be divided into three groups: 18 first-order statistics, 14 
shape features, and 75 textural features. The feature extraction method 
is provided on an official website.1 Before radiomics feature extraction, 
all T2W and ADC maps were normalized using the z-score method 
and voxel size resampling by 1 × 1 × 1 mm. Finally, 851 features are 
extracted in each VOI of the T2W and ADC images, respectively.

2.4 Feature selection and radiomics model 
building

The interobserver reproducibility of each radiomics feature was 
assessed using the interclass correlation coefficient (ICC). The 
ICC > 0.80 was considered excellent and included in subsequent 
analyses. The synthetic minority oversampling technique (SMOTE) 
method dealt with the balance of balanced categories in the training 
cohort to prevent bias in the construction of the predictive model 
because the sample size of the high FIGO stage was 33.3% less than 
the sample size of the low FIGO stage. The training dataset used for 
model building analysis was the training dataset after SMOTE 
processing (training-SMOTE cohort). The low/high FIGO stage of CC 
patients were 1:1 (42 low FIGO stage patients and 42 high FIGO stage 
patients) in the SMOTE-training cohort.

To reduce redundancy, spearman correlation analysis was used to 
eliminate features with a Spearman correlation coefficient > 0.9. The 
top 10 features with low redundancy and high correlation with CC 
were selected for the following analysis using the minimum 
redundancy maximum correlation (mRMR) algorithm. Then, the least 
absolute shrinkage and selection operator (LASSO) method was used 
to screen the radiomics features that helped predict the CC therapy 
method in the training cohort with SMOTE. A total of 10 cross-
validation methods were used to identify the model’s generalization 
performance in the LASSO method. The single radiomics model using 
T2W images (T2 model) and ADC maps (ADC model) was weighted 
using coefficients of selected features with optimal adjustment weights 
in LASSO logistic regression. The combined model was developed 
based on multivariate analysis’s T2 and ADC models.

2.5 Statistical analyses

We conducted differences analysis of the characteristics of patients 
between the training and test cohorts, using the chi-square test for 
categorical variables and Student’s t-test for continuous variables. The 
interobserver reproducibility of the radiomics features evaluating the 
interobserver agreement among radiologists was accessed using the 
ICC, with a coefficient greater than 0.8, indicating good reproducibility. 
Receiver operating characteristic (ROC) curve analysis was used to 

1 https://pyradiomics.readthedocs.io/en/latest

assess the diagnostic performance of the radiomics models for 
predicting CC. The optimal cutoff value for predictive diagnosis for 
radiomics models was determined by maximizing the Youden index 
in the training cohort with SMOTE. The areas under the ROC (AUC), 
accuracies, specificities, sensitivities, negative predictive values, and 
positive predictive values were used to quantify the diagnostic 
performance of the radiomics models. Decision curve analysis (DCA) 
was used to assess the clinical usefulness of the models. This study’s 
statistical analysis was performed using R (version 3.6.1, https://
www.r-project.org). p < 0.05 (two-tailed) was considered to 
be statistically significant.

3 Results

3.1 Clinical characteristics

The clinical characteristics of the patients are summarized in 
Table 1. In the invasion depth, LVSI, and tumor grade groups, the 
pathological information of some patients not undergoing surgery 
(such as those receiving chemotherapy) was missing. In 100 patients 
with CC (mean age, 53.48 ± 10.58 years), 90 and 10 had SCC and ACA, 
respectively. All patients in the training and test cohorts were further 
divided into the low (n = 61) and high (n = 39) FIGO stage cohorts. The 
rates of low FIGO stages in the training and test cohorts remained 
balanced (0.600 and 0.633, respectively, p = 0.374). The clinical and 
pathologic characteristics, including age and histological subtype, 
were not significantly different between the two cohorts (p > 0.05). 
Furthermore, the MR-reported nodal status was not significantly 
different between the low and high FIGO stage cohorts (p = 0.385).

3.2 Radiomics model construction

The low/high FIGO stage cohort in the training cohort was 
converted from 42/28 to 42/42 using the SMOTE method. In total, 221 
features were screened from each VOI in a T2W image, and the 
features were reduced to six CC-related features after the application 
of the mRMR and LASSO algorithms in the training-SMOTE cohort 
(Figures  2A–C). Similarly, the 230 ADC radiomics features were 
reduced to three imaging biomarkers after applying the mRMR and 
LASSO algorithms in the training-SMOTE cohort (Figures 2D–F). 
The ICC ranges for T2W and ADC image radiomics features were 
0.34–0.99 and 0.21–0.99, respectively. The T2 and ADC model 
calculation formulae were as follows:

T2 radiomics signature =
−1.624 – 5.923 × wavelet.HHH_firstorder_Uniformity
−3.922 × wavelet.LLH_glcm_ClusterTendency
−2.531 × wavelet.HHL_glcm_Correlation
−0.163 × wavelet.HHL_glszm_LowGrayLevelZoneEmphasis
+0.271 × original_shape_Flatness
+0.660 × wavelet.

