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Introduction: Deep learning-based methods can promote and save critical time 
for the diagnosis of pneumonia from computed tomography (CT) images of the 
chest, where the methods usually rely on large amounts of labeled data to learn 
good visual representations. However, medical images are difficult to obtain and 
need to be labeled by professional radiologists.

Methods: To address this issue, a novel contrastive learning model with token 
projection, namely CoTP, is proposed for improving the diagnostic quality of 
few-shot chest CT images. Specifically, (1) we utilize solely unlabeled data for 
fitting CoTP, along with a small number of labeled samples for fine-tuning, (2) 
we present a new Omicron dataset and modify the data augmentation strategy, 
i.e., random Poisson noise perturbation for the CT interpretation task, and (3) 
token projection is utilized to further improve the quality of the global visual 
representations.

Results: The ResNet50 pre-trained by CoTP attained accuracy (ACC) of 92.35%, 
sensitivity (SEN) of 92.96%, precision (PRE) of 91.54%, and the area under the 
receiver-operating characteristics curve (AUC) of 98.90% on the presented 
Omicron dataset. On the contrary, the ResNet50 without pre-training achieved 
ACC, SEN, PRE, and AUC of 77.61, 77.90, 76.69, and 85.66%, respectively.

Conclusion: Extensive experiments reveal that a model pre-trained by CoTP 
greatly outperforms that without pre-training. The CoTP can improve the 
efficacy of diagnosis and reduce the heavy workload of radiologists for screening 
of Omicron pneumonia.
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1 Introduction

In the tail of February 2022, a new round of COVID-19 epidemic 
caused by subvariant Omicron BA. 2 and BA. 2.2 broke out in 
Shanghai (1). There are more than 30 mutation sites in the spike 
protein of the Omicron mutant, which increases the binding ability of 
the virus to human cells, and the infectivity is 37.5% higher than that 
of the Delta variant (2, 3). Until 1 June 2022, Omicron had caused 
626,811 infection cases, including 568,811 asymptomatic infections, 
58,000 symptomatic cases, and 588 deaths (4), which brought great 
crisis and challenge to social public health security (5).

Currently, the real-time reverse-transcriptase–polymerase-chain-
reaction (RT-PCR) test is the main diagnostic tool (6), while chest CT 
imaging is increasingly recognized as a complementary or even a 
reliable alternative method (7, 8). Figure 1 illustrates some CT scan 
images of mild and severe Omicron pneumonia. All annotations have 
been provided by experienced doctors, who evaluate patients based 
on their clinical conditions and CT imaging. From that, we can find 
that the CT images of mild Omicron pneumonia usually show slight 
inflammation in the lungs. On the contrary, the CT images of severe 
Omicron pneumonia are more serious than those of mild Omicron 
pneumonia, showing more severe inflammation and damage to the 
lungs. Physicians need to pay more attention to patients with severe 
Omicron pneumonia and treat them in time. However, experienced 
radiologists are needed to manually identify all the thin-slice CT 
images (an average of 300 layers per patient) (9). This may lead to 
misdiagnosis due to the significantly increased workload 
of radiologists.

With the development of deep learning (10), researchers can 
extract useful information from a significant volume of annotated data 
(11). However, when compared to natural images, acquiring such 
quantities of medical data is challenging, and the annotations must 
be carried out by professional radiologists (12, 13). This poses huge 

challenges to applying deep learning to medical image analysis and 
processing (14). In recent years, contrastive learning methods (15–19) 
have achieved satisfactory results in natural image classification tasks. 
These methods can utilize unlabeled data to create a pre-trained 
model, which can then be fine-tuned with lightly annotated data for 
further improvement.

While some studies have investigated the effects of contrastive 
learning on natural image classification tasks, there remains a gap in 
research that specifically addresses chest CT images. The current 
methods based on contrast learning are insufficient in enhancing chest 
CT images effectively and exploring global features. To address this 
issue, we propose a novel contrastive learning with token projection, 
namely CoTP, to improve global visual representation. The token 
projection typically consists of a multi-head self-attention (MHSA) 
(20) and a fully connected (FC) layer. The MHSA can capture short 
and long-range visual dependencies, while the FC layer can eliminate 
redundant features. Moreover, we leverage the downsampling layer to 
reduce the cost of computation. In addition, a private Omicron dataset 
collected by the Geriatric Medical Center, Zhongshan Hospital, Fudan 
University is utilized for CoTP pre-training. Especially, data 
augmentations have important roles in contrastive learning methods 
(15). However, the widely used augmentations in contrastive learning 
approaches for natural images may not be  suitable for chest 
CT. Therefore, a new data augmentation approach, random Poisson 
noise perturbation (PNP) is proposed for CT images, to simulate the 
noise in CT images. After pre-training, the feature encoder with 
pre-trained weights is taken out, followed by a simple max pooling 
and average pooling (MAP) head which can obtain different space 
areas occupied by objects of different categories. Then, we fine-tune 
the model on a sub-dataset extracted from Omicron datasets and the 
external SARS-CoV-2 CT-scan dataset (21), respectively. Extensive 
experiments reveal that a model pre-trained by the proposed CoTP 
greatly outperforms that without pre-training.

