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Chronic kidney disease (CKD) is a growing global public health challenge 
worldwide. In Mexico, CKD prevalence is alarmingly high and remains a leading 
cause of morbidity and mortality. Diabetic kidney disease (DKD), a severe 
complication of diabetes, is a leading determinant of CKD. The escalating 
diabetes prevalence and the complex regional landscape in Mexico underscore 
the pressing need for tailored strategies to reduce the burden of CKD. This 
narrative review, endorsed by the Mexican College of Nephrologists, aims to 
provide a brief overview and specific strategies for healthcare providers regarding 
preventing, screening, and treating CKD in patients living with diabetes in all care 
settings. The key topics covered in this review include the main cardiometabolic 
contributors of DKD (overweight/obesity, hyperglycemia, arterial hypertension, 
and dyslipidemia), the identification of kidney-related damage markers, and 
the benefit of novel pharmacological approaches based on Sodium-Glucose 
Co-Transporter-2 Inhibitors (SGLT2i) and Glucagon-Like Peptide-1 Receptor 
Agonists (GLP-1 RA). We also address the potential use of novel therapies based 
on Mineralocorticoid Receptor Antagonists (MRAs) and their future implications. 
Emphasizing the importance of multidisciplinary treatment, this narrative review 
aims to promote strategies that may be useful to alleviate the burden of DKD 
and its associated complications. It underscores the critical role of healthcare 
providers and advocates for collaborative efforts to enhance the quality of life 
for millions of patients affected by DKD.
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Introduction

Chronic kidney disease (CKD) is a major public health problem 
due to its high global prevalence, affecting an estimated 843.6 million 
adults worldwide (1). In Mexico, it has been estimated that 
approximately 14.5 million people live with CKD, making it one of the 
top 10 causes of death, along with diabetes and cardiovascular disease 
(CVD) (2). Diabetes-induced CKD, also known as diabetic kidney 
disease (DKD), is a main contributor to CKD, which results from 
prolonged elevated blood sugar levels and can eventually require 
dialysis or renal transplantation. The main contributor to DKD is the 
rising incidence of diabetes (3). According to the International 
Diabetes Federation (IDF), they estimate that about 536.6 million 
adults worldwide have diabetes, representing 10.5% of the world’s adult 
population, and they projected that the burden of diabetes will increase 
to 783.2 million by 2045. Mexico ranks among the countries with the 
highest prevalence of diabetes, reaching an astonishing 16.9% in 2022, 
which results in 14.1 million adults living with this disease (4, 5). 
Consequently, diabetes is a major contributor to the macro-and-
microvascular complications seen in CKD, leading to high mortality 
rates and significant deterioration in quality of life among these 
patients (6). However, diabetes does not uniformly result in renal 
damage, as only one in four patients living with diabetes will develop 
CKD. Therefore, it is crucial to understand and address the 
heterogenicity of diabetes and its relationship with CKD to apply 
clinical strategies and create public health policies to reduce the burden 
of both diseases in Mexico. This narrative review aims to provide a 
general overview of the main contributors to CKD in patients living 
with diabetes and specific strategies for healthcare providers regarding 
prevention, screening, and treatment. We scope our review on four key 
areas, as illustrated in Figure  1, including the prevention of 
cardiometabolic contributors, the identification of kidney-related 
damage markers, and the benefits of using novel pharmacological 
approaches. The strategies outlined in this review are designed to 
enhance the understanding and management of CKD in patients living 
with diabetes among healthcare providers in all care settings in Mexico.

Section 1: cardiometabolic contributors to 
the burden of diabetic kidney disease

Addressing the contributors of DKD’s development can mitigate 
its burden. Central to this discussion is the multifaceted aspects of 
cardiometabolic diseases, which are highly prevalent in our country 
and act as precursors and exacerbators of diabetes, cardiovascular 
complications, and CKD. In this section, we will discuss the main 
cardiometabolic contributors to diabetic kidney disease in the context 
of Mexico.

Question 1.1 – what are the main 
cardiometabolic contributors of DKD?

Overweight and obesity
The complex interplay between obesity and diabetes leads to 

overall kidney damage. This damage primarily emerges from 
neurohormonal shifts in the cardiovascular system, characterized by 
increased sympathetic activity, accelerating heart rate, and spiking 
blood pressure levels (7). Central to this is the role of angiotensin II, 
synthesized in adipose tissue, which interfaces with diverse pathways 
to induce endothelial dysfunction, inflammation, and fibroblast 
proliferation (8, 9). Another exacerbator of obesity is related to the 
growth in the body surface, which often outpaces renal mass 
expansion, facilitating conditions like hyperfiltration within the 
glomerular filtration barrier focal and segmental glomerulosclerosis, 
and glomerulomegaly. Consequently, obesity is considered to be a 
main risk factor for diabetes and its progression to DKD (10–12).

