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The role of volatile organic
compounds for assessing
characteristics and severity of
non-cystic fibrosis
bronchiectasis: an observational
study

Shu-Yi Gu, Hai-Wen Lu, Jiu-Wu Bai, Jia-Wei Yang, Bei Mao, Li Yu

and Jin-Fu Xu*

Department of Respiratory and Critical Care Medicine, Institute of Respiratory Medicine, Shanghai

Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China

Background: Hypoxic conditions and Pseudomonas aeruginosa (P. aeruginosa)

infection are significant factors influencing the prognosis and treatment of

patients with bronchiectasis. This study aimed to explore the potential for

breath analysis to detect hypoxic conditions and P. aeruginosa infection in

bronchiectasis patients by analyzing of volatile organic compounds (VOCs) in

exhaled breath condensate (EBC).

Methods: EBC samples were collected from stable bronchiectasis patients

and analyzed using solid phase microextraction-gas chromatography-mass

spectrometry (SPME-GCMS). The association of VOCs with bronchiectasis

patients’ phenotypes including hypoxic conditions and P. aeruginosa isolation

was analyzed, which may relate to the severity of bronchiectasis disease.

Results: Levels of 10-heptadecenoic acid, heptadecanoic acid, longifolene, and

decanol in the hypoxia group were higher compared to the normoxia group.

Additionally, the levels of 13-octadecenoic acid, octadecenoic acid, phenol,

pentadecanoic acid, and myristic acid were increased in P. aeruginosa (+) group

compared to the P. aeruginosa (–) group. Subgroup analysis based on the

bronchiectasis severity index (BSI)reveled that the levels of 10-heptadecenoic

acid, heptadecanoic acid, decanol, 13-octadecenoic acid, myristic acid, and

pentadecanoic acid were higher in the severe group compared to the

moderate group. Multivariate linear regression showed that 10-heptadecenoic

acid and age were independent prognostic factors for bronchiectasis patients

with hypoxia. Furthermore, octadecenoic acid, phenol and gender were

identified as independent prognostic factors for bronchiectasis patients with P.

aeruginosa isolation.

Conclusion: The study provides evidence that specific VOCs in EBC are

correlated with the severity of bronchiectasis, and 10-heptadecenoic acid is

shown to be a predictive marker for hypoxia condition in bronchiectasis patients.
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1 Introduction

Bronchiectasis is a chronic respiratory disease that occurs due

to respiratory inflammation and structural damage to the bronchus

and its surrounding lung tissue, which destroys the muscle

and elastic tissue of the bronchial wall, resulting in bronchial

deformation and lasting expansion. The disease is characterized

by recurrent cough, sputum production, and respiratory tract

infections (1–3). Bacterial infections trigger an inflammatory

response, which further exacerbates airway inflammation and

airway structural damage, leading to the well-described “vicious

cycle” of bronchiectasis (4, 5).

The definition of EBC by the previous ERS/American Thoracic

Society (ATS) TF is used (6). Briefly, EBC is obtained by

cooling exhaled breath through contact with a cold surface or

condenser. Samples are collected as fluid or frozen material

and analyzed immediately or later for volatile and non-volatile

macromolecules. VOCs are carbon-based chemicals, especially

in a volatile state at ambient temperature, originating from

physiological and pathophysiological metabolic processes in the

human body. Their origin may be local, systemic, and exogenous

(7). Analysis of exhaled breath has been used to detect and monitor

diverse pulmonary and systemic diseases such as oxidant-induced

airway injury (8), aspirin-induced asthma (9), lung cancer (10,

11), chronic obstructive pulmonary disease (12), tuberculosis (13),

lung transplant rejection (14), breast cancer (15), heart transplant

rejection (16), diabetes mellitus (17), and unstable angina (18).