FIGURE 1

CT scan images of mild and severe Omicron pneumonia. Severe Omicron pneumonia areas are marked with red dotted circles. (A) Mild Omicron 
pneumonia. (B) Severe Omicron pneumonia.
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Our main contributions to this work are summarized as follows:

 (1) A novel contrastive learning with token projection, namely 
CoTP, is proposed to improve the diagnostic quality of few-shot 
Omicron chest CT images. In particular, token projection with 
a downsampling layer is utilized to further improve the quality 
of the global visual representations and reduce the 
computational cost. In addition, the MAP head is employed to 
obtain different spatial regions occupied by objects of 
different categories.

 (2) We present a new Omicron dataset approved by the 
institutional review board of Zhongshan Hospital, Fudan 
University in Shanghai. Furthermore, we leverage a new data 
augmentation approach, random Poisson noise perturbation 
(PNP) to simulate the noise in CT images which is 
more realistic.

 (3) We verify the effectiveness of the proposed CoTP on the private 
Omicron dataset and the external SARS-CoV-2 CT-scan 
dataset, which delivers promising results on both datasets.

2 Related work

2.1 Supervised learning for diagnosis of 
pneumonia from chest CT images

Since the outbreak of coronavirus disease COVID-19 was declared 
a pandemic by the WHO on 11 March, 2020, various deep 

learning-based methods have been implemented worldwide to 
promote and save critical time for pneumonia diagnosis from CT 
images. Wu et al. (9) proposed a multi-view fusion model to improve 
the efficacy of diagnosis. A previous study Mei et al. (22) designed a 
grad-CAM-based deep learning method for fast detection of 
COVID-19 cases. Another study (23) diagnosed COVID-19 via the 
proposed network with a multi-receptive field attention module on 
CT images. Moreover, Mei et al. (22) adopted ResNet (23) to rapidly 
diagnose COVID-19 patients using both full CT scans and non-image 
information. In addition, several works (24–26) also used 
segmentation techniques for detection. However, the current deep 
learning-based approaches for pneumonia diagnosis primarily rely on 
supervised learning, leveraging abundant labeled data to acquire 
precise visual representations. On the contrary, there are few-shot 
labeled chest CT images. Table 1 summarizes the previous studies on 
supervised learning for pneumonia diagnosis from chest CT images.

2.2 Contrastive learning in image analysis

Given the efficient visual representation ability of deep learning, 
contrastive learning has emerged as a promising approach for 
efficiently extracting accurate visual representations from unlabeled 
images (29). Wu et al. (16) first designed a framework that pulls away 
augmented views of different images (negative pair) while pulling in 
different augmented views of the same image (positive pair). Based on 
this idea, the two methods, SimCLRv1 (15) and MoCo-v1 (18) were 
proposed, which can greatly narrow the gap between supervised 
learning and unsupervised learning on downstream task performance. 

TABLE 1 Previous studies on supervised learning for pneumonia diagnosis from Chest CT images.

Authors Year 
published

Pros. Cons. Results

Wu et al. (9) 2020

Axial, coronal, and sagittal views 

of each chest CT image are 

selected as the inputs of the deep 

learning network.

Subgroup analysis was limited by the 

unavailability of detailed clinical information.
81.9% AUC on CT images dataset.

Panwar et al. (27) 2020

Grad-CAM-based color 

visualization approach and early 

stopping.

Lack of ground truth boxes to detect lesions.
95% ACC on the SARS-COV-2 

CT-scan dataset.

Mei et al. (22) 2020

Demographic and clinical data 

are also integrated by an MLP 

network to rapidly diagnose 

patients.

The study has a small sample size. 92% AUC on the COVID-19 dataset.

Chen et al. (24) 2020

Performing both classification 

and detection tasks 

simultaneously.

The inference time is slow
98.85% ACC in the internal 

retrospective dataset

Wang et al. (26) 2020

A novel noise-robust Dice loss 

function, adaptive teacher and 

student mechanisms.

Incorrect predictions tend to be related to noisy 

labels.

80.29% Dice on the COVID-19 

pneumonia dataset

Ma et al. (28) 2021
Multi-receptive field attention 

module.
Lack of ground truth boxes to detect lesions.

99.01% AUC on the SARS-COV-2 

CT-scan dataset.

Qiu et al. (25) 2021

Attentive Hierarchical Spatial 

Pyramid module and lightweight 

multi-scale learning.

Require a large amount of labeled data.
75.91% Dice on the COVID-19-CT 

dataset.
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These methods, SimCLRv2 (17) and MoCo-v2 (19) employed the 
projection head to improve the ability of visual representation 
extraction and outperformed the supervised learning on 
downstream tasks.