HHH_glszm_SmallAreaHighGrayLevelEmphasis
ADC radiomics signature =
0.431 + 0.431 × wavelet.LHL_glcm_Imc1
+0.523 × wavelet.HLL_glcm_Idn
+0.782 × wavelet.HLL_glszm_SmallAreaEmphasis
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3.3 Radiomics model performance

In the training cohort, the AUCs of the T2W, ADC, and 
combined models of predicting CC were 0.823 (95% CI, 0.727–
0.919), 0.810 (95%CI, 0.701–0.918), and 0.902 (95% CI, 0.832–0.972), 
respectively. In the test cohort, the AUCs were 0.829 (95% CI, 0.658–
0.999), 0.773 (95% CI, 0.578–0.969), and 0.856 (95% CI, 0.707–
1.000). The sensitivities of the three models for predicting CC were 

0.929 and 0.889, 0.762 and 0.722, 0.857 and 0.833 in the training and 
test cohorts. In the training and test cohorts, the specificities of the 
three models were 0.536 and 0.583, 0.714 and 0.667, and 0.857 and 
0.833. The accuracies were 0.771 and 0.767, 0.743 and 0.700, and 
0.857 and 0.833  in the training and test cohorts. The AUCs, 
accuracies, sensitivities, and specificities of the three models are 
shown in Table 2. Figure 3 shows the ROC curves of the three models. 
The results showed that the combined model had better diagnostic 

TABLE 1 Clinical characteristics of the patients with CC in the training and test cohorts.

Characteristics Overall Training 
cohort

Test cohort p SMD Missing

100 70 30

Age (mean [SD]) 53.480 (10.580) 55.260 (10.610) 50.980 (11.250) 0.380 0.070 0

Nodal status 0.385 0.255 0

  Positive (%) 24 (24.000) 19 (27.143) 5 (16.667)

  Negative (%) 76 (76.000) 51 (72.857) 25 (83.333)

Before SCC (median [IQR]) 1.960 (0.880–5.850) 2.040 (0.850–5.910) 3.080 (1.270–4.890) 0.958 0.041 0

Neoadjuvant chemotherapy 0.269 0.316 0

  Positive (%) 22 (22.000) 18 (25.714) 4 (13.333)

  Negative (%) 78 (78.000) 52 (74.286) 26 (86.667)

Surgery 0.374 0.243 0

  Positive (%) 68 (68.000) 50 (71.429) 18 (60.000)

  Negative (%) 32 (32.000) 20 (28.571) 12 (40.000)

Histological subtype 0.716 0.153 0

  Adenocarcinoma (%) 10 (10.000) 6 (8.571) 4 (13.333)

Squamous cell carcinoma (%) 90(90.000) 64(91.429) 26 (86.667)

Tumor grades (%) 0.393 0.322 18

  G1 6 (6.000) 3 (4.286) 3 (10.000)

  G2 15 (15.000) 12 (17.143) 3 (10.00)

  G3 61 (61.00) 43 (61.428) 18 (60.000)

Depth (%) 0.801 0.164 22

  Inner 23 (23.000) 15 (21.428) 8 (26.667)

  Middle 15 (15.000) 11 (15.714) 4 (13.333)

  Outer 40 (40.000) 25 (35.714) 15 (50.000)

LVSI 0.954 0.076 22

  Positive (%) 42 (42.000) 29 (41.428) 13 (43.333)

  Negative (%) 36 (36.000) 26 (37.143) 10 (33.333)

FIGO stage (%) 0.337 0.502 0

  I 42 (42.000) 30 (42.857) 12 (40.000)

  IIA 19 (19.000) 12 (17.142) 7 (23.333)

  IIB 8 (8.000) 4 (5.714) 4 (13.333)

  III 27 (27.000) 20 (28.571) 7 (23.333)

  IV 4 (4.000) 4 (5.714) 0 (0.000)

FIGO group 0.374 0.056

  Low FIGO (I-IIa) 61 (61.000) 42 (60.000) 19 (63.333)

  High FIGO (IIb-IV) 39 (39.000) 28 (40.000) 11 (36.667)

SD, standard deviation; SMD, standardized mean difference; IQR, interquartile range; LVSI, lymphovascular space invasion; FIGO, international federation of obstetrics and gynecology.
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and predictive performance than the T2W and ADC models alone. 
The DCA was applied to evaluate the clinical usefulness, showing that 
the combined model could provide benefits in the training cohort 
(Figure 4A), with the threshold probability greater than 0.200, and in 
the test cohort (Figure 4B), with the threshold probability between 
0.150 and 0.850.

