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Pregnancies resulting from assisted reproductive techniques (ART) are 
increasingly prevalent worldwide. While most pregnancies conceived through 
in-vitro fertilization (IVF) progress without complications, mounting evidence 
suggests that these pregnancies are at a heightened risk of adverse perinatal 
outcomes. Specifically, IVF pregnancies involving oocyte donation have 
garnered attention due to numerous reports indicating an elevated risk profile 
for pregnancy-related complications within this subgroup of patients. The 
precise mechanisms contributing to this increased risk of complications remain 
incompletely understood. Nonetheless, it is likely that they are mediated by an 
abnormal immune response at the fetal–maternal interface. Additionally, these 
outcomes may be  influenced by baseline patient characteristics, such as the 
etiology of infertility, absence of corpus luteum, and variations in endometrial 
preparation protocols, among other factors. This review aims to succinctly 
summarize the most widely accepted mechanisms that potentially contribute 
to the onset of placental dysfunction in pregnancies conceived through oocyte 
donation.
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Introduction

Pregnancies through assisted reproductive techniques (ART) are on the rise worldwide; 
current estimates report nearly 3.2 million cycles per year, with Asia, Europe, and North 
America as the major contributors (1). The increasing numbers can be partially explained by 
lower cost and easier access to ART facilities (2, 3), a progressive delay in maternal age at first 
pregnancy (4, 5), and policymaking and social acceptance of non-traditional families (6, 7).

Even though most pregnancies through in-vitro fertilization (IVF) evolve without 
pregnancy-related complications (8, 9), there is growing evidence that these pregnancies are 
at higher risk of adverse perinatal outcomes such as preterm birth, preeclampsia, fetal growth 
restriction and stillbirth (10–15). Recently, the Society of Maternal & Fetal Medicine (SMFM) 
released a series of recommendations highlighting the need for proper study and 
management (16).
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The exact mechanisms that lead to the increased risk of pregnancy 
complications are not fully understood, they are probably mediated 
by baseline characteristics such as maternal age and comorbidities, 
intrinsic factors of infertility and the interventions carried out during 
the fertilization process. This is reflected in how perinatal risks vary 
according to the fertilization method used, the endometrial 
preparation protocols, the presence of corpus luteum, the selected 
transfer method (frozen vs. fresh embryo transfer), and the origin of 
the selected oocyte (12, 14, 17–22).

Donated oocytes, perinatal outcomes, 
and placental dysfunction

Among ART, IVF pregnancies through oocyte donation (OD) 
represent roughly 5 to 7% of all embryo transfers (4, 23), also with an 
increasing trend over time. In the last few years, these pregnancies 
have gained attention as several reports have demonstrated a higher 
risk profile of pregnancy-related complications (24–26).

When compared against IVF conceived with autologous oocytes, 
pregnancies from OD have shown lower placental volumes at the first 
trimester (27), a different uterine perfusion profile across gestation 
(28, 29), higher rates of villitis of unknown etiology (VUE) (30) and 
also an increased risk of preeclampsia (14, 26) and placental related 
disease in the third trimester (14, 17, 31–33).

More recently a retrospective study conducted by our group (34), 
compared antenatal indicators of placental dysfunction between 
donated and autologous oocytes in the third trimester, demonstrating 
an abnormal growth velocity from the second trimester to delivery 
among ART gestations, especially in those conceived with donated 
oocytes. These findings support mechanisms related to progressive 
placental dysfunction, rather than abnormal placentation.

Mechanisms involved in placental 
dysfunction in OD

Placental dysfunction can manifest in different ways, such as 
preterm birth, fetal growth restriction, preeclampsia and stillbirth, 
among others (35–38). In line with the above, several mechanisms 
have been involved in the onset of placental dysfunction and 
preeclampsia (39) among pregnancies conceived through OD. In the 
following sections, these pathways are addressed.

Baseline characteristics and infertility 
etiology

Among infertile couples, several baseline characteristics could 
be related to a higher risk of placental dysfunction and preeclampsia. 
Among them maternal age is still one of the main factors related with 
IVF success (40, 41). While this is true for IVF with autologous 
oocytes, some studies have shown that pregnancy outcomes (i.e., 
cumulative live rate) among gestations conceived through OD depend 
mainly on donor age (42, 43). However, the former seems to not apply 
when it comes to the risk of placental related disease (44). In fact, 
several factors may interact as mediators for placental dysfunction; 
first, there is consistent evidence that women with advanced maternal 

