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Specific antigens in 
malignancy-associated 
membranous nephropathy
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Membranous nephropathy (MN) is a glomerular disease mediated by autoimmune 
complex deposition, with approximately 30% of cases attributed to secondary 
causes. Among them, malignant tumors are a significant cause of secondary 
MN. Recent advancements in the identification of MN-specific antigens, such as 
THSD7A and NELL-1, suggest a potential association with malignant tumors, yet 
definitive proof of this relationship remains elusive. Therefore, this article aims 
to review the distribution of MN-specific antigens in patients with MN caused 
by malignant tumors and the possible role of these antigens in the pathogenesis 
of the disease.
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Introduction

Membranous nephropathy (MN) is the most common pathological type of adult nephrotic 
syndrome, predominantly occurring in middle-aged and elderly patients. It is caused by the 
deposition of immune complexes along the glomerular basement membrane (1). 
Approximately 30% of membranous nephropathy cases are attributed to secondary factors (2), 
among which malignant tumors are one of the common causes, accounting for about 5%–20% 
(3). As early as 1966, Lee et al. (4), proposed that there was a high coincidence between MN 
and malignant tumors, and it is currently considered that the presence of any of the following 
indicators should prompt an evaluation for malignancy-associated MN: (1) the patient’s 
malignant tumor and MN must occur within a similar time frame, usually within 5 years 
before or after the diagnosis of membranous nephropathy; (2) a remission of the malignant 
tumor accompanied by clinical remission of MN, while the recurrence of MN should occur 
when the malignant tumor recurs; (3) there is a pathophysiological connection between the 
two diseases, the same antigens are detected in both diseases. To date, more than a dozen 
MN-related antigens have been identified, of which THSD7A and NELL-1 are thought to 
be associated with malignancies. Subsequently, PLA2R, PCDH7, HTRA1 and FAT1 antigens 
were found to be  positive in patients with malignancy-associated MN. However, the 
relationship between these antigens and malignancies is still unclear. This article will review 
the distribution and the mechanism of action of antigens in MN.

THSD7A

Thrombospondin type 1 domain-containing 7A (THSD7A) is a specific antigen expressed 
in podocytes, identified after the discovery of PLA2R. Around 1%–3% of patients with MN 
are THSD7A positive (2), and this accounts for about 5%–10% of patients who do not have 
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PLA2R antibodies (5). In recent years, different studies have shown 
varying positive rates for THSD7A antibodies in malignancy-
associated MN (6, 7). In German and American cohorts, multiple 
studies indicated that the proportion of patients with THSD7A-
positive MN combined with malignant tumors ranged from 9% to 
30% (Table 1) (8). However, a Chinese cohort study in 2017 showed a 
positive rate of 2% for THSD7A antibodies in malignancy-associated 
MN patients (14). In studies concerning THSD7A-positive 
malignancy-associated MN, the associated cancers are highly diverse, 
including breast, lung, and digestive system cancers. Compared to 
those with THSD7A-positive MN without malignant tumors, patients 
with THSD7A-positive malignancy-associated MN are older, more 
often male, have lower serum albumin levels and higher titers of 
serum THSD7A antibodies (15), as well as more glomerular 
inflammatory cell infiltration in renal pathology (8). At present, most 
studies suggest that THSD7A-positive malignancy-associated MN are 
mainly composed of IgG1, IgG2 and IgG3, while THSD7A-positive 
kidney tissues in primary MN is mainly composed of IgG4 (5, 6, 10). 
However, some studies have reported that in renal tissues of patients 
with THSD7A-positive malignancy-associated MN, IgG4 can also 
be seen (16, 17). In primary THSD7A-positive MN patients, serum 
THSD7A antibody IgG subtypes are mainly IgG4; multiple studies 
have reported that there is no statistically significant difference in the 
level of THSD7A antibody IgG subtype between sera from THSD7A-
positive MN patients with or without malignant tumors (10, 15).