Hyperglycemia
Hyperglycemia, or elevated blood sugar levels, is a primary factor 

in kidney damage. Several theories have been proposed to explain the 
relationship between high glucose levels and renal impairment. The 
main ones include sorbitol formation, oxidative stress escalation, 
protein kinase C activation, and hexosamine pathway activation (13, 
14). However, the most widely accepted theory centers around 
advanced glycation end products (AGEs). AGEs are complex 
compounds that form when the residuals of the reduction of sugars 
are bound to proteins. AGEs can damage cells in several ways. First, 
they can generate reactive oxygen species (ROS), which can damage 
DNA. Second, AGEs can activate transcription factors that can 
produce inflammatory cytokines (15, 16). Third, they can bind to 
growth factors, such as transforming growth factor β (TGF-β), which 
can promote fibrosis, and the vascular endothelial growth factor 
(VEGF), an influential angiogenic mediator (17). In the next sections, 
we will mention the role of managing blood glucose and how it is an 
essential factor in reducing the risk of progression to DKD.

Arterial hypertension
Arterial hypertension in patients living with diabetes has unique 

physiopathological features (18–20). These patients tend to 

Abbreviations: ACEIs, Angiotensin–Converting Enzyme Inhibitors; ACR, Albumin/
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Dilution Mass Spectrometry; MRAs, Mineralocorticoid Receptor Antagonists; MS, 
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experience higher elevations in systolic blood pressure, wider pulse 
pressures, increased blood pressure variability, heightened salt 
sensitivity, a tendency toward hyperkalemia, and orthostatic 
hypotension, among others. These processes are combined with 
specific CKD-related mechanisms, such as the activation of the 
renin-angiotensin-aldosterone system (RAAS), stress on the renal 
microvasculature and the endoplasmic reticulum, mitochondrial 
dysfunction, and apoptosis, which ultimately promote endothelial 
cell damage, thickening of the glomerular basement membrane, 

podocyte effacement, and pedicel fusion (21). Therefore, blood 
pressure targets are one of the main protective factors to the onset of 
DKD. In this context, patients’ optimal blood pressure targets are a 
topic of ongoing debate. Some guidelines and studies recommend 
aiming for a blood pressure below 140/90 mmHg, while others 
advocate for even lower targets, such as 130/80 mmHg or a systolic 
pressure of less than 120 mmHg (22, 23). In terms of pharmacological 
treatment, medications that have been shown to be  effective in 
lowering blood pressure in the context of DKD include 

FIGURE 1

Summary of four strategies to reduce the burden of CKD in patients living with diabetes in the context of Mexico. A1c, Glycated hemoglobin; ACR, 
Albumin-to-Creatinine Ratio; CKD: Chronic Kidney Disease; DKD, Diabetic Kidney Disease; eGFR, Estimated Glomerular Filtration Rate; GLP-1 RA, 
Glucagon-Like Peptide-1 Receptor Agonists; nsMRA, Non-steroidal Mineralocorticoid Receptor Antagonists; RAAS, Renin-Angiotensin-Aldosterone 
System, RRT, Renal Replacement Therapy; SGLT2i, Sodium-Glucose Co-Transporter-2 Inhibitors; US, Ultrasound.
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angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin 
II receptor blockers (ARBs) (23–25). Based on individual patient 
conditions, diuretics or calcium channel blockers may serve as 
second-line treatments, with spironolactone positioned as a potential 
fourth-line option (26, 27). Some clinical trials have highlighted the 
potential benefit of using chlorthalidone as an alternative to 
spironolactone for people with refractory hypertension and 
decreased glomerular filtration rate (28). In patients with absolute or 
relative contraindications to use ARBs or ACEIs, 
non-dihydropyridine Calcium Channel Blockers, whose beneficial 
effect on proteinuria is documented in clinical studies, may 
be considered (29).

Dyslipidemia
Dyslipidemia is highly prevalent in Mexico. In national surveys, 

hypoalphalipoproteinemia is the most frequent dyslipidemia in 
Mexico, followed by hypertriglyceridemia (30). The co-existence of 
dyslipidemia and diabetes is also extremely high. In some studies from 
other countries, rates have been reported up to 85.3%, with a higher 
prevalence in females and the elderly (31). The pathophysiological 
mechanism of kidney damage due to dyslipidemia is linked with 
lipotoxicity, which generates an exacerbated inflammatory process. 
Free fatty acids (FFAs) are triacylglycerols stored in adipose tissue, 
primarily as abdominal fat. When abdominal fat increases, there is a 
rise in blood FFAs, which exceeds the maximum lipid storage capacity 
of adipose tissue, releasing lipid mediators that cause insulin resistance 
and accumulation of fatty acids in other tissues, such as the heart, 
blood vessels, kidneys, liver, and pancreas. This leads to an increase in 
the expression of inflammatory cytokines, oxidative stress, lipid 
peroxidation, and vesicular transport dysfunction, causing 
endoplasmic reticulum and lysosomal stress. All these alterations 
promote atherogenesis in renal vasculature and the progression of 
kidney damage (32). Moreover, it has also been reported that 
dyslipidemia increases the values of oxidized low-density lipoprotein 
cholesterol in plasma and renal parenchyma, which are cytotoxic to 
kidney cells, inducing apoptosis of tubular cells (33). Currently, the 
term “fatty kidney” has been coined. This condition is characterized 
by the ectopic accumulation of lipids in kidney tissue, causing lesions 
at the level of podocytes, proximal tubule epithelial cells, and 
tubulointerstitial tissue (34).