Mansoor et al. used non-invasive exhaled breath condensate (EBC)

analysis to identify potential novel biomarkers that correlated with

IPAH pulmonary hemodynamic variables that may be important

in screening for less severe forms IPAH (19). A previous study

characterized VOCs in a broad range of human samples and

identified more than 1,840 different compounds (20). Yamada

et al. used to identify five specific VOCs in the exhaled breath of

ILD patients, suggesting that measurement of VOCs promise for

discriminating ILD patients from healthy controls (21). Horck et al.

proposed a distinct breath VOC pattern that aids in diagnosing

children with cystic fibrosis (22). Kamal et al. reported virus-

induced VOCs in EBC during pulmonary infection (23), indicating

that microorganism metabolism. Acid gastroesophageal reflux is a

common problem in non-cystic fibrosis bronchiectasis, Annemarie

et al. detected pulmonary microaspiration is to measure pepsin

in exhaled breath condensate measure pepsin concentrations and

pH in EBC and to determine the relationship to gastroesophageal

reflux in bronchiectasis (24). Karakoc et al. evaluate the MMP-

9 and its natural tissue inhibitors of metalloproteinases (TIMP-

1) levels utilizing the exhaled breath condensate (EBC) method

and their relationship with radiological findings and pulmonary

functions in children with bronchiectasis (25). Savelev et al. found

2-Nonanone is a compound in the exhaled breath as it may improve

diagnostic of Ps. aeruginosa infection when combined with other

reported volatile markers (26). Moreover, Bikov et al. put forward

an opinion that exercise-caused metabolic changes can be followed

by monitoring exhaled volatiles and their study shows that physical

exercise causes a change in exhaled breath volatile compound

pattern, which presumably reflects an increase in systemic and

local metabolism in the airways (27). They also indicated that the

dilution of airway lining fluid (ALF) acids and bases by alveolar

watermay influence condensate pH (28). However, limited research

has been conducted to elucidate the significance of VOCs in human

breath samples for evaluating and monitoring disease progression.

The present study aimed to analyze the relationship between

VOCs in the EBC of bronchiectasis patients and their hypoxic

conditions. Additionally, the correlation between specific VOCs

and the severity of bronchiectasis was also explored. All EBC

samples were analyzed by SPME-GC/MS technology.

2 Materials and methods

2.1 Patients

A total of 184 stable bronchiectasis patients were recruited

from the Shanghai Pulmonary Hospital (Shanghai, China) from

September 2021 to October 2022. Out of these, 118 patients

collected EBC samples. Detailed procedures of the study are

shown in Figure 1. The present study was approved by the Ethics

Committee of Shanghai Pulmonary Hospital (Approval No. K21-

316). Detailed inclusion and exclusion criteria can be found in

Figure 1. Patients were categorized into two groups according to

whether they had hypoxia or whether P. aeruginosa was isolation

from sputum.

2.2 Clinical and functional assessment

All patients underwent chest high-resolution computed

tomography (HRCT), sputum culture test, arterial blood gas test,

and pulmonary function tests. Bronchiectasis severity index (BSI)

and exacerbation frequency, forced expiratory volume in 1 second,

age, colonization, extension and dyspnea (E-FACED) score were

used to assess the severity of bronchiectasis. Patients were grouped

based on blood oxygen saturation (SPO2) and microbial culture

results. Patients with SPO2 < 90% were assigned to the hypoxia

subgroup, and those with SPO2 ≥ 90% were allocated to the

normoxia subgroup. The P. aeruginosa (+) subgroup was defined

as P. aeruginosa isolation from patients’ sputum culture, otherwise,

patients were assigned to P. aeruginosa (–) subgroup.

2.3 EBC collection

In this study, exhaled gas samples were collected using the

RTubeVOCTM End Tidal Air Collector (Respiratory Research,

Inc., Austin, TX, USA), the entire collection system especially

for VOCs examination. The entire collection system was cooled

in −20◦C for at least 24 h before sample taken. Subjects were

instructed to eat a light diet at the night and breakfast was not

allowed before sampling, while smoking and brushing were also

forbidden. It is advised that subjects refrain from exercise for at

least 1 h preceding EBC collection (29). The subjects sat quietly

in the same sampling room for ≥5min. Microbial activity in the

oropharyngeal tract significantly contributes to the concentration

of nitrogen oxides in EBC (30), so the subjects should rinse
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FIGURE 1

Detailed procedures of the study and EBC sample entry criteria. COPD, Chronic obstructive pulmonary disease; ABPA, Allergic bronchopulmonary

aspergillosis; CF, Cystic fibrosis; ILD, Interstitial lung disease; EBC, Exhaled breath condensate.

mouth with clean water for three times before sample taken.