age have more comorbidities, a higher risk of preeclampsia and 
present more complicated patterns of multimorbidity during 
pregnancy (45–47). Second, endometrial receptivity has been 
proposed to be  negatively affected by age, potentially influencing 
implantation, placental function and pregnancy outcome (48, 49), yet 
further studies are needed. Finally, infertility etiology could also 
influence pregnancy outcomes; A diminished ovarian reserve, which 
is a common indication of ART with OD, has been proposed as an 
indicator of a reduced vascular capacity and has been independently 
associated with a higher risk of preeclampsia and placental 
malperfusion lesions (50, 51). Also, premature ovarian failure, 
recurrent pregnancy loss and idiopathic infertility have been related 
with several underlying autoimmune diseases (i.e., systemic lupus 
erythematosus and antiphospholipid syndrome) (52–54), all 
conditions highly related with placental dysfunction, preeclampsia 
and adverse pregnancy outcome (55, 56). Other conditions such as 
endometriosis have been related with a reduced oocyte yield and a 
dysregulated decidualization leading to a reduced fertilization rate and 
a higher risk of preeclampsia (57–61). Also, polycystic ovarian 
syndrome has been related with an increased oxidative stress and 
chronic inflammation leading to a higher risk of VUE and 
hypertensive disorder of pregnancy (62–67). Moreover, altered 
pathways in lipids and glucose metabolism have been proposed to lead 
to altered placental structure, villous overcrowding, and finally 
abnormal placental function (68–70). Although by themselves they do 
not constitute a frequent indication for OD, they may coexist and act 
as contributing factors to placental dysfunction.

Embryo transfer method, endometrial 
preparation protocols, and role of corpus 
luteum

Several publications demonstrate a different risk profile according 
to the selected ART protocol (71, 72). Overall, most evidence supports 
that frozen embryo transfer (FET) presents (among others) a lower 
risk of small for gestational age and perinatal mortality, but a higher-
risk of preeclampsia and placental disease when compared with fresh 
embryo transfer (14, 71, 73). Regardless, in the last few years the use 
of FET has presented a progressive increase (23), in part due to a 
reduced risk of ovarian hyperstimulation syndrome and the expansion 
of the “freeze all” strategy (which facilitates single embryo transfer and 
allows time for preimplantation genetic testing).

Although the above refers to studies carried out mainly in IVF 
with autologous oocytes, when it comes to pregnancies through OD, 
pooled data report that nearly 40% of them come from FET (23). The 
former is relevant as it has been argued that the increased risk of 
preeclampsia found in FET could be linked with the selected protocol 
for embryo transfer, rather than the cryopreservation and freezing-
thawing process itself (74, 75).

Briefly, commonly used protocols for embryo transfer could 
be summarized in, natural cycles, stimulated cycles, and programmed 
cycles. In the latter, there is no ovulation associated, therefore no 
corpus luteum (CL). This becomes relevant as programmed cycles are 
employed in OD and there is consistent evidence that CL produces 
not only progesterone and estrogen, but also Relaxin and VEGF. The 
last two have been found to be  implicated in maternal renal and 
circulatory pregnancy-adaptation and are not replaced during 
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programmed cycles (20, 21, 76). Also, impaired endometrial 
receptivity has been linked with placental dysfunction among IVF 
(77). Therefore, it is plausible that the absence of these factors could 
contribute to an abnormal uterine environment, a suboptimal 
endometrium support with impaired decidualization, and an 
insufficient maternal-pregnancy adaptation (78). Thus, leading to the 
higher risk of placental dysfunction found in pregnancies through OD.

Developmental stage at embryo transfer (i.e., blastocyst-vs. 
cleavage-stage) has been proposed to influence perinatal outcomes (79, 
80). To date, exploring the independent effect of developmental stage at 
the time of transfer and the impact of cryopreservation on the outcome 
of interest has been challenging. A recent network meta-analysis (81) 
demonstrates (with a very-low certainty of evidence) that frozen-
blastocyst transfer was associated with a reduction in the risk for LBW 
compared with both fresh-transfer modalities, and fresh-cleavage 
transfer may be associated with a reduction in the risk for perinatal 
death compared with frozen-blastocyst transfer. However, high-quality 
RCTs and individual participant data meta-analyses are still lacking.