In recent years, multiple studies have reported that THSD7A-
positive malignancy-associated MN patients are positive for THSD7A 
staining in both renal and tumor tissues. Chen et al. (16) reported the 
expression of THSD7A antigen in renal tissue and lymph node tissue 
with tumor metastasis in a patient with non-small cell lung cancer, 
and the patient’s serum THSD7A antibody was positive. In patients 
with tumors such as rectal cancer, NF1-related neurofibromas and 
endometrial cancer combined with MN, THSD7A was also found to 
be positive in the kidney and tumor tissue (17, 18). In addition, one 
patient with MN who underwent multiple renal biopsies initially 
showed negative THSD7A staining for the first renal biopsy. However, 
after 1 year, upon the reoccurrence of the kidney disease, the THSD7A 
staining was positive. Two years later, the patient was diagnosed with 
bladder cancer, and THSD7A staining was also positive in the tumor 
tissue (19). Simultaneous positivity for THSD7A in renal and tumor 
tissue suggests that THSD7A may play an important role in pathogenic 
mechanism leading to MN associated with tumors. However, Liu et al. 
found that only one (16%) of nine patients with malignancy-associated 

MN had positive staining for THSD7A in their tumor tissues (20). 
Hara et al. (21) also reported negative staining for THSD7A in two 
cases of THSD7A-positive malignancy-associated MN. Therefore, 
tumors and MN antigens may not be always consistent. Although 
THSD7A-positive malignancy-associated MN patients with serum 
THSD7A antibody positivity are still rare (14, 20), Chen et al. (16) 
reported a lung cancer patient who developed MN during targeted 
drug therapy and whose serum THSD7A antibody was positive. 
When the kidney disease was alleviated, the patient’s serum THSD7A 
antibody turned negative, and the patient’s tumor was also under 
control. These results suggest that the correlation between THSD7A 
antibody and disease changes is related to the pathogenesis of 
THSD7A-positive malignancy-associated MN.

THSD7A is a transmembrane N-glycoprotein expressed in 
normal glomerular podocytes, endothelial cells and mesangial cells 
(22), while human placental vascular endothelial cells also express 
THSD7A (23). In recent years, THSD7A has been studied not only in 
MN but also in malignant tumors. Research has explored the 
expression of THSD7A in more than 70 types of malignant tumor 
tissues and found that THSD7A expresses differently in various 
tumors. Among them, THSD7A is relatively commonly expressed in 
colorectal cancer, renal cancer, breast cancer and prostate cancer (24), 
and it was recently found that the transcription level and protein level 
of THSD7A were significantly increased in gastric cancer (25). In the 
study of tumor pathogenesis, uncontrolled angiogenesis is considered 
a hallmark of malignant tumors (26), and studies have confirmed that 
THSD7A participates in the invasion, metastasis and generation of 
tumor vessels (27). In vitro cell culture experiments knocking out 
THSD7A can inhibit cancer cell proliferation and migration also 
confirm this mechanism (25). For MN, it is currently believed that its 
pathogenesis is mainly attributed to the immune system’s response to 
antibodies, in which B cells (plasma cells) play a major role, but T-B 
cells also make a significant contribution to autoimmune diseases 
(28). Therefore, it is speculated that THSD7A may play a role in the 
pathogenesis of tumor-associated MN through T cells (Figure  1). 
However, the mechanism of immune system abnormalities in 
malignant tumors is very complex considering the involvement of 
various genetic and environmental factors in tumor and MN onset. 
Therefore, there is currently no research to confirm the clear 
relationship between THSD7A-MN and malignant tumors. The 
immunological pathogenesis of THSD7A-positive malignancy-
associated MN remains to be studied.

NELL-1

Following the discovery of PLA2R and THSD7A, Sethi et al. (29) 
found neural epidermal growth factor-like 1 protein (NELL-1) 
through laser microdissection and mass spectrometry analysis of renal 
biopsy tissues from patients with MN who were negative for PLA2R, 
accounting for approximately 10% of cases of MN (2). At the same 
time, in this cohort, 11.7% of NELL-1 positive MN were combined 
with malignant tumors. Subsequently, Caza et al. (9) reported that 
among patients with NELL-1 positive MN in the cohort, the 
proportion of those combined with malignant tumors was as high as 
30%, suggesting that NELL-1 is a target antigen for MN associated 
with malignant tumors. In our center’s cohort of 832 patients with 
membranous nephropathy and Japan’s cohort of 104 patients, NELL-1 

TABLE 1 Frequencies of antigens in the MN in connection with tumors.

Antigens in 
the MN in 
connection 
with tumors

Antigen 
frequency 

in MN

Antigen 
frequency in 

MN with 
malignant 

tumors

References

THSD7A 2% 9%–30% (8)

NELL-1 10% 10%–33% (2, 9)

PLA2R 55% 5% (10)

PCDH7 2% 20% (11)

HTRA1 4% 7% (12)

FAT1 1% 92% (13)

https://doi.org/10.3389/fmed.2024.1368457
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hu et al. 10.3389/fmed.2024.1368457

