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Introduction: Non-melanoma skin cancer comprising Basal cell carcinoma

(BCC), Squamous cell carcinoma (SCC), and Intraepidermal carcinoma (IEC)

has the highest incidence rate among skin cancers. Intelligent decision support

systems may address the issue of the limited number of subject experts and help

in mitigating the parity of health services between urban centers and remote

areas.

Method: In this research, we propose a transformer-based model for the

segmentation of histopathology images not only into inflammation and cancers

such as BCC, SCC, and IEC but also to identify skin tissues and boundaries

that are important in decision-making. Accurate segmentation of these tissue

types will eventually lead to accurate detection and classification of non-

melanoma skin cancer. The segmentation according to tissue types and their

visual representation before classification enhances the trust of pathologists and

doctors being relatable to how most pathologists approach this problem. The

visualization of the confidence of the model in its prediction through uncertainty

maps is also what distinguishes this study from most deep learning methods.

Results: The evaluation of proposed system is carried out using publicly available

dataset. The application of our proposed segmentation system demonstrated

good performance with an F1 score of 0.908, mean intersection over union

(mIoU) of 0.653, and average accuracy of 83.1%, advocating that the system

can be used as a decision support system successfully and has the potential of

subsequently maturing into a fully automated system.

Discussion: This study is an attempt to automate the segmentation of the most

occurring non-melanoma skin cancer using a transformer-based deep learning

technique applied to histopathology skin images. Highly accurate segmentation

and visual representation of histopathology images according to tissue types

by the proposed system implies that the system can be used for skin-related

routine pathology tasks including cancer and other anomaly detection, their

classification, and measurement of surgical margins in the case of cancer cases.

KEYWORDS

segmentation, histology image analysis, semantic segmentation, image transformers,
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1 Introduction

1.1 Skin cancer: a global health challenge

Skin cancer, particularly non-melanoma skin cancer (NMSC),

is a global health challenge with consistently rising incidence rates.

The study evaluating the Global Burden of Disease (GBD) for

22 different types of diseases and injuries in 204 countries and

territories of the world reports cancer to be the deadliest disease

after cardiovascular diseases for the year 2019. The study reports

23.6 million new cancer cases and 10 million cancer deaths in the

year 2019 (1). An earlier study reports 24.5 million cases of cancer

and 9.6 million deaths worldwide in 2017, along with 7.7 million

reported cases of non-melanoma skin cancer (NMSC). Basal cell

carcinoma (BCC) and squamous cell carcinoma (SCC) accounted

for 5.9 million and 1.8 million cases, respectively. The incidence of

NMSC increased by 33% between 2007 and 2017 from 5.8 million

to 7.7 million cases (2). Moreover, non-melanoma skin cancers

account for more than 98% of all skin cancers in the United States

where BCC and SCC are numbered 2.8 million and 1.5 million,

respectively, in comparison to 82,054 cases of melanoma in 2019

(3). Intraepidermal carcinoma (IEC), also known as squamous

carcinoma in situ or Bowen’s disease, is another but less occurring

type of non-melanoma skin cancer. It is, however, found that ∼3–

5% of IEC cases evolve into invasive squamous cell carcinoma

(4).

The latest research in recent years has widely demonstrated

that many diagnostic tasks in the medical field can be successfully

assisted or performed independently by AI using deep learning,

convolutional neural networks, and machine learning algorithms

(5–7). AI and digital processing techniques have significantly

improved the accuracy and speed of medical diagnosis. These

advancements are not only limited to the analysis of images but

also include the processing of signals such as ECGs. Advancements

in healthcare are multifaceted. Post-processing of CT images

for improved image quality and reduced radiation dose (8),

denoising of ECG signals for enhanced signal clarity (9), clustering-

based multi-modality image fusion to minimize noise (10), and

advanced diagnosis and detection of lung diseases (11) are some

of the transformative contributions of AI and digital processing

techniques in medical care. These innovations collectively mark

significant progress in improving healthcare outcomes. Progress

of a similar scale has also been made in the field of digital

pathology (12, 13). It is worth noting that while AI can aid in

detecting and diagnosing cancers, it is not yet advanced enough

to replace radiologists and pathologists in medical image analysis

(14). With the probability of an impending shortage of pathologists

in the future (15), automated techniques are becoming essentially

required for relieving pathologists for more complex tasks. These

automated AI techniques can also help in eliminating human-

induced bias from diagnosis besides assisting them with their

job.