Preimplantation genetic testing

Similar to the reported increase of pregnancies conceived through 
ART (1), the use of preimplantation genetic testing (PGT) has 
demonstrated a progressive increase over time (82, 83). In part due a 
higher risk of pregnancies with chromosomal abnormalities among 
patients with advanced maternal age and the possibility of testing for 
several inherited disorders among patients with recurrent pregnancy 
loss and recurrent implantation failure, among others (83). Most of 
PGT are conducted through trophectoderm biopsy, in which 5 to 10 
trophectoderm cells are extracted as study samples (83–85). As 
placenta develops from the trophectoderm (86), there is some concern 
that the use of PGT could be related to defective placentation and the 
development of placental dysfunction (87, 88), thus increasing the risk 
of pregnancy complications such as hypertensive disorder of 
pregnancy and preeclampsia among others (89, 90). While initial 
meta-analyses showed that PGT pregnancies were associated with a 
higher risk of hypertensive disorder of pregnancy, their results were 
limited by a high sample heterogeneity (91, 92). A most recent 
systematic review and meta-analysis, restricted only to singletons 
from FET cycles, including 11.469 live births after PGT and 20.438 live 
births after IVF/ICSI (no-PGT), concludes that trophectoderm biopsy 
does not alter the risk of developing hypertensive disorders in 
subsequent pregnancies (84). Nonetheless, larger cohort studies and 
well-designed RCTs are still lacking.

Regardless of the above, the use of PGT could be considered at 
least as non-routine among pregnancies through OD. Since, it has 
been shown to report no benefit among fresh oocyte donation cycles 
recipients (93–95), and conflicting results have been reported for 
frozen oocyte donation cycles recipients (95, 96). Therefore, it seems 
reasonable not to consider PGT as a major contributing factor for 
placental dysfunction among OD pregnancies.

Immune tolerance breakdown

Normal placentation and pregnancy evolution requires the 
development of maternal immune tolerance to a semi-allogeneic fetus. 
To date, most accepted mechanisms involved in pregnancy 

immunomodulation and crosstalk between mother and fetus include; 
(i) a trophoblast with an overall poor antigenicity, mainly due to a lack 
of classic HLA-I and II antigens, with the exception of HLA-C, and 
the expression of nonclassical HLA molecules of class E and G (97, 
98); (ii) a shift in the functional balance of T helper (Th) cells towards 
type-2 cells with a decline in cell-mediated Th1-type immunity (99); 
(iii) a change in the activity of uterine natural killer (uNK) cells from 
cytotoxic to regulatory, mainly producing chemokines, growth factors, 
cytokines and angiogenic factors, of relevance for the development of 
maternal–fetal interface (100); and (iv) a major proportion of 
macrophages with an anti-inflammatory, M2-like phenotype, involved 
in the dampening of immune reactions (98).

Several findings support the role of immunological dysfunction 
in the development of preeclampsia among spontaneous conception 
(39, 100). Pregnancy after OD is considered as a unique model to 
assess the immunologic pathways involved in placental dysfunction, 
as the fetus is an absolute allograft in contrast to semi-allograft fetus 
in natural conception.

In line with the above, it has been shown that among OD 
pregnancies, the degree of HLA mismatch between mother and fetus 
is correlated with a higher number of maternal decidual-activated 
CD4+ Treg cells (101–104), a reduced number of tissue macrophages 
(105, 106), and the development of gestational hypertension and 
preeclampsia (107, 108). Furthermore, the risk of preeclampsia has 
been reported to be even higher among pregnancies conceived with 
double gamete donation (oocyte and sperm donation) (109), which 
could be attributed to an additive effect from the lack of paternal 
antigen-specific tolerance (97).

Also, genome-wide mRNA analysis in placentas from OD 
pregnancies have shown a reduced expression of thrombomodulin 
(110), several complement regulatory proteins (111), and altered 
immunoregulation by co-inhibitory pathways (112).

Moreover, several placental lesions are observed at different 
histologic levels in women with pregnancies conceived through OD, 
supporting an abnormal immune response. Of remark, (i) severe 
chronic deciduitis with dense fibrinoid deposition is a characteristic 
finding in OD pregnancy. Suggesting an important maternal 
alloimmune reaction resembling host versus graft disease at the human 
fetal–maternal interface (113). (ii) Also, a significantly increased 
prevalence of VUE is reported among pregnancies conceived through 
OD (30) which represent a manifestation of maternal anti-fetal 
rejection. (iii) Of remark, Schonkeren et al. (114) described a specific 
histologic lesion among uncomplicated OD pregnancies consistent on 
a diffuse inflammatory infiltrate involving the entire chorionic plate. 
In their study, preeclampsia occurs only in the group without the 
immunological lesion. Therefore, this lesion could reflect a protective 
immune mechanism towards the completely allogeneic fetus.