The success of these methods motivated many researchers to 
introduce contrastive learning into medical image analysis. Sowrirajan 
et al. (13) utilized MoCo pre-training to improve the representation 
and transferability of chest X-ray Models. Zhang et al. (30) obtained 
medical visual representations according to contrastive learning with 
paired images and texts. In addition, the works of various researchers 
(30–32) employed contrastive learning for medical image 
segmentation. However, the existing contrastive mechanisms have 
scope for improvement for Omicron pneumonia diagnosis from chest 
CT images due to their inability to mine global features and lack of 
appropriate augmentations for chest CT images. We present the pros 
and cons of previous studies on contrastive learning in image analysis 
in Table 2.

3 Materials and methods

3.1 The pipeline for interpretation of CT 
images

The overall pipeline for CoTP pre-training and the subsequent 
fine-tuning with CT images are illustrated in Figure 2. There are two 

stages for CT image interpretation: the CoTP pre-training stage and 
subsequent fine-tuning. First, we converted and exported the DICOM 
files of Omicron patients into JPEG formats and employed CoTP to 
pre-train the feature encoder using unlabeled Omicron CT images. 
Second, the feature encoder with pre-trained weights was taken out, 
followed by a simple linear classifier. Then, we fine-tuned the baseline 
with a few labeled CT images.

3.2 Random Poisson noise perturbation

Data augmentation is widely used in contrastive learning and is 
crucial for learning good representations (15). Nevertheless, most 
existing natural image data augmentations may not be suitable for 
chest CT images. For example, random crops and cutouts may remove 
or mask the lesion area of CT images. Meanwhile, color jitter and 
random grayscale transformation are no longer applicable to grayscale 
CT images.

As shown in Figure 3, we not only utilized traditional methods, 
i.e., random horizontal flipping, random center crop, and random 
rotation (10 degrees) but also a new data augmentation approach, 
random Poisson noise perturbation for CT images. Poisson distributed 
noise is a well-known data augmentation (34, 35). However, this was 
the first time that Poisson-distributed noise was applied to contrastive 
learning instead of Gaussian noise perturbation. In the process of 
scanning CT images, various noises will be  generated due to the 

TABLE 2 Previous studies on contrastive learning in image analysis.

Authors Year published Pros. Cons. Results

Wu et al. (16) 2018

Maximize the distinction between 

instances and non-parametric 

instance discrimination.

Compared to supervised models, 

it still has a significant gap.

54.0% ACC on ImageNet 

dataset.

Chen et al. (15) 2020
A learnable nonlinear 

transformation.
Require a huge batch size of 4,096.

61.9% ACC on ImageNet 

dataset.

He et al. (18) 2020
A dynamic dictionary with a queue 

and a moving-averaged encoder.

Requires a large number of 

negative samples as a queue.

60.6% ACC on ImageNet 

dataset.

Chen et al. (17) 2020

Unlabeled examples for refining 

and transferring the task-specific 

knowledge.

Require a huge batch size of 4,096.
66.6% ACC on ImageNet 

dataset.

Chen et al. (19) 2020

A learnable nonlinear 

transformation is added in 

MoCo-v1.

Requires a large number of 

negative samples as a queue.

67.5% ACC on ImageNet 

dataset.

Zhang et al. (29) 2020
Exploite naturally occurring paired 

descriptive text.

Require a large amount of text 

annotations.

91.2% ACC on the NCT-

CRC-HE-100 K dataset.

Chaitanya et al. (31) 2020

Domain-specific contrasting 

strategies and local version of 

contrastive loss.

The computational complexity is 

heavy.

88.6% Dice on the ACDC 

dataset.

Sowrirajan et al. (13) 2021
MoCo-CXR Pre-training for chest 

X-ray Interpretation.

Lack of effective data 

augmentation.

81.3% AUC on the 

CheXpert dataset.

Zeng et al. (32) 2021

Generate contrastive data pairs 

based on the position of a slice in 

volumetric medical images.

lack of appropriate augmentations 

for medical images.

92.9% Dice on the ACDC 

dataset.

Wu et al. (33) 2022
The proposed network does not rely 

on large negative samples.

Lack of global visual 

representation.

89.4% Dice on the ACDC 

dataset.
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photoelectric interaction, and the noise distribution is more accurately 
characterized by the Poisson distribution (36). Consequently, 
we employed random Poisson noise perturbation to simulate the noise 
in CT images as a new data augmentation for CT images. First, 
we performed fan beam projection (37) transformation on the CT 
image X , and added Poisson noise as Eq. (1), where b stands for the 
number of photons. Here b is set as le-6.

 
( )( )( )expnI Poisson b Fanbeam X= ⋅ −

 (1)

Then, In has to be  processed with a logarithm and transform 
(iFanbeam) from the classical filtered back-projection (FBP) algorithm 
(38) to the image domain ′X , as Eq. (2). Thus, we gained the Poisson 
noise CT image according to Eqs. (1, 2) as a more realistic 
data augmentation.

  ′ = ( )( )X iFanbeam b Inln /  (2)

3.3 Overview of the proposed CoTP

Algorithm 1 Pseudocode of CoTP.