Section 2: phenotypes of DKD and their 
risk for kidney damage, cardiovascular 
morbidity, and mortality

The hallmark of DKD is characterized by an elevated level of 
albumin in urine, either >300 mg/24 h or an albumin/creatinine 
ratio > 300 mg/g of creatinine. To accurately diagnose DKD, these 
levels should be confirmed in at least two out of three assessments and 
should be distinct from other kidney etiologies (35, 36). Therefore, 
screening for albuminuria has become the main indicator of kidney 
damage in diabetes and its related complications. Nevertheless, the 
conventional presentation of DKD, which encompasses high 
albuminuria and a decreasing glomerular filtration rate (GFR), is 
found in only 30–40% of patients living with diabetes (35). In this 
section, we will discuss the strategies for evaluating microalbuminuria 
and GFR and shed light on the diverse DKD phenotypes.

Question 2.1 – what are the recommended 
tests to detect albuminuria?

In clinical practice, the primary markers for kidney function are 
albuminuria and GFR (37). Albuminuria has been demonstrated to 
correlate with an increased risk of GFR decline, CKD progression, and 
a risk factor for CVD-related morbidity and mortality. Therefore, in 
patients living with diabetes, albuminuria onset serves as an early 
marker for DKD. Table 1 presents the advantages and disadvantages 
of three tests used to measure albuminuria in the context of low-and 
middle-income countries based on recent recommendations (38):

 1 Urinary Albumin Excretion: This can be measured either with 
a random urine sample or through monitoring albumin 
excretion over a 24-h urine collection.

 2 Albumin/Creatinine Ratio (ACR): The albumin/creatinine 
ratio (ACR) has emerged as a standardized way to measure 
albuminuria (39). Based on ACR, it has been suggested that a 
level > 300 mg/g is a strong risk factor for DKD progression 
(40). This can be determined from a random or from a 24-h 
urine collection.

 3 Proteinuria Detection: Measured using a reagent strip.

According to the Kidney Disease: Improving Global Outcomes 
(KDIGO) guidelines, it is suggested that determining albumin 
excretion over a 24-h urine collection should be the initial method for 
screening kidney damage in patients with diabetes (41). If the clinical 
circumstances make this test unfeasible, albumin excretion from a 
random urine sample could be a reliable alternative for evaluating 
kidney disease in diabetes. Both methods offer the most precise 
evaluations for diabetes-related kidney damage in clinical scenarios. 
Additionally, the ACR is more accurate than the 24-h urine collection. 
However, both the 24-h urine collection and the ACR have been 
reported to be impractical and challenging in primary care settings 
(41, 42).

In low-to-middle-income regions, such as Mexico, the widespread 
availability of reagent strip tests for urinary protein has also been 
pinpointed as an alternative to measure albuminuria. Nevertheless, 
previous evidence has shown its limited effectiveness within clinical 
contexts. Some studies have highlighted its diminished sensitivity and 
specificity when identifying albuminuria, given its semi-quantitative 
method that can detect only 30–40% of urinary proteins (41, 43). 
Hence, this test is not recommended to evaluate albuminuria in 
primary or routine clinical screening or follow-up visits.

Question 2.2 – does proteinuria hold the 
same prognostic value as albuminuria for 
renal function and the development of 
cardiovascular complications?

When assessing patients with DKD, it is essential to consider 
albuminuria rather than proteinuria as a marker of progression of the 
disease. However, both metrics are essential when evaluating 
individuals with non-diabetic CKD and for screening kidney damage 
in the general population (44). Urinary albumin is the main protein 
lost in the urine, and its measurement provides a more accurate 
assessment of glomerular permeability changes than evaluating total 
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proteins in the urine (45, 46). This is also supported by the KDIGO 
guidelines, which recommend using albuminuria for CKD staging 
and monitoring (41). However, estimating albuminuria can be limited 
by higher costs and limited availability in some regions. A summary 
of the main comparisons between the use of proteinuria and 
albuminuria is presented in Table 2.

Question 2.3 – what is the ideal formula to 
estimate the GFR based on specific 
populations?

Adult population without dialysis requirement
Patients with detected DKD experience an average annual 

decrease in GFR of 10 to 20 mL/min/1.73m2, which can lead to 
End-Stage Renal Disease (ESRD) within 7–8 years (47, 48). Therefore, 
GFR is an important marker in determining the progression of DKD 
and predicting the onset of ESRD. In clinical practice, the most 
commonly used equations to determine the estimated GFR (eGFR) in 
patients aged 18 to 70 years are the CKD Epidemiology Collaboration 
(CKD-EPI) and the Modification of Diet in Renal Disease by Isotope-
Dilution Mass Spectrometry (MDRD-IDMS) (49). MDRD-IDMS and 
CKD-EPI equations effectively estimate GFR levels below 60 mL/
min/1.73m2, but CKD-EPI is superior for rates between 60 and 
120 mL/min/1.73m2 (50). However, efforts to standardize both 

formulas for specific populations have yielded varied results. A 2021 
systematic review from Latin American countries found no significant 
differences between the CKD-EPI and MDRD-4-IDMS equations. 
However, most of these studies focused on Brazilian populations, 
which limits regional extrapolation (49).