The subjects were instructed to breathe quietly (tidal breathing)

for 5min and the use of a nose clip is advised. During the

period periodic swallowing is advised for limitation of salivary

contamination. Then, their exhaled gas samples were collected

using the RTubeVOCTM End Tidal Air Collector which is end

tidal air collector for Volatile Organic Compounds and disposable

single-breath collector selectively captures the last 65ml of exhalate.

This unique feature allows for easy integration of the RTubeVOC

into deep-lung VOC studies. EBC volume ranged 1.5–2mL, the

subject would be asked repeat collecting if EBC volume was

<1.5ml. All the Rtube exhaled breath condensate collector were

disposable design ensures a clean device ready for use at any time

with no risk of infectious disease transmission between patients.

Samples were stored by sealable collection tube immediately after

collection (in order to avoid any errors by evaporation of volatile

components), and storage at−80◦C until analyzed. All the samples

were sent to further analysis within 2 weeks.

2.4 Solid phase microextraction-gas
chromatography-mass spectrometry

The EBC sample was placed in a Clear Crimp Top Vial

(20mL) (Thermo ScientificTM, USA) by using Universal Needle

Interface (Respiratory Research, Inc., Austin, TX, USA). The

vial was sealed using a crimping machine (CRIMPER 20mm,

Japan) and placed in a thermostat at 40◦C. The pre-activated

solid-phase microextraction (SPME) device was inserted, push

out the extraction head, recover the extraction head after

headspace extraction for 25min, and wait for sample introduction

and analysis.

A manual SPME holder and a commercial SPME fiber: 50/30-

µm poly(acrylate) (PA), were purchased from Supelco company

(USA). The SPME fiber was conditioned to recommended degrees

before it was used for the first time. The fiber, first desorbed

at 230◦C for 5min in the GC injector, was exposed in the

headspace of the vial for 25min to adsorb the volatile organic

compounds from the sample; then it was removed from the vial

and introduced into the GC injector for 3min where the thermal

desorption of the analytes was carried out. Instruments used for

detection included Thermo Trace ISQ gas chromatograph-mass

spectrometer (Thermo ScientificTM, USA), which was equipped

with TriPlus autosampler and ACEM9300 thermal desorption

instrument (Thermo ScientificTM, USA), as well as an HP-

INNOWax quartz capillary column (30m × 0.32mm, 0.50µm)

as a chromatographic column. Chromatographic conditions were

as follows: Column temperature: the initial temperature was

60◦C for 3min, which was increased to 240◦C at 15◦C min-1,

240◦C was maintained for 10min; inlet temperature was 230◦C;
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FIGURE 2

Di�erences of inflammatory factors, arterial oxygen partial pressure and oxygen saturation in peripheral blood between P. aeruginosa (–) group and

P. aeruginosa (+) group. The PaO2 in P. aeruginosa (+) group (n = 54) were significantly lower than those in P. aeruginosa (–) group (n = 64), while

the levels of plasma inflammatory factors showed no statistically significant in two groups. IL-1β, Interleukin-1β; IL-6, Interleukin-6; SIL-2R, soluble

interleukin 2 receptor; TNF-α, Tumor necrosis factor-α. Boxplot whiskers show median ± Tukey distribution, P. aeruginosa (–) group: n = 54, P.

aeruginosa (+) group: n = 64. Student’s T-test was performed for (A–F).

TABLE 1 Characteristic of patients with bronchiectasis.

Normoxia (n = 56) Hypoxia (n = 62) P value PA (–) (n = 54) PA (+) (n = 64) P value

Age (years old) 51.23 (48.01,54.45) 58.05 (55.77,60.33) 0.002 58.22± 11.66 58.94± 9.67 0.002

Gender 0.002 0.003

Men 16 (28.66) 28 (45.2) 28 (51.9 16 (25.0)

Female 40 (71.4) 34 (54.8) 26 (48.1) 48 (75.0)

Smoking history 0.466 0.017

Yes 8 (14.3) 12 (19.4) 14 (25.9) 6 (9.4)

No 48 (85.7) 50 (80.6) 40 (74.1) 58 (90.6)

BMI 21.16 (20.47,21.86) 22.23 (21.18,23.28) 0.307 21.06± 23.49 22.28± 3.4 0.062

FEV1% 66.26± 21.49 50.81± 18.76 <0.001 61.10± 20.55 55.65± 22.05 0.171

BSI 0.035 0.000

1 3 (5.4) 2 (3.2) 5 (9.3) 0 (0)