Input: batch size B , constant temperature τ , negative memory bank 

N n n n={ }0 1 2, , ,· , encoder networks for query and key E q_ , E k_ , Token 

projection for query and keyT q_ , T k_ ,

for sampled minibatch xq q
B{ } =1

do

for all q B∈ …{ }1, , do

draw two augmentation functions CTAug1, CTAug2

# augmentation for query

V E q qq = ( )_  # encoder

Z T q fq q= ( )_  # Token projection

# augmentation for key

V E k qk = ( )_  # encoder

Z T k fk k= ( )_  # Token projection

end for

define L
Z Z

Z Z Z n

q k

q k i
N

q i
= −

( )
( ) + ( )















=∑

log
exp · /

exp · / exp · /

τ

τ τ
0

update networks E q_  and T q_  to minimize L

define momentum update: ω ω ωk k qm m= + −( )1

update networks E k_  and T k_  by momentum update

end for

update negative memory bank

return encoder network E q_ , and throw away E k_

Algorithm 1 summarizes the proposed CoTP.

3.3.1 Feature encoder
As shown in Figure 4, we designed CoTP to learn global visual 

representations effectively from unlabeled CT images. Given a CT image, 
X , we utilized two different augmentations to create two views of the 
same example, Vq and Vk. Then, we employed ResNet50 (23) which 
removed the entire global pooling and Multilayer Perceptron (MLP) parts 
as the feature encoder. The Vq and Vk are mapped via encoders (q) and 
(k), to generate visual representations Fq H W C∈ × ×  and Fk H W C∈ × ×
, respectively. Here, H , W , and C  are the length, width, and dimension of 
the feature map. The pseudocode of CoTP is shown in Algorithm 1.

3.3.2 Token projection
Traditional contrastive learning (17, 19) typically uses a global 

pooling operation and an MLP as a projection head to improve the 

FIGURE 2

Overview of Omicron pneumonia.

FIGURE 3

Illustrations of a series of CT augmentation methods, i.e., random horizontal flipping, random center crop, random rotation (10 degrees), and the 
proposed random Poisson noise perturbation.
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visual representations. Innovatively, we designed a token projection 
instead of a traditional projection head, as shown in Figure 5.

To begin with, we  reshaped the feature F H W C∈ × ×  to 
T H W C∈ ×( )× . Then, T  was passed through three different linear 
projections and yielded a query Q, a key K , and a value V . 
Furthermore, we performed average pooling with a pooling size of S 
for K  and V  to reduce the cost of computation. Here, we set S = 7. 
After that, a convolution with 1 kernel size and 1 stride size was 
utilized to fuse the feature. Then, we  gained the K S C∈ ×

2

 and 
V S C∈ ×

2

 after performing layer normalization (LN) and ReLU 
activation functions. Afterward, we  performed multi-head self-
attention (MHSA) on Q, K , and V , as shown in Eq. (3),

  
′ = ( ) =









T MHSA Q K V Softmax QK

C
V

T
, ,

 
(3)

Then, we calculated the mean score of ′∈ ×( )×T H W C  along the 
dimension of the column. Finally, we performed a linear projection to 
eliminate redundant features and obtain Z D∈ ×1 . In particular, 
we set the dimension D =128.

3.3.3 Update the weights
To meet a large number of negative sample pairs and reduce the 

computing cost of Graphics Processing Unit (GPU), a memory bank 
was used to store the negative samples generated by the encoder (q), 
in advance. Hence, we  obtained a set of encoded (k) samples 
E Z n n nk k= { }, 0 1 2, , ,· . Out of all the encoded (k) samples in the set 
Ek for each encoded query Zq, a single positive key Zk was matched, 
while the remainder of the keys (negative keys) represented different 
images. A contrastive loss function is represented in Eq. (4) as follows, 
whose value is low when Zq is close to its positive key Zk and moves 
away from all other encoded (k) samples:

 

L
Z Z

Z Z Z n

q k

q k i
N

q i
= −

( )
( ) + ( )















=∑
log

exp · /

exp · / exp · /

τ

τ τ
0  

(4)

where τ is a temperature hyper-para (16), and the number of 
negatives N is set at 32,256. We updated the weights ωq  of the encoder 
(q) and token projection (q) by back-propagation, while the weights ωk  
of the encoder (k) and token projection (k) were updated by momentum 
update (18), as Eq. (5), where m is 0.999 to update the weights slowly.

 ω ω ωk k qm m= + −( )1  (5)

3.4 Subsequent fine-tuning

After CoTP pre-training, we  took out the feature encoder with 
pre-trained weights, followed by a max pooling and average pooling 
(MAP) head, as shown in Figure 6. First, we performed a 1 1×  convolution 
and reshaped the feature F H W C∈ × ×  to T H W C∈ ×( )× . Here, C 
denotes the class of categories. Afterward, we calculated the mean score 
and maximum score of the T along the dimension of the column, 
respectively. Finally, a Hyper-parameter » was employed to combine the 
mean score Sa and maximum score Sm, as Eq. (6).

 S »= + ∗S Sa m (6)

It is noteworthy that max-pooling can be considered as class-
specific attention that can attain different space areas occupied by 
objects of different categories. In particular, we performed a simple 
cross-entropy loss to fine-tune the baseline with a few-shot labeled 
CT images.