Older adults living with CKD
A specific situation arises when managing older adults living with 

DKD. Two new equations based on serum creatinine and cystatin C 
have emerged for this specific population. The equation using serum 
creatinine is called BIS-1, while the one that includes CysC is called 
BIS-2. Both equations were more accurate than MDRD-IDMS and 
CKD-EPI within older adults (51, 52). In 2016, a novel equation 
emerged specifically for patients over 70 years: the FAS (Full Age 
Spectrum). The FAS equation was better than CKD-EPI in classifying 
CKD stages, especially when GFR ranged from 15 to 60 mL/
min/1.73 m2 (53), and it provided similar results to the BIS-1 equation. 
Therefore, it has been suggested that using the FAS and BIS formulas 
is a better approach to measuring the eGFR in older adults.

Cystatin C-based formulas
It has been reported that serum Cystatin C (CysC) is a more 

accurate indicator of kidney function compared to creatinine (54). As 
CysC measurements become more widely available in clinical labs, it 
may be beneficial to consider using CysC-based equations for more 

TABLE 2 Clinical comparison between the use of proteinuria and albuminuria as markers for the as markers of progression of the DKD.

Proteinuria Albuminuria

Type of damage Tubulointerstitial damage Glomerular damage

Higher sensitivity to low levels of urinary proteins ⬆ ⬆ ⬆ ⬆

Cost ⬆ ⬆ ⬆ ⬆

Analytical test performance ⬆ ⬆ ⬆ ⬆

Biomarker for CKD, cardiovascular disease, and mortality in diabetics ⬆ ⬆ ⬆ ⬆

Biomarker for CKD, cardiovascular disease, and mortality in non-

diabetics
⬆ ⬆ ⬆ ⬆

Early diagnosis of diabetic kidney disease – ⬆ ⬆

Alternative endpoint for the decline in GFR in nephrotic syndrome ⬆ ⬆ –

Adapted from: Guh JY. Proteinuria versus albuminuria in chronic kidney disease. Nephrology. 2010 Jun; 15: 53–6; CKD, chronic kidney disease, CV, cardiovascular, GFR, glomerular filtration 
rate.

TABLE 1 Methods for the detection of kidney damage related to DKD.

Determination of albuminuria in 
24-h urine

Albumin/creatinine ratio in a random 
urine sample

Dipstick proteinuria

Advantages

► Specific and precise quantification at low 

concentrations

► Quantitative results in the clinically relevant 

range.

►Preferred by guidelines.

► Specific and precise quantification at low 

concentrations

► Quantitative results in the clinically relevant range.

►More sensitive to changes in glomerular 

permeability

►Convenient

►Lower cost

Disadvantages

► Expensive and time consuming and adds little to 

prediction.

►Repeat testing is required, with 2 of 3 abnormal 

measurements within a 3–6-month period before a 

patient is considered to have albuminuria.

►Repeat testing is required, with 2 of 3 abnormal 

measurements within a 3–6-month period before a 

patient is considered to have albuminuria

►Only detects albuminuria

►Measurement of albumin alone 

without simultaneous measurement of 

urine creatinine is susceptible to false-

negative and false-positive results
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accurate estimations whenever possible, particularly in cases where 
creatinine-based equations might produce inaccurate results due to 
fluctuating creatinine concentrations, muscle mass/diet changes, or 
when GFR is between 45 and 59 mL/min/1.73 m2 without other 
damage markers (55). However, the current KDIGO guidelines advise 
against using CysC routinely due to its potential cost and the need for 
specialized equipment (47, 48). Therefore, its use may be potentially 
reserved in a context with high resources.

Pediatric patients living with CKD
The pediatric population presents a challenging scenario when 

it comes to measuring the eGFR, as several equations have been 
proposed. Among them, the Schwartz equation is the most 
recommended formula. However, it tends to overestimate the eGFR 
since it is based on the Jaffé method for measuring creatinine (56). 
To achieve better results, it has been suggested that the 2012 
Schwartz equation is a better approach as it incorporates serum 
creatinine, cystatin C, blood urea nitrogen, height, and gender 
(56, 57).

Question 2.4 – do the different DKD 
phenotypes confer the same risk of renal 
and cardiovascular outcomes in patients 
with diabetes?

Four different DKD phenotypes have been described during the 
last decade. The classic DKD phenotype is still the most common; 
however, current evidence suggests that non-classic phenotypes have 
increased in prevalence, suggesting that 20–40% of DKD belongs to 
non-classic phenotypes (45).

 • Classic phenotype: Patients who experience the classic phenotype 
typically have a high GFR, which suggests that glomerular 
hyperfiltration is an adaptive response to nephron loss. This is 
followed by persistent albuminuria, which is a constant, 
progressive, and ascending finding characterized by a transition 
from normo (ACR < 30 mg/g) to micro (ACR 30–299 mg/g) and 
macro-albuminuria (ACR ≥300 mg/g). As albuminuria 
progresses, there is usually a continuous decline in GFR, leading 
to advanced CKD stages.

 • Albuminuria regression phenotype: In some patients, the 
progression from normal to macro-albuminuria is not linear, as 
it has been documented that regression of albuminuria can 
spontaneously occur in up to 51% of the cases (58). Some studies 
have investigated the association between regression to normo-
albuminuria and the risk of renal function outcomes. In two 
cohorts of patients with type 1 and 2 diabetes, remission to 
normo from micro-albuminuria or macro-albuminuria over 4 to 
5 years was associated with favorable renal outcomes compared 
with stable normo-albuminuria (59, 60). However, other studies 
have shown that the remission to normo from micro-albuminuria 
was not associated with a reduction in the risk of renal and 
cardiovascular events (61). These contradictory results may 
be due to differences in the characteristics of the groups, such as 
the duration of micro-albuminuria before the study and the use 
of pharmacological interventions. Therefore, the leading causes 
of regression and its predictive factors are still an area for 
further research.