2 24 (42.9) 16 (25.8) 29 (53.7) 11 (17.2)

3 29 (51.8) 44 (71) 20 (37.0) 53 (82.8)

E-FACED 0.003 0.000

1 27 (48.2) 16 (25.8) 35 (64.8) 8 (12.5)

2 26 (46.4) 34 (54.8) 18 (33.3) 42 (65.6)

3 3 (5.4) 12 (19.4) 1 (1.9) 14 (21.9)

BMI, Body mass index; FEV1%, Forced expiratory volume in the first second; BSI, Bronchiectasis severity index; E-FACED, Forced expiratory volume in 1 (FEV1), age, chronic colonization by

P. aeruginosa, radiological extension and dyspnea plus exacerbations.

Carrier gas: He (>99.999%), with a flow rate of 1 mL/min.

Splitless mode was used. The mass spectrometry conditions were

as follows: Ionization source: EI source, ionization energy of

70 eV, and ion source temperature of 250◦C; Transmission line

temperature: 230◦C; Scan range: 41–400 amu; The compounds

were identified using NIST14 Mass Spectral Search Program
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FIGURE 3

(A) OPLS-DA analysis results identified di�erences between bronchiectasis patients in hypoxia group and normoxia group, the green points showed

normoxia group and the blue points showed hypoxia gruop; (B) OPLS-DA analysis results identified di�erences between bronchiectasis patients in P.

aeruginosa (+) group and P. aeruginosa (–) group, the green points showed P. aeruginosa (–) group and the blue points showed P. aeruginosa (+)

group; (C) the overall distribution and dispersion degree between hypoxia and normoxia groups, the red points showed hypoxia group and the green

points showed normoxia group; (D) the overall distribution and dispersion degree between P. aeruginosa (+) group and P. aeruginosa (–) group, the

red points showed P. aeruginosa (–) group and the green points showed P. aeruginosa (+) group; (E) volcano plots of di�erent VOCs in

bronchiectasis patients with hypoxia and normoxia, and the red points showed variable importance for projection (VIP) compounds; (F) volcano plots

of di�erent VOCs in bronchiectasis patients in P. aeruginosa (+) group and P. aeruginosa (–) group, and the red points showed variable importance

for projection (VIP) compounds. Normoxia group: n = 56, Hypoxia group: n = 62. P. aeruginosa (–) group: n = 54, P. aeruginosa (+) group: n = 64.

Orthogonal partial least squares discriminant analysis (OPLS-DA) performed for (A–D), Principal component analysis (PCA) for (E, F).
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FIGURE 4

The ion counts of di�erential VOCs in bronchiectasis patients in hypoxia group and normoxia group. Boxplot whiskers show median ± Tukey

distribution, Normoxia group: n = 56, Hypoxia group: n = 62. Student’s T-test was performed for (A–H).

(National Institute of Standards and Technology, Washington,

DC, USA).

2.5 Plasma inflammatory factor

At the time of clinical assessment, each subject underwent a

blood sample collection. Venous blood was drawn by venipuncture

from all subjects in the morning after an overnight fast, 1ml

of blood per patient. Plasma samples were collected in EDTA

vacutainers, 50 µl for each sample, which were immediately

centrifuged for 15min at ∼2,000×g at room temperature. Then,

plasma inflammatory factor indexes (IL-1β, IL-6, IL-2R, TNF-α)

were analyzed with flow cytometry (BD FACSCantoTM II, USA)

through a panel of four cytokines kit, namely human IL-1β, IL-

6, IL-2R, TNF-α (Genebio P010104007, China) and converted in

picograms per milliliter.

2.6 Statistical analysis

Gas chromatography and mass spectrometry combining

computer retrieval withNIST 14was used for identifying the VOCs.

Half-quantitative analysis was achieved through comparison of

peak absolute intensities and peak area normalization method was

used for calculating their relative content of compositions. All

VOC-related data were exported to SIMCA 14.1 software (MKS

Umetrics, Umeå, Sweden) for principal component analysis (PCA)

and orthogonal partial least squares discriminant analysis (OPLS-

DA). The variable importance for projection (VIP) in the OPLS-DA

was calculated and selected characteristic ions that met the criterion

of VIPs >1.0 were regarded as potential targets for further analysis.