FIGURE 4

The overall architecture of the proposed CoTP.
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3.5 Implementation details

As shown in Table 3, we utilized Python 3.7 and Pytorch 1.7.0 with 
PyCharm as our Integrated Development Environment (IDE), running on 
a PC equipped with Intel(R) i9-10940X CPU and 4 Nvidia 1,080 Ti GPUs 
with 48 GB memory. At the CoTP pre-training stage, Stochastic Gradient 
Descent (SGD) was employed as our optimizer, while the weight decay was 
le-4 and the momentum was 0.9. The mini-batch size refers to the number 
of examples (data points) that are processed together in one iteration of 
training in deep learning. Here, we set mini-batch size as 128, and the 
learning rate is initialized to 0.03. Followed by He et al. (18), we train for a 
total of 200 epochs, and the learning rate multiplied by 0.1 at 120 and 
160 epochs.

At the subsequent fine-tuning stage, we utilized AdmW with le-3 
weight decay as the optimizer. The mini-batch size refers to the 
number of examples (data points) that are processed together in one 
iteration of training in deep learning. Here, we set mini-batch size as 
32, and the learning rate is initialized to le-4.

4 Results

The classification performances of the proposed methods were 
evaluated in terms of the standard metrics, such as accuracy (ACC), 
sensitivity (SEN), and precision (PRE) discussed in Eq. (7)–(9), where 

P, N, TP, TN, and FP denote positives, negatives, true positives, true 
negatives, and false positives, respectively.

 
ACC =

+
+

TP TN
N P  

(7)

 

TPSEN
P

=
 

(8)

 
PRE =

+
TP

TP FP   
(9)

In addition, the mean AUC (39) was employed to evaluate the 
ability of the model to discriminate between different classes. 
Furthermore, we  also used a non-parametric bootstrap (40) to 
estimate the variability around model performance. We performed a 
total of 500 bootstrap sampling with 300 cases from the test set.

4.1 Datasets

The study was approved by Zhongshan Hospital, Fudan University 
in Shanghai, China. All the chest CT scanning images in the Omicron 

FIGURE 6

The backbone of the subsequent fine-tuning. We leverage max pooling head and average pooling head to improve classification performance.

FIGURE 5

The pipeline of token projection. The downsampling layer is designed for the reduction of  calculation by reducing the resolution of feature.
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FIGURE 7

Distribution of training and testing set in SARS-CoV-2 CT-scan 
dataset.

dataset were selected from a retrospective cohort of adult Omicron 
patients hospitalized in Shanghai Geriatrics Center from March to July 
2022. Chest CT examination was performed as part of the patient’s 
routine clinical care at the time of admission. The eligibility criteria 
were as follows: (1) having intact basic information to be retrieved 
(names, gender, ages, diagnosis, and severity), and (2) having CT 
scanning on admission. Patients with underlying lung diseases such 
as chronic obstructive pulmonary disease (COPD) and bronchiectasis 
were excluded. All patient scans were downloaded in the DICOM 
image format. The thickness of the CT image was 5 mm.

The diagnosis and classification of severity were based on the 
Diagnosis and Treatment Scheme of Pneumonia Caused by Novel 
Coronavirus of China (the ninth version). (National Health 
Commission of China. The guidelines for the diagnosis and treatment 
of new coronavirus pneumonia (version 9). Accessed July 25, 2023 
https://www.gov.cn/xinwen/2022-06/28/content_5698168.htm). 
Adults were considered severe Omicron pneumonia if they met any 
of the following criteria: (1) tachypnea with a respiratory rate ≥ 30 
breaths/min; (2) oxygen saturation (at rest) ≤ 93%; (3) PaO2/
FiO2 ≤ 300 mmHg; (4) radiographic progression of more than 50% of 
the lesion over 24–48 h; or (5) respiratory failure, shock, or other 
organ failures.

Following the above standards, we retrospectively collected high-
resolution CT images of 73 patients with mild Omicron pneumonia 
and 56 patients with severe Omicron pneumonia. The Omicron 
dataset and demographic characteristics of patients are detailed in 
Table  4. Initially, we  converted and exported the DICOM files of 
Omicron patients into JPEG formats with 1,500 HU window width 
and 750 HU window level. After that, we obtained 50,500 unlabeled 
CT images with the size of 224 224×  for CoTP pre-training.

Two experienced radiologists were selected, and they first labeled 
2,742 CT images from the Omicron dataset. Then, we  used the 
remaining data for CoTP pre-training. Note that the labeled CT 
images were excluded from the CoTP pre-training. The distribution 
of training and testing set in the Omicron dataset is shown in Table 5. 
In addition, we utilize the external SARS-CoV-2 CT-scan dataset 
presented by Soares et al. (21) to evaluate the transferability of 
CoTP. As shown in Figure 7, 1,252 CT scans were positive for SARS-
CoV-2 infection (COVID-19), while 1,229 CT scanning for patients 
non-infected by SARS-CoV-2.