4 Discussion

In our study, we successfully constructed a radiomics model for the 
preoperative prediction of CC therapy (surgical and non-surgical 
treatment). The radiomics model incorporated the ADC map and 
T2W radiomics signature, and the results were validated in the test 

FIGURE 2

Magnetic resonance-based radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) method in the training 
cohort. (A,D) The optimal penalty coefficient lambda (λ) for the feature of the T2W (A) and apparent diffusion coefficient (ADC) (D) images was 
obtained based on 10-fold cross-validation. (B,E) Changes in the corresponding coefficients of T2W and ADC image features during Lasso analysis. 
The vertical dashed line represents the optimal λ, corresponding to six (T2) and three (ADC) nonzero feature coefficients.

TABLE 2 Performance of the sequences models.

AUC SEN SPE ACC NPV PPV

T2 model
Training cohort

0.823 (0.727–

0.919)

0.929 (0.833–

1.000)

0.536 (0.357–

0.714)

0.771 (0.656–

0.863)

0.833 (0.661–

1.000)

0.750 (0.632–

0.868)

Test cohort
0.787 (0.604–

0.969)

0.889 (0.722–

1.000)

0.583 (0.333–

0.833)

0.767 (0.577–

0.901)

0.778 (0.506–

1.000)

0.761 (0.579–

0.944)

ADC model
Training cohort

0.810 (0.701–

0.918)

0.762 (0.619–

0.881)

0.714 (0.536–

0.857)

0.743 (0.624–

0.840)

0.667 (0.624–

0.840)

0.800 (0.676–

0.924)

Test cohort
0.806 (0.634–

0.977)

0.722 (0.500–

0.889)

0.667 (0.417–

0.917)

0.700 (0.506–

0.853)

0.615 (0.807–

0.993)

0.764 (0.563–

0.996)

Combined model
Training cohort

0.902 (0.832–

0.972)

0.857 (0.738–

0.952)

0.857 (0.714–

0.964)

0.857 (0.753–

0.929)

0.800 (0.657–

0.943)

0.900 (0.807–

0.993)

Test cohort
0.852 (0.683–

1.000)

0.833 (0.667–

1.000)

0.833 (0.583–

1.000)

0.833 (0.653–

0.944)

0.769 (0.540–

0.998)

0.882 (0.729–

1.000)

AUC, area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value.
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cohort. The established radiomics model demonstrated good 
discrimination and predictive power in both cohorts.

Treatment options for early-, intermediate-, and advanced-stage 
CC vary widely based on the latest FIGO staging system from 2018. 
Despite technological advancements in imaging-based diagnostics, 
many studies have shown that the morphological evaluation of MR 
images involves many subjective viewpoints. Many patients are 
misclassified, such as evaluating lymph node metastasis and 
parametrial invasion (18, 19).

Multidimensional characterization of radiomics features and 
quantification of detailed information in tumor images can reflect 
heterogeneity among different tumors. Therefore, preoperative 
radiomics signatures can provide a more objective and accurate 
assessment. Preoperative MR imaging can improve clinical staging 

accuracy by assessing the tumor’s location and size, parametrial 
invasion, and lymph node metastasis to select more appropriate 
treatment plans. Previous studies involving the radiomics method have 
noted their predictive value for diagnosing tumors and therapeutic 
effects accurately. Some of these studies have shown that the 
performance of radiomics models can be improved by using the high-
throughput features of multiparametric images of tumor lesions (20, 
21). Therefore, in our study, we extracted and screened some radiomics 
features from T2WI and ADC maps and finally obtained radiomics 
signatures based on T2WI and ADC. The results demonstrated that 
radiomics features from T2WI and ADC have roughly similar 
discrimination performance for therapy method prediction.

The T2WI-ADC-combined radiomics features contained more 
wavelet filtered features, most likely because the filter could map the 

FIGURE 3

The receiver operating characteristic (ROC) curves of the T2 (green line), apparent diffusion coefficient (ADC) (blue line), and combined (red line) 
model. The receiver operating characteristic curve shows the combined model is better than the separate T2 and ADC model in the training (A) and 
test (B) cohorts.