The Chi-square test was used for the analysis of categorical data.

Continuous variables were expressed as mean ± standard

deviation (SD) or median (interquartile range), and categorical

variables were presented as counts or percentages (%). The

Student’s t-test, Wilcoxon test, or the Mann-Whitney U test was

employed for analyzing normally or non-normally distributed
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FIGURE 5

The ion counts of di�erential VOCs in bronchiectasis patients in P. aeruginosa (+) group and P. aeruginosa (–) group. Boxplot whiskers show median

± Tukey distribution, P. aeruginosa (–) group: n = 54, P. aeruginosa (+) group: n = 64. Student’s T-test was performed for (A–G).

continuous data of two or three independent groups. The

Spearman’s correlation was used to analyze the relationships

between VOCs and BSI and E-FACED scores in all patients.

The univariate and multivariate linear analyses of bronchiectasis

patients with or without hypoxia were conducted. The log

transformation was also performed on the values of the above-

mentioned parameters to carry out linear regression analysis again.

Data analysis was conducted using SPSS 26.0 (IBMCorp., Armonk,

NY, USA), and GraphPad Prism 9.0 (GraphPad Software Inc., San

Diego, CA, USA) software.

3 Results

The rate of P. aeruginosa isolation increased in bronchiectasis

patients with hypoxemia. Based on the results of P. aeruginosa

isolation, 184 patients with bronchiectasis were divided into two

groups, 79 patients in P. aeruginosa (+) group and 105 patients

in P. aeruginosa (–) group. The differences in inflammatory

factors, arterial oxygen partial pressure (PaO2) and arterial oxygen

saturation (SaO2) between the two groups were compared. As

shown in Figure 2, we found that the levels of inflammatory factors

in the peripheral blood of patients with bronchiectasis were higher

in P. aeruginosa (+) group than in P. aeruginosa (–) group, such

as interleukin-1β (IL-1β), interleukin-6 (IL-6), soluble interleukin 2

receptor (SIL-2R) and tumor necrosis factor-α (TNF-α). However,

the differences in these levels were not statistically significant (P >

0.05). The PaO2 in P. aeruginosa (+) group were significantly lower

than those in P. aeruginosa (–) group (P < 0.05). Because SpO2 in

patients can be affected by a variety of factors, such as poor fingertip

tip circulation and nail fungal infection, this study did not suggest

that there was a difference in SpO2 between subjects.

3.1 Baseline characteristics

A total of 118 patients with bronchiectasis were enrolled in

the EBC sample collection, and their clinical characteristics were
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FIGURE 6

The ion counts of di�erential VOCs in BSI risk stratification. BSI: Bronchiectasis severity index. Boxplot whiskers show median ± Tukey distribution,

Mild group: n = 5, Moderate group: n = 40, Severe group: n = 73. One way ANOVA with Tukey post-hoc test was performed for (A–K).

summarized in Table 1. The patients were divided into two groups

according to whether they had hypoxia or isolation of P. aeruginosa.

Among them, 56 patients had normoxia, while 62 patients had

hypoxia. Additionally, 54 patients were in P. aeruginosa (–) group,

and 64 patients were in P. aeruginosa (+) group. Significant

differences were observed in age and gender between these two

groups while there was no significant different. The hypoxia group

exhibited a significantly lower FEV1% compared to the normoxia

group. However, no significant difference was found in FEV1%

between the P. aeruginosa (+) group and the P. aeruginosa (–)

group. Importantly, both BSI and E-FACED scores were higher

in the hypoxia and P. aeruginosa (+) groups compared to the

normoxia and PA (–) groups, indicating that patients in the hypoxia

group or P. aeruginosa (+) group experienced from a more severe

disease stage.

3.2 The result of VOCS in EBC of
bronchiectasis patients by SPME-GC/MS

A total of 164 VOCs were detected in the EBC of all

patients by using SPME-GC/MS. The acid compounds

detected included myristic acid, pentadecanoic acid,

hexadecanoic acid, heptadecylic acid, hexadecenoic acid, and

others. The aldehyde compounds detected were as follows:

benzaldehyde, dodecanal, nonanal, decanal, and others.

Alcohols included 2, 2, 4-trimethyl-, 1-isoburtyrate-1, 3-

pentanediol, dihydrocitronellol, 6-methyl-1-octanol, nonanol,

and others.