Other mechanisms

It is known that there are social determinants for placental 
insufficiency, being more prevalent among women from disfavoured 
socioeconomic status (115). The pathways operating these relationships 
are not fully understood, and epigenetic mechanisms may explain 
intergenerational transmission (116). A fraction of egg donations is 
non-altruistically motivated, making donors more likely to come from 
a more disadvantaged socioeconomic background, which could result 
in higher rates of perinatal complications in recipients.
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Discussion

The development of ART and specifically the progress achieved in 
conceiving pregnancies through OD represent a significant 
opportunity for couples which under other conditions would not 
be able to achieve pregnancy. However, it should be acknowledged 
that there is consistent evidence of a higher risk profile among this 
subgroup of patients.

In this mini review, we intended to succinctly summarize the most 
widely accepted pathways linked with placental dysfunction. Overall, 
it could be  stated that several non-exclusive physio pathological 
mechanisms are involved, rendering to these patients a cumulative 
higher risk of progressive placental dysfunction and preeclampsia.

It is our belief that the subgroup of OD pregnant patients requires 
further attention. First, already among infertile populations there are 
reports of higher morbidity & mortality (117, 118). Second, at the 
population level, there is a progressive and consistent trend of 
increasing numbers. Theoretically, this could lead to a worldwide 
higher frequency of preeclampsia. Third, at the individual level, the 
patient baseline characteristics plus the combination of the physio 
pathological mechanisms involved could potentially lead to more 
severe cases (119–121).

Regarding management of ART pregnancies, current 
recommendation from the Society of Maternal–Fetal Medicine (16) 
and the UK National Institute of Clinical Excellence (122), consider 
IVF as a moderate risk factor for preeclampsia and recommends 
low-dose aspirin and serial scanning only if an additional risk factor 
is found. However, these guidelines lump together all ART techniques 
as an overall category, without establishing differences between the 
mode of conception. Moreover, there are no clear recommendations 
regarding other surveillance tools, such as maternal and fetal Doppler 
assessment or angiogenic markers assessment, which arguably have 
shown moderate-to-good performance for the prediction of adverse 
perinatal outcomes among high-risk pregnancies (123, 124), and has 
been proposed as a tool to capture placental dysfunction secondary to 
pathophysiologic mechanisms other than early defective trophoblast 
invasion (125, 126).

There are still several research gaps and potential future 
developments in the field; for one side, there is a need for better 
characterization and a more complete risk-profile assessment of 
candidates for OD. In line with the above, identifying novel predictive 
factors to assess the risk for maternal serious complications may be of 
value (127). Also, evaluation for signs of immune tolerance 
breakdown, through the assessment of cellular subpopulations 
imbalance or its product (such as cytokines or chemokines) (128) and 
its correlation with known clinical signs of placental dysfunction (i.e., 
angiogenic markers or fetal & maternal Doppler), could also 
be  explored. Moreover, HLA screening and matching could also 
be considered as a suitable tool attempting to decrease the reported 
immune tolerance disbalance (129).

Therapeutic interventions such as the use of some 
immunosuppressive agents have already shown some encouraging 
results enhancing outcomes among patients with recurrent pregnancy 
loss. Among them, hydroxychloroquine is a known anti-inflammatory 
and immune regulator drug commonly used in patients with 
autoantibodies disease. Its use during pregnancy has shown to 
improve the live birth rate in patients with persistent positive 
antiphospholipid antibodies and to reduce the risk of preeclampsia 

and fetal loss in mid and late pregnancy among patients with systemic 
lupus erythematosus (130–132). Also, when combined with 
prednisone, it has shown to improve outcomes of frozen embryo 
transfer in antinuclear antibody-positive patients undergoing IVF/
ICSI treatment (133). Moreover, its use has been reported as an 
effective therapeutic strategy in women with repeated implantation 
failure due cellular immune abnormalities, through a shift in Th2 
responses (134). Therefore, hydroxychloroquine could be proposed as 
a potential treatment for immune tolerance imbalance among 
pregnancies through OD. However, there is still scarcity of high-
quality data that precludes further recommendations (135, 136). 
Finally, up to date and evidence based counselling about the related 
short and long-term risk should be offered to OD candidates, as in 
some cases the risk may be significant, and even overcome the benefits 
(137–141).

In conclusion, compelling evidence suggests the convergence of 
various additive factors associated with placental dysfunction in 
pregnancies conceived through oocyte donation. These factors 
encompass patient baseline characteristics, absence of corpus luteum, 
and dysfunction in pregnancy immune tolerance. Further research is 
imperative as this demographic constitutes a subgroup exhibiting the 
highest susceptibility to placental dysfunction, potentially 
necessitating a more vigilant follow-up – a practice not presently 
endorsed by existing guidelines.
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