4.2 Transfer performance of CoTP 
representations for omicron pneumonia 
diagnosis

To assess the effectiveness of the visual representations extracted 
by CoTP, we employed VGG16 (41), DenseNet121 (42), and ResNet50 
(23), as our backbones and selected six types of pre-training methods 
for comparison. As depicted in Table 6, the non-pre-training method’s 
weights were randomly initialized, while the supervised pre-training 
method underwent pre-training on ImageNet-1k (43). In addition, 

we presented a more comprehensive comparison with the existing 
contrastive methods, such as SimCLRv1 (15), MoCo-v1 (18), 
SimCLRv2 (17), and MoCo-v2 (19) to prove the effectiveness of the 
proposed CoTP method. We evaluated the classification performance 
of the model using mean AUC, accuracy (ACC), sensitivity (SEN), and 
precision (PRE) of each infection type. Based on Table 6 and Figure 8 
we gained the following observations: (1) Pre-training method plays 
an important role in improving model performance. The ResNet50 
with supervised learning on ImageNet-1 k can achieve more 8.02% 
ACC, 10.43% SEN, and 9.71% PRE than that without pre-training. (2) 
Our CoTP pre-training method outperforms the supervised method 
and the contrastive learning methods, which gains 83.54, 91.32, and 
92.35% ACC by VGG16, DenseNet121, and ResNet50, respectively. (3) 
Our CoTP achieves more 8.07, 7.37, 4.11 and 2.56% AUC than the 
SimCLRv1 (15), MoCo-v1 (18), SimCLRv2 (17), and MoCo-v2 (19) by 
ResNet50, respectively.

TABLE 3 The working environment.

Hardware Software

CPU GPU IDE Framework

Intel(R) i9-

10940X

Nvidia 1,080 Ti 

(Numbers: 4)
PyCharm Pytorch 1.7.0

TABLE 4 Demographics and baseline characteristics of patients in the 
Omicron dataset.

Age Gender

< 60  years 
(16–58)

≥ 
60  years 
(60–96)

Male Female

Mild 

Omicron 

pneumonia

28 45 38 35

Severe 

Omicron 

pneumonia

3 53 34 22

TABLE 5 Distribution of training and testing set in Omicron dataset.

Mild Omicron 
pneumonia (n 

images)

Severe 
Omicron 

pneumonia (n 
images)

Total

Pre-training – – 129 (50, 

500)

Training set 58 (1302) 45 (904) 103 (2206)

Testing set 15 (330) 11 (206) 26 (536)
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As shown in Figure 9, we measured the dispersion of the test set 
using a box plot and performed statistical significance testing using a 
paired t-test. From this, we  observed that CoTP significantly 
outperforms the non-pre-training method (p-value < le-5) and the 
supervised method (p-value < le-5), while performing slightly better 
than contrastive learning MoCo-v2 (19) (p-value < le-4). Moreover, it 
can be seen that our CoTP method had better robustness than other 
types of pre-training methods since the distribution of AUCs was 
more concentrated.

4.3 Transfer benefit of CoTP pre-training 
on an external SARS-CoV-2 CT-scan 
dataset

We conducted experiments to test whether CoTP pre-trained 
chest CT representations acquired from a source dataset (Omicron 
dataset) transfer to an external dataset, the SARS-CoV-2 CT-scan 
dataset. Table 8 demonstrates the classification results of the previous 
methods (27, 28, 44–50) and six types of pre-training methods based 
on ResNet50, while the confusion matrices for four of them are shown 
in Figure 10. Based on these various experimental results, we can draw 
the following conclusions: (1) Visual representations learned from 
CoTP have better transferability in downstream tasks than those from 
ImageNet pre-training. (2) By taking advantage of the ability of our 
CoTP pre-training, our model outperforms all other contrastive 
methods on all metrics with a large margin in discriminating between 

COVID and non-COVID from CT images. For example, the ACC 
score of CoTP increased by 7.25 and 1.01% comparing the non-pre-
training and MoCo-v2 pre-training, respectively.

5 Discussion

Recently, contrastive learning methods have achieved satisfactory 
results on natural image classification tasks, which can leverage 
unlabeled data to generate a pre-trained model. However, the existing 
contrastive mechanisms have scope for improvement for Omicron 
pneumonia diagnosis from chest CT images due to their inability to 
mine global features and lack of appropriate augmentations for chest 
CT images. Therefore, we proposed a novel contrastive learning with 
token projection, namely CoTP, for improving global visual 
representation. Furthermore, we leveraged a new data augmentation 
approach, random Poisson noise perturbation (PNP) to simulate the 
noise in CT images which is more realistic. In this section, 
we designed comprehensive ablation studies to assess the effectiveness 
of each component in the CoTP network.

5.1 Statistical significance testing for 
baseline characteristics of patients

First, we utilized the chi-square test for statistical significance 
test for baseline characteristics of patients, including age and 

TABLE 6 The transfer results of Omicron pneumonia diagnosis.