Then, the OPLS-DA analysis was conducted to evaluate the

overall distribution and dispersion degree among the samples.

The results revealed significant differences in VOCs in the

breath samples between hypoxia and normoxia groups, as well

as between the P. aeruginosa (+) and P. aeruginosa (–) groups

(Figures 3A–D). The differences in VOCs between the groups were

visually represented using the enhanced efficacy of the model

(Figures 3E, F).

The analysis revealed that the levels of 10-heptadecenoic acid,

heptadecanoic acid, longifolene, and decanol were higher in the

hypoxia group compared to the normoxia group, which aligned

with the detection results. However, no significant differences

were observed in the levels of pentadecanoic acid, myristic acid,

palmitoleic acid, and hexadecanoic acid (Figures 4A–H). When

comparing the different VOCs between the P. aeruginosa (+)

and P. aeruginosa (–) groups, it was found that the levels of 13-

octadecenoic acid, octadecenoic acid, pentadecanoic acid, phenol,

and myristic acid were higher in the P. aeruginosa (+) group.

Conversely, no significant differences were observed in the levels

of palmitoleic acid and hexadecanoic acid between the groups

(Figures 5A–G).
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FIGURE 7

The ion counts of di�erences VOCs in E-FACED risk stratification. E-FACED: exacerbation frequency, forced expiratory volume in 1 second, age,

colonization, extension and dyspnea score. Boxplot whiskers show median ± Tukey distribution, Mild group: n = 43, Moderate group: n = 60, Severe

group: n = 15. One way ANOVA with Tukey post-hoc test was performed for (A–K).

3.3 Di�erential VOCs in BSI risk
stratification

The results depicting differential VOCs in BSI risk stratification

are presented in Figures 6A–K. It was observed that the levels of 10-

heptadecenoic acid, heptadecanoic acid, decanol, 13-octadecenoic

acid, myristic acid, and pentadecanoic acid were higher in the

severe group compared to the moderate group. Additionally, the

level of octadecenoic acid was higher in the moderate group than

that in the mild group. However, the level of longifolene was

the lowest in the mild group when compared to the moderate

and severe groups. The differences in phenol, hexadecanoic acid,

and palmitoleic acid were not found to be significant among the

three groups.

3.4 Di�erential VOCs in E-FACED risk
stratification

The results illustrating the differential VOCs in E-FACED

risk stratification are presented in Figures 7A–K. It was observed

that the level of 10-heptadecenoic acid was significantly lower in

the mild group compared to the moderate and severe groups.

Furthermore, the levels of decanol, heptadecanoic acid, myristic

acid, and pentadecanoic acid were lower in the mild group

compared to the moderate group. In addition, the octadecenoic

acid level was higher in the moderate group than that in the severe

group. The levels of hexadecanoic acid and palmitoleic acid were

lower in the moderate group than those in the mild and severe

groups. However, there were no significant differences in the levels

of phenol, 13-octadecenoic acid, myristic acid, and longifolene

among the three groups.

3.5 Relationship between VOCs and BSI
and E-FACED scores

The relationships between VOCs and BSI and E-FACED scores

in all patients are illustrated in Figure 8. The Spearman’s correlation

analysis revealed a weak positive correlation between the BSI

score and the levels of myristic acid, 13-octadecenoic acid, 10-

heptadecenoic acid, pentadecanoic acid, octadecenoic acid, and

heptadecanoic acid (all P < 0.05). BSI risk stratification showed a

negative correlation with the levels of longifolene, palmitoleic acid

and hexadecanoic acid, but the differences were not statistically

significant. Additionally, the E-FACED score exhibited a slight

positive correlation with the levels of 10-heptadecenoic acid,

heptadecanoic acid, and octadecenoic acid (all P < 0.05), while
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FIGURE 8

The relationship between VOCs and BSI and E-FACED scores in all patients. The Spearman’s correlation analysis revealed a weak positive correlation

between the BSI score and the levels of myristic acid, 13-octadecenoic acid, 10-heptadecenoic acid, pentadecanoic acid, octadecenoic acid, and

heptadecanoic acid (all P < 0.05). Additionally, the E-FACED score exhibited a slight positive correlation with the levels of 10-heptadecenoic acid,

heptadecanoic acid, and octadecenoic acid (all P < 0.05). Spearman’s correlation was performed.

no significant correlation was observed between other VOCs and

E-FACED score.