FIGURE 4

The decision curve analysis (DCA) of the combined model (red line). The vertical and horizontal axes represent net benefit and threshold probability, 
respectively. The DCA revealed that the combined model could provide benefits in the training cohort (A), with the threshold probability between 
0.200 and 1, and in the test cohort (B), with the threshold probability between 0.150 and 0.850.
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image to several transform domains and better conveyed the tumor’s 
biological information (22). The wavelet transform can also gradually 
convert image information into low- and high-frequency information, 
which improves local features, increases information content in tumor 
images, and provides more information about the biological behaviors 
and heterogeneity of different tumors at multiple scales (22, 23). There 
was an original feature named original_shape_Flatness in the T2WI 
radiomics features. The lesions in the high FIGO stage cohort were more 
irregular in shape because of the larger size of the tumor, deep stromal 
invasion, or parametrial invasion than those in the low FIGO stage cohort 
(24). Lee, in a review, stated that the 2018 revision of FIGO requires a 
more accurate description of the size of primary tumors and should 
be measured using MRI, especially for cervical resection plans (25).

DWI describes water mobility within the lesion tissue and enables 
quantitative evaluation of the diffusion properties of diseased tissues 
according to the calculated ADC (10). This quantitative parameter has 
been used in many studies to characterize tumors or assess their 
response to treatment (24, 26). Several studies have found that in CC, 
the minimum ADC values of tumors have been related to SCC, tumor 
grades, parametrial invasion, and poor survival rate. Furthermore, the 
changes in ADC values of lesions during radiotherapy and chemotherapy 
are also associated with the treatment response of tumors (10, 24, 27, 28). 
Haldorsen et al. considered that the ADC value of the tumor provides 
additional information about the microstructure of the tumor that may 
be relevant for staging and prediction of CC (24).

T2WI can provide detailed morphological features of CC in 
patients, and the features extracted from T2WI in this study have high 
sensitivity and low specificity. The low specificity of T2WI may be due 
to high-signal edema or inflammation within the paracervical fascia, 
which is indistinguishable from high-signal tumors (29). However, a 
combination of T2 and ADC prediction models can solve this 
problem. Many previous studies have found that radiomics features 
extracted from T2WI can help predict cervical lymph node metastasis 
and parametrial infiltration (9, 16, 21).

In the 2018 edition of the FIGO staging system, preoperative MR 
lymph node status is directly involved in IIIC staging (5). We used this 
as an important independent factor in the study; the results did not 
perform relatively well. Previous studies have used different tumor 
diameters to forecast the risk of parametrial invasion in patients with 
early-stage CC, and the measurement and selecting standards for 
tumor diameter have also varied from the different studies (19, 30). 
Some studies have found no direct correlation between tumor diameter 
and lymph node metastasis (21). Prediction of a therapeutic method 
relying on tumor diameter might not apply in clinical settings. Previous 
studies have shown that patient age is also an important independent 
factor for para-uterine invasion and lymph node metastasis prediction 
of CC (31, 32); however, the results did not perform relatively well in 
predicting the CC therapy method in our study. Gravdal et al. reported 
that the incidence of CC in women aged <30 years has increased in 
European countries over the past 20 years, but overall, the cancer does 
not tend to be more advanced when detected (33). The same study 
from the UK concluded that CC in younger women (aged 20–24 years) 
tended to be more advanced than in older women and is often a rarer 
histological type (34). In our study, there were only four patients aged 
<30 years with pathology of SCC, and statistical differences may not 
have been noted. SCC-Ag is currently the most widely used biomarker 
for diagnosing and estimating the effect of chemotherapy in patients 
with CC (21, 32). Shou et al. found that the serum SCC-Ag level was 
statistically associated with advanced FIGO stage (35). However, some 

studies have shown no relationship between SCC-Ag level and clinical 
stage (36). We also included preoperative SCC-Ag levels as a clinical 
factor, and there was no correlation between SCC-Ag levels and 
prediction of the CC therapy method. However, further studies with 
larger sample sizes are warranted.

Our study has some limitations. First, MRI acquisition and 
segmentation were independently obtained by two radiologists using 
a consensus, and further studies are needed to validate inter- and 
intra-observer repeatability. Second, in our study, radiomics features 
extracted from T2W images had low specificity, and further research 
with larger sample sizes or wider range of clinical and imaging features 
are required. Furthermore, all subjects in our study had ACAs and 
squamous carcinomas. Different histological subtypes of CC should 
be thoroughly studied in the future.

In conclusion, radiomics models were constructed from the ADC 
maps and T2WI, which were robust in differentiating the low (I-IIa) 
and high (IIb–IV) FIGO stages of cervical cancer, which may 
be valuable for the therapy decision-making in cervical cancer. The 
results also suggest that the combination model based on T2WI and 
ADC maps had the best performance in predicting the CC stage.
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