As skin cancer, particularly non-melanoma skin cancer

(NMSC), poses a global health challenge as per the above-cited

facts, this research aims to develop an accurate segmentation

technique for identifying various skin tissues, inflammations, and

carcinomas from histopathology images. As BCC and SCC account

for 98% of NMSC cases, the proposed method holds the potential

to automate numerous skin cancer segmentation tasks, leading to

expedited diagnosis and early detection.

1.2 Diagnosis of skin cancer

Many different histomorphological features on various tissue

sections are evaluated through multiple slides by a pathologist

while investigating the diagnosis of skin cancer. Evaluation of

multiple slides is necessitated because the way samples are prepared

for histopathology analysis directly affects the performance of the

pathologist. The quality and accuracy of diagnosis and subsequent

clinical interventions by physicians are also contingent upon

the processing of samples. This consequently warrants careful

processing of samples; therefore, orientation of excision samples,

irrespective of the way they are extracted, is preserved during

sample processing and examinations with respect to placement on

the patient. Blue and black inks are used to preserve orientation and

indicate different margins. Specimens are sliced in cross sections

of 3 mm thickness to have a detailed view and extent of surgical

margins. These cross sections of the specimen are further treated

with different solvents, saturated in paraffin, and further sliced

into 3µ m transparent sections. These transparent micro slices are

generally stained with hematoxylin and eosin (H & E) staining

to make structures such as nuclei, cytoplasm, and stroma visibly

differentiable (16–18). Finally, these processed and stained slides

are analyzed and evaluated for finding lesions, determining their

types in case they exist, the degree of certainty in diagnosis, and

finding out the penetration in tissues. The study of slides also

ascertains whether the excision has been complete. It also attempts

to calculate surgical margins. The final diagnosis is reached based

on all complementing and contradicting pieces of evidence found

in the evaluation of all available slides. These diagnoses are also

verified with available clinical history.

Consequently, we know that diagnosis of skin cancer is a

compound task involving many complex sub-tasks. The Royal

College of Pathologists (UK) has established a reporting protocol

(19, 20), and pathologists are expected to prepare reports

according to this protocol when a case of BCC, SCC, or any

other lesion is detected. The job of pathologists is however

more than described steps, and they are expected to identify

cancer type, find evidence of lymphovascular or perineural

involvement, and other aspects critical for subsequent treatment

options. Cellular morphology, macroscopic characteristics,

and growth patterns including depth of invasion are studied

critically for identifying cancer type. Detection of lymphovascular

and perineural involvement is important for considering

clinical intervention for treatment; the aspect is more critical

in case of metastasis. The investigation by pathologists and

their reports put forth treatment options for oncologists

and clinicians.

Citing the requirements of a useful pathology report discussed

above, it is evident that a report must contain sufficient matter

to help clinicians with their prognosis of condition and take

the best-suited treatment option. As most of the previous work
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proposed for the digitization of skin cancer detection approach

problem as a binary classification problem therefore has limited

utility for clinicians in deploying these techniques in real cases.

In addition, detection and diagnosis of skin cancer cases are

critical tasks involving human life, therefore the way an algorithm

reaches a particular decision and the certainty of correctness are

also matters of concern both for clinicians and patients. Most

binary classification approaches lack this transparency, whereas

multi-class-semantic segmentation-based approaches later leading

to detection and diagnosis are not only interpretable but also

generate most parts of the report useful for clinicians.

1.3 AI and skin cancer diagnosis

In the recent past, many researchers have contributed to the

field signifying how well AI can perform skin cancer detection

and diagnosis tasks. A study published in 2017 demonstrated that

a CNN model trained over 129,450 clinical images representing

over 2,032 skin anomalies matched the performance of 21

certified dermatologists with an overall accuracy of 91% (21).

A study employed Google’s Inception V4 CNN architecture

for the detection of skin lesions from dermoscopic images in

comparison to 58 trained dermatologists. It manifested that the

receiver operating characteristic area under the curve (ROC-

AUC) achieved by the network was better than the mean ROC

of dermatologists (22). Another study showed that a pre-trained

ResNet50 convolutional neural network fine-tuned using 595

histopathology images can significantly outperform 11 pathologists

of different expertise levels in the reading test set of 100

histopathologymelanoma images (23). A similar study proposed an

optimized deep-CNN architecture and modified mini-batch logic

and loss function. The model was trained using 17,302 images to

assess its performance with 157 dermatologists from 12 university

hospitals in Germany. The study demonstrated that the proposed

model outperformed all 157 dermatologists (24).