 • Rapid GFR decline phenotype: The rapid GFR decline phenotype 
is a condition where patients with diabetes experience a fast 
decline in their GFR over a brief period. While the annual rate of 
decline in GFR for most patients with diabetes is between −4.0 
to −1.5 mL/min/1.73 m2 per year, some patients will experience 
a much more rapid decline. A recent study conducted on 1,955 
people living with diabetes found that up to 14% had a rapid 
decline in GFR (62). Another study conducted on 377 biopsy-
proven diabetic nephropathy cases, with or without albuminuria, 
reported that 61% of patients experienced a rapid decrease in 
GFR over a 6.9-year follow-up period (63). High GFR, high 
systolic blood pressure, or albuminuria were found to be common 
risk factors for rapid GFR decline and, therefore, should 
be treated as key determinants of developing this condition.

 • Non-albuminuric rapid GFR decline phenotype: This phenotype is 
characterized by a decrease in GFR in the absence of proteinuria. 
Risk factors for this phenotype include female sex, hypertension, 
smoking, absence of diabetic retinopathy, and use of RAAS 
inhibitors (64). Furthermore, this phenotype has a discordance 
between tubulo-interstitial and vascular lesions and global 
glomerulosclerosis (64). This data supports the possible 
involvement of nephrosclerosis due to aging and hypertension, 
interstitial nephritis and fibrosis, and ischemic vascular disease 
due to atherosclerosis in the progression of this phenotype. 
Hence, this phenotype has been described as less aggressive than 
patients with DKD and proteinuria; however, caution and routine 
care for these patients should be encouraged.

In the context of Mexico, the following recommendations are 
endorsed to reduce the progression of kidney damage and 
cardiovascular morbidity:

 1 Mass screening of albuminuria for high-risk populations: Early 
detection, especially in patients living with diabetes, can 
prevent complications and facilitate timely medical 
intervention. In Table 1, we summarize the main methods for 
the detection of albuminuria in clinical practice.

 2 Standardization of GFR: As previously discussed, equations 
such as CKD-EPI and MDRD-IDMS play a relevant role in 
estimating GFR in adults. However, the challenge lies in 
their applicability across various populations, such as older 
adults, patients with inadequate creatinine clearance, and 
the pediatric population. We  suggest using customized 
formulas designed for these specific populations to 
ensure accuracy.

 3 Integration of diagnostic methods into primary care units: For a 
tangible impact on early DKD detection and treatment, it is 
imperative to incorporate these diagnostic approaches into 
primary care units, where most of the patients living with 
diabetes are managed. Early diagnosis of DKD enables prompt 
initiation of clinical and pharmacological treatment.

Section 3: glucose management in patients 
living with DKD

In patients living with diabetes, hyperglycemia tops the list of risk 
factors for the progression of DKD and ESRD. Moreover, the burden 
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of DKD for patients with diabetes goes beyond kidney function by 
increasing the risk of CVD and all-cause mortality (65). Therefore, 
effective glucose management in patients living with diabetes is 
paramount as it stands as the primary preventive measure not only 
against micro and macrovascular complications but also to reduce the 
risk of DKD-related complications. This section will focus on current 
pharmacological strategies to improve hyperglycemia management, 
highlighting their kidney-related benefits.

Question 3.1 – what is the recommended 
HbA1c target for different CKD stages?

HbA1c is a pivotal metric in assessing glycemic control in patients 
living with diabetes. To achieve appropriate glycemic control in 
patients with diabetes and CKD, the American Diabetes Association 
(ADA) and KDIGO recommend biannual HbA1c evaluations for 
those meeting therapeutic targets. Conversely, for patients willing to 
have more intensive glycemic control, those not reaching their 
glycemic goals, or those undergoing therapeutic adjustments, the 
ADA prompts that HbA1c measurement should be performed every 
3 months (66, 67).

HbA1c targets in patients with DKD
Regarding glycemic control, ADA guidelines propose an HbA1c 

target of ≤7% in patients living with CKD to decrease the risk of CVD 
complications (68–70). Previous studies suggest that patients living 
with diabetes with HbA1c levels between 6.5–7.0% experience a 
reduced risk of micro and macro-albuminuria and the onset of 
advanced CKD (71). Similarly, other studies have highlighted the 
benefits of intensive glycemic control in slowing the risk of progression 
to DKD (72, 73). However, reaching a threshold <6.5% did not result 
in a significant benefit for the reduction of CVD (74). Overall, both 
ADA and KDIGO recommend a personalized approach to setting 
glycemic targets. In Figure  2, we  summarize the main factors to 
consider individualized HbA1c goals in the context of DKD. These 
strategies need a collaborative effort between patients and healthcare 
professionals, ensuring that individual risk factors and the potential 
benefits of glycemic control are adequately considered. Although a 
general agreement leans toward maintaining HbA1c levels ≤7.0%, 
dropping toward a Hba1c <6.5% might inadvertently increase 
hypoglycemia risk. Additionally, the ADA suggests slightly elevated 
targets (HbA1c <8%) for specific patient groups, especially those with 
a limited lifespan, severe complications, multiple comorbidities, or a 
history of hypoglycemic incidents (75).