Architectures Pre-training ACC (%) SEN (%) PRE(%)

Method Dataset

VGG16 (41)

None None 73.28 73.39 72.18

supervised ImageNet-1 K 80.19 80.66 79.83

SimCLRv1 (15) Omicron 79.79 79.16 78.75

MoCo-v1 (18) Omicron 79.82 79.24 78.93

SimCLRv2 (17) Omicron 80.24 80.98 80.28

MoCo-v2 (19) Omicron 81.06 81.27 82.56

CoTP Omicron 83.54 86.02 84.13

DenseNet121 (42)

None None 76.73 76.92 76.77

supervised ImageNet-1 K 88.06 88.80 88.14

SimCLRv1 (15) Omicron 86.89 87.49 87.20

MoCo-v1 (18) Omicron 87.18 87.68 87.33

SimCLRv2 (17) Omicron 88.24 80.98 80.28

MoCo-v2 (19) Omicron 88.30 88.97 88.36

CoTP Omicron 91.32 92.01 90.92

ResNet50 (23)

None None 77.61 77.90 76.69

supervised ImageNet-1 K 85.63 88.33 86.40

SimCLRv1 (15) Omicron 84.28 87.49 85.17

MoCo-v1 (18) Omicron 84.98 87.73 85.67

SimCLRv2 (17) Omicron 88.24 88.98 87.28

MoCo-v2 (19) Omicron 89.79 89.51 88.69

CoTP Omicron 92.35 92.96 91.54

The highest scores are shown in boldface.
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gender. Based on Table 7, we can see that there is no significant 
difference in gender (p = 0.597), while age shows a statistical 
significance (p = 0.000). It is noted that we  need to pay more 

attention to elderly patients since they are more vulnerable to severe 
Omicron pneumonia.

5.2 Effects of using different encoders on 
CoTP performance

Then, we leveraged several encoders VGG16 (41), ResNet50 (23), 
DenseNet121 (42), and Swin-B (51) for performance comparison, as 
shown in Figure 11. The results indicated that both convolutional 
neural networks (CNN)-based encoders and transformer-based 
encoders exhibited higher AUC and better robustness after 
pre-training with CoTP. Moreover, it can be  seen that there are 
significant differences between pre-training methods (i.e., P ≤ le-5 
between supervised pre-training method and CoTP when using 
ResNet50 as a backbone).

5.3 Impact of the random Poisson noise 
perturbation on CoTP performance

In addition, we investigated the impact of the proposed Poisson 
noise perturbation (PNP) during the data augmentation process. 
Therefore, we compared the model performance with and without the 
PNP and also compared it with the random Gaussian noise 
perturbation (GNP). From Table 9, we found that PNP affected the 
performance. For example, the VGG16 (41) with PNP could achieve 
an accuracy of 0.79%, a sensitivity of 0.84, and a precision of 0.88%, 
which are higher than those without PNP. On the contrary, GNP 
could not significantly improve the performance of the model. The 
PNP could simulate the noise CT images, which can improve the 
generalization of the model.

5.4 Impact of the MAP head on subsequent 
fine-tuning performance

To evaluate the ability of the MAP head on subsequent fine-tuning 
performance, the traditional classification (TC) head, which typically 
consists of a global pooling operation and a fully connected layer, was 
used for comparative experiments on the SARS-CoV-2 CT-scan 
dataset. Here, we used ResNet50 (23) pre-trained by our CoTP as the 
backbone. Based on Figure 12, we found that the proposed MAP head 
outperforms the TC head and achieved the best overall performance 
with » = 0.02.

5.5 Impact of the training data size

To study the transferable ability of the model under limited 
labels during the fine-tuning phase, we experimented with 10, 25, 
50, 75, and 100% training data size on the SARS-CoV-2 CT-scan 
dataset. As shown in Figure  13, we  illustrated three types of 
pre-training methods based on ResNet50 (23). The weight of none 
pre-training method was randomly initialized, and the supervised 
pre-training method was pre-trained on ImageNet. From the 
results, it can be inferred that the expected trend of improving 

TABLE 7 Statistical significance testing for age and gender in the 
Omicron dataset.

Total Mild Severe 2χ
p

Age < 60 31 28 (90.3%) 3 (9.7%)
18.902 < le-3

Age ≥ 60 98 45 (45.9%) 53 (54.1%)

Male 72 38 (52.8%) 34 (47.2%)
0.331 0.565

Female 57 35 (61.4%) 22 (38.6%)

The chi-square test is used to calculate the statistical significance of age and gender.

FIGURE 8

ROC curves of the four types of pre-training methods using 
ResNet50 on the Omicron dataset. Our CoTP achieves the highest 
98.90% AUC.

FIGURE 9

Box plot of AUC values produced by different pre-training methods 
using ResNet50 based on the Omicron dataset. We use 500 
bootstrap samples with 300 cases to calculate the AUC which can 
evaluate the robustness of the model.
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ACC is with an increase in labeled data for the fine-tuning phase. 
Moreover, it is promising to observe that even with a 50% training 
data size, the CoTP asymptotically approaches the fully supervised 
(100% training data size) setup.