Frontiers in Medicine 03 frontiersin.org

positive MN patients did not combine with tumors (30). The reason 
for large differences between the cohorts, which may be related to 
geography and ethnicity. Compared with MN patients without 
malignant tumors (9), NELL-1 positive malignancy-associated MN 
patients were clinically characterized by older age and more males. No 
significant difference of serum creatinine and 24-h urinary protein 
quantification levels was found between these patients and those 
PLA2R-MN and THSD7A-MN patients (9). It has been reported that 
there was a significant increase in the number of inflammatory cells 
infiltrating glomeruli in malignancy-associated MN patients (31), but 
this feature was not observed in NELL-1 positive malignancy-
associated MN patients. NELL-1 positive malignancy-associated MN 
glomerular capillary loop immune complex shows segmental 
deposition or combined mesangial region immune complex 
deposition, renal tissue IgG subclass mainly by IgG1, pathological 
performance similar to NELL-1 positive MN without combination of 
malignant tumors (9).

NELL-1 is a 140 kDa modular glycoprotein normally expressed 
in neural tissues with lower expression levels in non-neural tissues 
such as the kidney and liver (31, 32). NELL-1 has higher expression 
in renal tubules than glomeruli (33). NELL-1 has been studied in 
numerous types of tumors prior to the discovery of NELL-1 as a 
MN-specific antigen. Expression levels of NELL-1 vary across 
tumor types. It has been reported that NELL-1 was overexpressed 

at both transcriptional and protein levels in neuroblastoma and 
osteosarcoma (34, 35), as well as prostate cancer, lung cancer and 
breast cancer (36). However, NELL-1 was downregulated at the 
gene, transcript and protein levels in renal cancer, gastric cancer 
and lymphoma (37–39). In previous studies on the pathogenesis of 
malignant tumors, abnormal CpG island and promoter methylation 
of genes were closely related to the occurrence of tumors. Studies 
on the pathogenic mechanism of NELL-1  in malignant tumors 
show that abnormal CpG islands and promoter methylation lead 
to downregulation of NELL-1 expression, thereby regulating the 
malignant behavior of renal cancer cells (39). In addition to renal 
cancer, NELL-1 gene promoter methylation can also be detected in 
colorectal cancer (40), esophageal cancer (41). Therefore, NELL-1 
may participate in the cell growth, differentiation and 
tumorigenesis of different tumors. However, despite the high 
expression of NELL-1 found in different malignancies, only a few 
patients with malignancies will continue to develop into MN. In 
recent years, studies on NELL-1 positive malignancy-associated 
MN have found that the expression of NELL-1 was observed in 
tumor and kidney specimens from patients with breast cancer, 
lymphoid follicle carcinoma and esophageal cancer (9, 42), but no 
study has confirmed a clear mechanism of action for NELL-1 in 
MN associated with malignant tumors. Although NELL-1 has been 
proven to play a role in tumorigenesis and development, its 

FIGURE 1

The proposed pathogenesis of malignancy-associated membranous nephropathy. Different types of tumors secrete tumor-associated antigens such 
as THSD7A, NELL-1, and PLA2R. The antigen is ingested by an antigen-presenting cell (APC), cut into peptide segments, presented to the APC surface, 
interacts with helper T cells (Th cell), specifically recognizes B cells, promotes the differentiation of B cells into mature plasma cells, secretes antibodies 
related to THSD7A, NELL-1, and PLA2R, and forms an antigen–antibody immune complex with the tumor antigen, which circulates to the glomerulus 
and deposits on the basement membrane of the glomerulus, causing MN. PLA2R, phospholipase A2 receptor; THSD7A, thrombospondin domain-
containing 7A; NELL-1, neural epidermal growth factor-like 1 protein. The illustration was created with BioRender.com.
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pathophysiological mechanism in malignant tumors remains to 
be further studied.

PLA2R

It is widely acknowledged that PLA2R is the most important 
antigen in primary membranous nephropathy, but a study has 
revealed that 16 (5.3%) of the 302 patients with PLA2R antibody-
positive MN were found to have malignant tumors within 
24 months after the diagnosis of MN (10). There are also reports 
show that 3 (25%) of the 12 patients with malignancy-associated 
MN were positive for PLA2R, suggesting that PLA2R may 
be associated with malignancy-associated MN. However, in the 
study conducted by Uhlen M, no remission of MN was observed 
after anti-tumor treatment in patients with PLA2R-positive MN 
combined with malignant tumors. It is considered that the 
relationship between PLA2R-positive MN and malignant tumors 
may be a coincidence (43). Therefore, the relationship between 
PLA2R and malignancy-associated MN needs further 
clarification. Compared with PLA2R-positive MN without 
malignancy, patients with PLA2R-positive malignancy-associated 
MN were older, had more proteinuria and worse renal function, 
and showed heavier interstitial fibrosis pathologically (10). Zhao 
et al. found that IgG subclass IgG3 was mainly positive (14) in 
renal tissues of PLA2R-positive malignancy-associated MN, 
while it was mainly positive for IgG4 (44) in primary MN with 
PLA2R positivity. It is considered that negativity of PLA2R and 
IgG4 in renal tissue are indicators of malignancy-associated MN 
(45, 46). In patients with PLA2R-positive malignancy-associated 
MN, serum PLA2R antibody IgG subtypes were found to 
be consistent with those of primary MN (10, 46), suggesting that 
the pathogenesis of PLA2R-positive malignancy-associated MN 
and PLA2R-positive primary MN may have pathways in common.