3.6 10-heptadecenoic acid was found as an
independent prognostic factor for
bronchiectasis patients with hypoxia

The univariate and multivariate linear analyses were used

to assess the bronchiectasis patients with or without hypoxia

(Figure 9). The log transformation was performed on the

aforementioned parameters for further linear regression analysis.

In the univariate linear analysis, age and10-heptadecenoic acid

were found to significantly affect the hypoxic conditions of all

patients (all P < 0.05). The results of the multivariable linear

analysis demonstrated that age was significantly associated with

the hypoxic conditions. It was suggested that 10-heptadecenoic

acid and age could serve as independent prognostic factors for

bronchiectasis patients with hypoxia.

4 Discussion

The present study investigated the relationship between VOCs

in EBC of bronchiectasis patients and disease severity. It also

identified specific VOCs that predicted the risk of hypoxia and

P. aeruginosa isolation in bronchiectasis patients. The BSI and E-

FACED scores were higher in the hypoxia and P. aeruginosa (+)

groups compared to the normoxia and P. aeruginosa (–) groups,

indicating that patients with hypoxia and P. aeruginosa isolation

experienced more severe disease. Notably, the VOC profile differed

between the P. aeruginosa (+) and P. aeruginosa (–) groups, as

well as between the hypoxia and normoxia groups in bronchiectasis

patients. Risk stratification of bronchiectasis patients using BSI

and E-FACED scores revealed that the level of 10-heptadecenoic

acid was the lowest in the mild group, while the level of

octadecenoic acid was higher in the moderate group compared to

the severe group. Correlation analysis indicated that most of the

different VOCs showed positive correlation with BSI and E-FACED

scores. Furthermore, we found that 10-heptadecenoic acid and age

were independent prognostic factors for bronchiectasis patients
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FIGURE 9

Univariate and multivariate linear regression analyses of PaO2. In the univariate linear analysis, age, and 10-heptadecenoic acid were found to

significantly a�ect the hypoxic conditions of all patients (all P < 0.05). Univariate and multivariate linear analyses were performed.

with hypoxia, while octadecenoic acid, phenol and gender were

independent prognostic factors for bronchiectasis patients with P.

aeruginosa isolation.

VOCs, such as 10-heptadecenoic acid, heptadecenoic acid,

longifolene, and decanol were highly upregulated in the hypoxia

group. However, there was no significant difference in levels

of pentadecanoic acid, myristic acid, palmitoleic acid, and

hexadecenoic acid between normoxia and hypoxia groups.

VOCs, such as pentadecanoic acid, 13-octadecenoic acid,

octadecenoic acid, phenol, and myristic acid were highly

upregulated in bronchiectasis patients with P. aeruginosa isolation.

However, there was no significant difference in palmitoleic acid and

hexadecenoic acid between P. aeruginosa (+) and P. aeruginosa

(–) groups. Among those VOCs, myristic acid, pentadecanoic acid,

hexadecanoic acid, and heptadecylic acid were acid compounds.

A previous study indicated that myristic acid with anti-virulence

properties may increase the pathogenicity of P. aeruginosa in a

murine cutaneous infection model (31), which could explain the

increase of myristic acid level in the P. aeruginosa (+) group of

patients with bronchiectasis. Longifolene is a naturally occurring

tricyclic sesquiterpene (32), and it has antimicrobial activities (33).

Our study revealed that the longifolene level was the lowest in the

mild group compared with that in the moderate and severe groups

by BSI risk stratification, while the underlying mechanism needs

further study. Kuo et al. found that octadecenoic acid could be

produced from oleic acid conversion by strains of P. aeruginosa

(34), which explained the high level of octadecenoic acid in the P.

aeruginosa (+) group. A meta-analysis showed that elevated levels

of pentadecanoic acid and heptadecanoic acid were associated

with a lower risk of cardiovascular disease (35). However, as these

two acids in our study were observed in EBC, rather than in

serum, the effects may be different. In addition, pentadecanoic acid

acted as a novel histone deacetylase 6 (HDAC6) inhibitor, and it

promoted the acetylation of α-tubulin in MCF-7 breast and A549

lung cancer cells dose-dependently (36). Palmitoleic acid could

form calcium palmitate or magnesium palmitate, thereby resulting

in the formation of biofilms as bacterial cells use these salts as

a carbon source for their growth (37). However, in the present

study, palmitoleic acid showed no significant difference in any

subgroups. Further studies should concentrate on the functions of

those differentially expressed VOCs of bronchiectasis in the future.