5.6 Visualization of grad-CAM heat map

Finally, we illustrated Grad-CAM (52) visualizations of the 
features learned by different pre-training methods based on 
ResNet50 in Figure 14. The higher response was highlighted in 
red while the lower one was demonstrated in blue. The expert 
annotation of the infected regions was indicated by a red dotted 
circle. As can be  seen, the heatmaps generated by non-pre-
training method are fuzzy and blurred. In addition, the heatmaps 
yielded by the supervised pre-training method focused on the 
edge areas of CT images. On the contrary, our CoTP  
learned more features that focus on the infection region, which 
can improve the classification accuracy in comparison 
with approaches.

5.7 Comparison of inference efficiency

To assess the inference efficiency, we calculated the pre-training 
time and parameters of MoCo-v1 (18), SimCLRv1 (15), MoCo-v2 
(19), and our CoTP on the Omicron dataset. As shown in Table 10, 
we obtained the following observations: (1) The parameters of the 
methods are nearly identical. MoCo-v2 (19) adds a simple linear 
projection based on ResNet50 (23). Meanwhile, our CoTP included 
an efficient token projection in addition to ResNet50 (23). (2) The 
training time of SimCLRv1 (15) is the shortest among the methods 
because it does not utilize a memory bank. (3) Although our CoTP 
slightly exceeds other methods in terms of training time and 
parameters, it achieves the highest accuracy of 92.35% and 
significantly outperforms the other methods.

TABLE 8 The performance of MoCo-TP pre-training on the SARS-CoV-2 CT-scan dataset.

Architectures Pre-training ACC (%) AUC (%)

Method Dataset

Pramod et al. (44) supervised ImageNet-1 K 85.5 96.6

Even et al. (45) supervised ImageNet-1 K 86.6 86.09

Yang et al. (46) supervised ImageNet-1 K 89 -

Ahmed et al. (47) supervised ImageNet-1 K 90.8 90

Pradeep et al. (48) supervised ImageNet-1 K - 98

Wang et al. (49) Contrastive ImageNet-1 K 90.83 96.24

Patel et al. (50) Wavelet transform None 93.4 93.62

Harsh et al. (27) supervised ImageNet-1 K 95 95

Ma et al. (28) supervised ImageNet-1 K 95.16 99.01

ResNet50 (23)

None None 89.13 95.71 (95.65–95.78) *

supervised ImageNet-1 K 94.57 98.81 (98.78–98.84) *

SimCLRv1 (15) Omicron 93.78 97.82 (97.61–98.03) *

MoCo-v1 (18) Omicron 94.20 98.56 (98.42–98.70) *

SimCLRv2 (17) Omicron 95.06 98.96 (98.80–99.02) *

MoCo-v2 (19) Omicron 95.37 99.26 (98.75–99.29) *

CoTP Omicron 96.58 99.79 (99.78–99.80) *

The highest scores are shown in boldface.
*Quantitative data were presented as values (95% confidence interval).

FIGURE 10

Comparison of the performance of four types of pre-training 
methods in identifying COVID-19 pneumonia from CXR images.
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TABLE 9 Impact of the random Poisson noise perturbation on model performance based on the Omicron dataset.

VGG16 (41) ResNet50 (23) DenseNet121 (42)

ACC SEN PRE ACC SEN PRE ACC SEN PRE

w/o PNP 82.79 85.18 83.29 91.27 92.23 90.95 90.78 91.22 90.09

GNP 82.84 85.12 83.22 91.36 92.10 90.62 90.74 91.13 89.92

PNP 83.58 86.02 84.17 92.35 92.96 91.54 91.36 92.09 90.96

The highest scores in each model are shown in boldface.

FIGURE 12

Effect of the MAP head on subsequent fine-tuning performance.

6 Conclusion

The existing contrastive mechanisms have scope for improvement 
for Omicron pneumonia diagnosis from chest CT images due to their 
inability to mine global features and lack of appropriate augmentations 
for chest CT images. Therefore, we proposed a novel contrastive learning 

model with token projection, namely CoTP, for improving few-shot 
Omicron chest CT image diagnostic quality. Specifically, we designed the 
token projection to extract the global visual representation from 
unlabeled CT images. Furthermore, we leveraged random Poisson noise 
perturbation to simulate the noise CT images as a novel data 
augmentation. In addition, the MAP head which can obtain different 

FIGURE 11

Box plot of AUC values produced by different encoders and types of pre-training methods based on the Omicron dataset. We use 500 bootstrap 
samples with 300 cases to calculate the AUC which can evaluate the robustness of the model.

FIGURE 13

Effect of training data size on model performance.
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spatial regions occupied by objects of different categories was employed 
to improve classification performance for subsequent fine-tuning. 
Extensive experiments on collected datasets demonstrated that our 
CoTP can provide high-quality representations and transferable 
initializations for CT image interpretation. In the future, we plan to 

design more effective pretext tasks and apply the proposed method to 
more medical image analysis tasks. For image segmentation and edge 
detection, we can employ the pre-trained encoder as a feature extraction, 
and then add a segmentation head or a detection head.
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