HbA1c in the context of advanced CKD
A challenging scenario in diabetes care emerges when managing 

glycemic control in patients living with diabetes with advanced stages 
of CKD, specifically stages 4 & 5 (68, 76). The discussion becomes 
even more pronounced for patients undergoing renal replacement 
therapy (RRT). To achieve optimal glucose management within these 
populations, there are several factors that need to be  taken into 
account. These include the reduction of renal gluconeogenesis due to 
a decrease in renal tissue volume, slower metabolism and excretion of 
insulin and oral diabetic medications, which prolongs the half-life of 
these drugs, and the development of anorexia, decreased food intake, 
and subsequent weight loss due to the uremic condition (77).

Another important consideration is the reliability of HbA1c as a 
marker of glycemic control in patients with GFR <30 mL/min/1.73 m2 
and anemia due to a curtailed accumulation of glycosylation products 
and hemoglobin carbamylation (78). These spontaneous processes 
result from the binding of urea metabolism to protein amino groups. 
Therefore, carbamylation in the context of CKD may artificially 
increase and fluctuate HbA1c levels (71, 79). In these scenarios, when 
GFR falls <30 mL/min/1.73 m2, HbA1c measurements might 
be  underestimated by 0.5 to 1.0%. Therefore, adjusting observed 
values of HbA1c within this range could lead to more accurate 
estimations to evaluate glycemic control in this population. Another 
potential option is the use of glycated albumin since it’s not influenced 
by anemia or other CKD-related treatments. Furthermore, it reflects 
blood glucose status in an average of 2 to 3 weeks (80). Nevertheless, 
its application may be restricted to its cost and accessibility in several 
primary care settings.

Question 3.2 – which hypoglycemic agents 
have shown benefits on renal and 
cardiovascular outcomes in CKD before 
RRT?

The use of sodium-glucose co-transporter-2 inhibitors (SGLT2i) 
and glucagon-like peptide-1 receptor agonists (GLP-1 RA) has 
enriched the landscape of diabetes care. These hypoglycemic agents 
have shown cardiovascular and renal benefits not only for patients 
living with diabetes but also for those living with CKD (81). This 
section will discuss the mechanism of action, clinical benefits, and 
potential side effects of these medications for patients with diabetes 
and CKD.

SGLT2 inhibitors
SGLT2i act by blocking glucose reabsorption in the proximal 

convoluted tubule via the SGLT-2 co-transporter, thus leading to 
glycosuria. By inhibiting the SGLT-2 cotransporter, these drugs also 
reduce sodium reabsorption, which is typically elevated in patients with 
diabetes due to excessive tubular glucose loads, thus resulting in 
natriuresis and decreased intravascular volume and blood pressure. 
Additionally, natriuresis increases sodium supply to the macula densa 
by normalizing the tubuloglomerular feedback (82). Therefore, it has 
been described that SGLT2i reduces intraglomerular pressure by 
constricting abnormally dilated afferent arterioles, thus mitigating 
glomerular hyperfiltration and delaying the progression of kidney 
disease. Other pleiotropic effects that explain the renal benefits of 
SGLT2i include blood pressure reduction, weight loss, and decreased 
serum uric acid levels. Additionally, SGLT2i possesses anti-inflammatory 
and antifibrotic properties, which may counteract renal hypoxia and 
thus reduce systemic inflammation (83). Nevertheless, their effect 
depends on renal function, which may lead to pharmacodynamic 
changes in individuals with reduced kidney function (84). Thus, 
initiating SGLT2i in patients with GFR <20 mL/min/1.73 m2 may not 
be effective and may even increase the risk for adverse events (85).

SGLT2 inhibitors in the context of CKD
SGLT2i have shown a clear benefit in reducing CKD progression 

and preventing ESRD onset (82). Although the absolute risk reduction 
is higher among cases with severe albuminuria, the relative risk reduction 
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of renal failure is similar among patients with and without this condition. 
Several clinical trials have found that canagliflozin, dapagliflozin, and 
empagliflozin can reduce the risk of ESRD, serum creatinine doubling, 
heart failure hospitalization, CVD death, and all-cause mortality in 
patients with diabetes and certain levels of GFR and albuminuria/
creatinine ratios (86–88). Ertugliflozin has also been studied and was 
found to have a slower decline in eGFR and a decrease in urine ACR, 
thus proving efficacy and safety among patients living with diabetes (89, 
90). Other SGLT2i, such as ipragliflozin and luseogliflozin, have been 
studied in smaller trials with diverse renal outcomes, thus leading to 
inconclusive results for clinical practice (91, 92).

Side effects of SGLT2i include genital fungal infections, for which 
approximately 10% of women and 1–2% of uncircumcised men had 
reported. Other studies have reported an increased rate of orthostatic 
hypotension, especially when combined with diuretics, and an increase 
in the risk of euglycemic diabetic ketoacidosis (93). An increased risk 
of below-the-knee amputations was observed with canagliflozin, whil 
this was not reported for empagliflozin, dapagliflozin, or ertugliflozin 
as an adverse outcome in their respective trials (94).