PLA2R is a type I  transmembrane receptor glycoprotein 
expressed on the surface of glomerular podocytes (44). PLA2R 
expression has been found in both kidney and malignant tumor 
tissues, but the role of PLA2R positivity in the pathogenesis of 
malignancy-associated MN remains unclear. In recent years, the 
research on PLA2R in tumors has gradually increased. Through the 
analysis of tumor gene chip database, it was found that the 
expression level of PLA2R varied in different tumor tissues, and 
the expression level of PLA2R mRNA was decreased in breast 
cancer (47) and kidney cancer (48), but not in pancreatic cancer 
and gastric cancer (47). In addition, there are controversies about 
the role of PLA2R in tumor cells. Some studies have found that 
PLA2R can promote apoptosis and inhibit cell transformation in 
tumor tissues (47, 49, 50). Vindrieux et  al. (48) found that 
knockdown of PLA2R promotes the formation of cancer cell 
colonies in renal cancer cell lines. In addition, the death of cancer 
cells was observed in PLA2R-expressing cancer cells due to an 
increase in intracellular reactive oxygen species (ROS), suggesting 
that PLA2R promotes tumor cell death. However, research by Jones 
et al. found that both renal cancer (48) and breast cancer tissues 
were observed to have PLA2R promoter methylation phenomenon. 
The methylation of PLA2R promoter would inhibit the expression 
of tumor suppressor genes in cancer cells, thus promoting cancer 

cell proliferation (51). Since there are still few case reports of 
PLA2R-positive MN patients with tumors in which PLA2R is 
expressed simultaneously in tumor tissues, the role of PLA2R in 
the pathogenesis of kidney and malignant tumors is not clear, 
which warrants further research.

PCDH7, HTRA1, FAT1

In addition to the MN specific antigens mentioned above, several 
newly discovered MN antigens may also be associated with malignant 
tumors. Approximately 20% of patients with Protocadherin 7 
(PCDH7)-MN have malignant tumors (11). Previous studies have 
shown that PCDH7 is involved in tumorigenesis in bladder cancer, 
renal cancer, lung cancer and gastric cancer (52–57), but its 
pathogenesis in MN remains unclear. Approximately 7% of patients 
with high-temperature requirement A1 (HTRA1)-MN have 
concomitant malignant tumors (12). Although HTRA1 has not been 
fully studied in the kidney, previous studies on malignant tumors 
suggest that HTRA1 has tumor suppressive effects (58–60). The loss 
of expression of HTRA1 leads to an increase in tumor invasiveness, 
enhanced metastatic ability and chemotherapeutic resistance (60). 
Protocadherin FAT1 (FAT1) is associated with hematopoietic stem cell 
transplant (HSCT)-related MN (0.6%) (13). As one of the most 
common mutant genes in a variety of cancers (61), whether FAT1 has 
a clear mechanism of action in HSCT-related MN requires 
further investigation.

It is necessary to acknowledge the limitations of this review. For 
example, we did not delve into the specific pathogenic mechanisms of 
antigens associated with malignancies in MN, as there is currently a 
lack of research on the pathogenic mechanisms in these patients. The 
second restraint is the limited number of cases of tumor-associated 
MN, especially those with immunostaining of antigens in both renal 
and tumor tissues. Therefore, further understanding of the 
characteristics of antigens in tumor-associated MN requires studies 
with larger sample sizes and longer follow-up time.

Conclusion

In this article, we summarize the clinical and pathological 
characteristics of antigen-positive malignancy-associated MN 
reported in recent years. We also summarize the possible role of 
MN-specific antigens in the pathogenesis of malignancy-
associated MN. Due to the complexity of the pathogenesis of 
malignant tumors, further explorations of the role of antigens in 
the pathogenesis will provide therapeutic targets for diseases in 
the future.
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