The levels of 10-heptadecenoic acid and longifolene were

significantly upregulated in the VOCs of the hypoxia group.

Additionally, the levels of 13-octadecenoic acid and phenol

were significantly upregulated in the VOCs of patients with P.

aeruginosa isolation. In contrast, the levels of 10-heptadecenoic

acid, heptadecanoic acid, octadecanoic acid, pentadecanoic acid,

myristic acid, and longifolene were downregulated in the group

with a lower E-FACED score, of which, the most significantly

downregulated level in VOCs belonged to 10-heptadecenoic acid.

The role of VOCs in the development of bronchiectasis has not

yet been fully clarified. Mazzatenta et al. (38) suggested that

VOCs could be a promising biomarker for hypoxemia, which

was consistent with our findings. Bregy et al. suggested that the

characteristic metabolites in COPD patients were different from

those in healthy controls (39). According to a previous study, lipid
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synthesis was improved in the exacerbation of COPD (40). This

phenomenon might be explained by the fact that the hypoxemia

could affect the cell metabolism (41). Our study suggested that

10-heptadecenoic acid might be a valuable marker to predict

hypoxemia in patients with bronchiectasis.

Furthermore, P. aeruginosa isolation could influence VOCs.

van Oort et al. established a rat pneumonia model and found

that P. aeruginosa infection could affect the profiles of the

VOCs (42). We used OPLS-DA and logistic regression analysis

to identify the biological roles of VOCs in bronchiectasis patients

with hypoxia or with P. aeruginosa isolation. The OPLS-DA plot

revealed samples from patients with hypoxia or normoxia, and

those from P. aeruginosa (+) or P. aeruginosa (–) were separately

distributed. This provided further evidence for the significant

differences in VOCs between the hypoxia and normoxia groups,

and between P. aeruginosa (+) and P. aeruginosa (–) groups.

Moreover, the levels of 10-heptadecenoic acid, heptadecanoic acid,

longifolene, palmitoleic acid, pentadecanoic acid, 13-octadecenoic

acid, octadecenoic acid, hexadecanoic acid, myristic acid, phenol,

and decanol were all different in the univariate analysis for the

prognosis of bronchiectasis patients with hypoxia. The multivariate

analysis was employed to assess factors influencing PaO2 level

in patients with bronchiectasis, and it was revealed that among

VOCs, 10-heptadecenoic acid might be the most important factor

in the development of bronchiectasis. The multivariate analysis

of P. aeruginosa isolation also suggested that octadecenoic acid

and phenol might be the most important independent factors

influencing the P. aeruginosa isolation. The upregulated level of

octadecenoic acid in patients with P. aeruginosa isolation might be

associated with its antibacterial activity (43).

The present study has some limitations. Firstly, the results

of this study cannot be generalized because of the small sample

size. Secondly, because there are individual differences among

subjects, some of the statistical changes be observed are likely

driven by outliers. Thirdly, no validation cohort was involved,

indicating the necessity of involvement of a validation cohort to

confirm the relationship between VOCs in EBC and the severity

of bronchiectasis. Fourthly, no follow-up was conducted. Thus, it

is essential to conduct additional large-scale multicenter studies

with a long-term follow-up to eliminate the above-mentioned

shortcomings. In addition, some of the VOCs aforementioned, such

as 10-heptadecenoic acid, longifolene, decanol, 13-octadecenoic

acid, pentadecanoic acid, andmyristic acid are necessary for further

research on themechanism in the process of bronchiectasis infected

by P. aeruginosa.

5 Conclusions

In summary, the present study showed the correlation between

VOCs in EBC and the severity of bronchiectasis. The predictive

capability of specific VOCs for hypoxia and P. aeruginosa

isolation in bronchiectasis patients was revealed. In addition, 10-

heptadecenoic acid and age were found as independent prognostic

factors for bronchiectasis patients with hypoxia. Octadecenoic

acid, phenol and gender were independent prognostic factors for

bronchiectasis patients with P. aeruginosa isolation. Future studies

are urgently needed to investigate the specific mechanisms.
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