GLP-1 receptor agonists
GLP-1 RA have emerged as novel and efficient hypoglycemic 

agents with significant benefits on cardiovascular and renal outcomes 
(95). Therefore, for patients living with diabetes and CKD who have 
not attained glycemic control despite initial glucose-lowering therapy 
or SGLT2i use, GLP-1 RA represent an attractive alternative. This 

option not only enhances glycemic control but also offers added renal 
advantages. GLP-1 RA promote a glucose-dependent insulin response 
by targeting GLP-1 receptors. These are found in the gastrointestinal 
tract and other tissues, including glomerular endothelial cells. When 
administered subcutaneously, GLP-1 RA amplify glucose-dependent 
insulin secretion, diminish glucagon release, decelerate gastric 
emptying, and suppress appetite. This multifaceted action can lead to 
substantial weight loss. Furthermore, GLP-1 RA mitigate albuminuria 
and mesangial expansion by inhibiting TGF-β signaling (96).

GLP-1 receptor agonists in the context of CKD
Several clinical trials have assessed the long-term impacts of 

liraglutide on the composite of diverse clinical outcomes, including 
improved GFR and decreased risk for CKD onset, kidney disease-
related mortality, and CVD mortality. Furthermore, patients treated 
with liraglutide experienced fewer adverse outcomes compared with 
conventional treatment (97–99). However, no discernible 
cardiovascular or CKD benefits were observed with the extended 
release of either exenatide or lixisenatide (100, 101).

Comparison of SGLT2i and GLP-1 RA for 
albuminuria treatment

A series of systematic reviews focusing on these two drug 
groups and their effects on ACR in patients living with diabetes 
concluded that over extended periods, both canagliflozin and 
empagliflozin decreased ACR by 19–22% compared with control 

FIGURE 2

Factors to consider individualized HbA1c goals in patients living with DKD. CKD: Chronic Kidney Disease; HbA1c, Glycated hemoglobin.
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groups, while GLP-1 RA led to a 17–33% reduction in ACR (102). 
In patients without diabetes, two multicentric clinical trials found 
that SGLT2i consistently lowers ACR compared to control groups, 
irrespective of initial albuminuria status (103). In contrast, GLP-1 
RA exhibited diverse impacts on ACR reduction based on initial 
albuminuria status. Compared to placebo, liraglutide led to ACR 
reductions of 14, 24, and 13% in patients with normo, micro, and 
macroalbuminuria, respectively (102).

Based on the research and clinical insights related to glucose 
management in patients living with DKD, we present the following 
suggestions tailored for the Mexican context:

 1 Perform biannual or trimonthly A1c measurement: Both ADA 
and KDIGO guidelines suggest that A1C measurements should 
be conducted biannually for patients meeting their therapeutic 
targets. However, for those aiming for tighter glycemic control, 
those not achieving their glycemic objectives, or those 
undergoing intensive treatment modifications, the ADA 
advises quarterly (every 3 months) A1c assessments.

 2 A1c goals should be adapted for CKD stages: For patients with 
CKD stages >3, an A1c target of ≤7% is advised. However, for 
patients with CKD stages 4 and 5, A1c targets should be tailored 
based on comorbidities and the risk of hypoglycemic episodes.

 3 Acknowledge the variability of HbA1c in the context of CKD: 
HbA1c levels can be  underestimated in the context of 
CKD. Consequently, adjusting observed HbA1c values by a 
factor of 0.5 to 1.0% might provide a more reliable 
representation of glycemic status.

 4 Consider dose adjustment and novel therapies for patients with 
diabetes and CKD: While insulin remains the go-to treatment 
for those patients undergoing RRT, hypoglycemic medications 
should be adjusted based on GRF. Table 3 summarizes the main 
dosage adjustments based on hypoglycemia families. 
Furthermore, for those failing to achieve satisfactory glycemic 
control with conventional therapies, introducing SGLT2i and 
GLP-1 RA should be  considered. These novel agents can 
enhance glucose regulation and diminish the risk of adverse 
renal and CVD outcomes.

Section 4: other pharmacological 
approaches to treat DKD

Patients living with DKD often display neurohormonal 
hyperactivity, which elevates their risk for adverse CVD and renal 
outcomes. Pathophysiological pathways in the cardiorenal syndrome 
are characterized by a sustained inflammatory response and increased 
RAAS activity. The combined effect of neurohormonal and RASS 
hyperactivity results in increased water and sodium retention, leading 
to volume overload (104), and cardiac and renal fibrosis, which is then 
aggravated with a functional decline (105). Although these pathways 
are linked and share similar pathophysiological traits, there are 
different progression patterns in renal function for these patients, such 
as rapid GFR decline and fluctuating GFR trajectories, which have 
implications for patient survival (64). This section will discuss new 
pharmacological methods to treat DKD, considering other 
pathophysiological pathways involved.

Question 4.1 – what is the evidence of 
novel mineralocorticoid receptor 
antagonists for DKD?

RAAS inhibitors, ARBs, and SGLT2i have consistently been 
demonstrated to decrease the progression of DKD (106–108). However, 
around 35% of patients will face an elevated risk of progressing to more 
severe stages of CKD related to high blood pressure despite using these 
medications (109). This enduring risk might be  attributed to a 
phenomenon called “aldosterone escape,” which is experienced by almost 
half of the patients treated with RAAS inhibitors within the first year 
(110). The “aldosterone escape” is characterized by a significant decrease 
in the antiproteinuric effects of RAAS despite receiving appropriate 
pharmacological therapy (110). While aldosterone primarily regulates 
sodium and potassium balance in the nephron, its secondary effects can 
induce the expression of inflammation markers (such as SGK1, MCP1, 
TGF-β1, and IL-6), which overall contribute to hypertrophy and fibrosis 
related to DKD (111, 112). Furthermore, it has been demonstrated that 
increased aldosterone levels serve as a marker of renal damage and are 
associated with requiring RRT and all-cause mortality (113). Similar 
studies have suggested that even short durations of aldosterone 
stimulation can induce renal tubular interstitial fibrosis (114, 115).

Over the past 30 years, clinical efforts have been made to 
mitigate aldosterone’s deleterious effects through mineralocorticoid 
receptor antagonists (MRAs) primarily to decrease blood pressure 
levels (111, 116). The combination of MRAs and RAAS inhibitors 
has demonstrated benefits by decreasing proteinuria levels whil 
preserving GFR levels (115). Additionally, MRAs have been shown 
to provide hemodynamic benefits by reducing both systolic and 
diastolic blood pressure levels by an average of 5.6 and 1.73 mmHg, 
respectively (117). However, their use has also been associated with 
an elevated risk of hyperkalemia, which has limited its 
implementation, particularly in patients living with diabetes and 
undergoing RRT (118, 119).

TABLE 3 Dosage adjustment for medications for the treatment of 
diabetes for subjects with chronic kidney disease (CKD) stages 3–5 and 
renal replacement therapy.

Pharmacological 
group

Dosage adjustment

Insulin No dose adjustment

Sulfonylureas
Glipizide: No dose adjustment

Glyburide: Avoid its use

Biguanides
Metformin: Suspend treatment with eGFR <30 mL/

min/1.73m2

Thiazolidinediones Pioglitazone: No dose adjustment

DPP-4 Inhibitors

Linagliptin: No dose adjustment

Sitagliptin: eGFR 30–50 mL/min/1.73m2 adjust to 

50 mg/day and eGFR <30 mL/min/1.73m2 to 25 mg/

day

GLP-1 receptor agonists No dose adjustment required

SGLT-2 inhibitors

Canagliflozin and empagliflozin not recommended 

with eGFR <30 mL/min/1.73m2

Dapagliflozin use not recommended with eGFR 

<25 mL/min/1.73m2
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Question 4.2 – what is the clinical evidence 
for using finerenone to treat DKD?

The challenges with older MRAs led to the development of 
finerenone, which has a stronger affinity to mineralocorticoid 
receptors (119). Unlike spironolactone and eplerenone, finerenone 
does not affect the central nervous system and has decreased side 
effects compared with traditional MRAs (120). Moreover, it effectively 
reduces sodium channel activity in the kidney, promoting salt 
excretion and reducing inflammation and scarring in other cell types 
(121). In two multicenter clinical trials and combined analyses, 
finerenone reduced, on average, the systolic blood pressure by 
3.8 mmHg, reduced kidney and heart-related damage, and lowered 
the risk of requiring RRT in the long term (122–125). Moreover, 
other clinical trials have shown that finerenone offers kidney benefits 
similar to SGLT2i (126, 127), and only a few patients discontinued 
treatment due to high potassium levels (126, 128).

In the context of Mexico, the following suggestions are endorsed 
to consider the complementary use of finerenone to decrease the risk 
of progression of DKD:

 1 Comprehensive initial assessment: Clinicians should conduct 
extensive screening before initiating finerenone, 

emphasizing the baseline GFR, albuminuria, and serum 
potassium levels. According to some studies, there is an 
initial decrease in the GFR, which eventually stabilizes over 
time (122, 125).

 2 Safety and dosage protocols: Figure  3 summarizes the 
recommendations for initiating finerenone. A 10 mg/day 
dosage is recommended for patients with a baseline potassium 
level below 5.0 mEq/L. Monitoring and adjusting the dosage 
based on dynamic potassium levels is important to ensure 
patient safety. It should be noted that approximately 5% of 
patients might experience elevated serum potassium 
levels (129).

 3 Adherence to endorsed guidelines: When prescribing finerenone 
to diabetic patients, it’s important to follow ADA and KDIGO 
guidelines, especially when prescribed with RAAS 
inhibitors (130).

Conclusion

In conclusion, our review outlines four strategies to reduce the 
burden of CKD in patients living with diabetes in the context of Mexico. 

FIGURE 3

Proposed dosing of finerenone in patients with diabetes. eGFR, Estimated Glomerular Filtration Rate; RAAS, Renin-Angiotensin-Aldosterone System.
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Early detection of albuminuria, adequate glucose control, and addressing 
cardiometabolic contributors are the main strategies for reducing the 
progression of DKD in patients living with diabetes. The use of new 
treatments based on SGLT2i and GLP-1 RA have shown potential 
benefits in reducing overall kidney damage and the risk of complications 
associated with DKD. Additionally, novel therapies based on MRAs are 
gaining interest due to their promising results, which could be adopted 
in the future. Implementing these strategies into clinical practice could 
help improve outcomes and enhance patient survival and quality of life.
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