The cited studies compare AI with pathologists or

dermatologists; however, a different study suggests combining AI

and human experts. It finds out that AI and dermatologists while

complementing each other can achieve superior performance as

compared with their independent performances (25).

While so much research is being contributed to the field of AI-

based skin cancer diagnosis, it is important to study the perception

of patients regarding the use of AI in the diagnosis of their disease.

A recent study, therefore, attempts to observe how patients perceive

AI and its use for skin cancer screening. A sample of 48 patients

with equal representation of melanoma, non-melanoma, and no

skin cancer disease with a combination of men and women were

part of the study. This qualitative study finds out that most patients

consider higher diagnostic speed and access to healthcare as the

main benefits of AI, and they would recommend AI to family and

friends. They were, however, ambivalent about the accuracy of the

diagnosis (26). Another similar study reaches out to 298 persons in

a web-based survey and concludes that ∼94% respondents agree

to the use of AI in the medical field and 88% would even agree

to anonymously provide their data for research, thus showing

generally a receptive attitude toward AI in the field of medicine

(27).

Pieces of evidence in preceding paras lead to a logical direction

that AI approaches which are comprehendible and understandable

for patients, pathologists, and clinicians have more likelihood

of being implemented (28, 29). This is why many explainable

and interpretable approaches for skin lesion detection have been

introduced and are being aggressively pursued (30–35). The

automatic segmentation of tissues, anomalies, and lesions in

histopathology images can be a foundation stone for building

an interpretable AI framework. Transformer-based approaches

have lately shown great results in many areas including semantic

segmentation (36) and seem promising for the future. This

study, therefore, employs a novel transformer-based framework

for multi-class segmentation of non-melanoma skin cancer using

histopathology images. We evaluated the proposed framework for

segmentation accuracy using three different performance measures

and found it excellent considering the complexity of identifying

12 classes using limited data. In addition, we visually present the

confidence of the segmentation model in its prediction through

uncertainty maps to highlight areas of uncertainty and complexity

in test samples. The contributions of our study are listed as

follows:

• We propose a novel transformer-based framework for multi-

class segmentation of skin tissues and non-melanoma skin

cancer using one of the latest publicly available histopathology

datasets.

• Through a series of experiments, we demonstrate the

correlation of segmentation accuracy with the resolution

of histopathology images. Moreover, we evaluate the

performance of the proposed framework using three

different performance measures and demonstrate its superior

performance in segmenting 12 classes with limited data.

• We visually present the confidence of the model in its

prediction through uncertainty maps, and these maps are of

great help in highlighting areas of uncertainty and complexity

in the specimen.

2 Method

2.1 Model architecture

We employ a powerful, efficient, and robust segmentation

framework (36) which is better suited to achieve a higher level of

automation and is computationally inexpensive at the same time.

Like most transformer-based frameworks, the architecture has two

distinct modules, as shown in Figure 1. The first one is the encoder

which is designed in a hierarchical way to extract coarse and fine

features having high resolution and low resolution, respectively.

The second module is a multi-layer perceptron (MLP) decoder

that uses features extracted by the hierarchical encoder to output

semantic segmentation of the input image.

Themethod first creates patches of 4×4 from the input image of

sizeH×W×3. The smaller patch size of 4×4 has been found better

suited for segmentation tasks with dense features. These patches of

4 × 4 are fed into a hierarchical encoder to extract four different
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FIGURE 1

Architecture of segmentation model and overview of methodology. (A) A detailed explanation of the architecture of the segmentation model,

illustrating the components of the encoder and decoder. (B) An example of a histopathology image with its corresponding patches and the

segmented output of the model. (C) Visualization of the average feature maps extracted by each transformer block, along with the concatenated

fusion of these features.

features having 1
4 ,

1
8 ,

1
16 , and

1
32 of input image size. These multi-

level extracted features are then passed into the MLP decoder to

output segmentation of size H
4 × W

4 × NCats, where NCats denotes

the number of categories requiring segmentation.

2.1.1 Hierarchical transformer encoder
Mix transformer encoders (MiTs) have been used in

hierarchical encoder. Multiple MiT encoders from MiT-B0,

MiT-B2, MiT-B3, to MiT-B5, having the same architecture but

different sizes, have been tried and evaluated. MiT-B0 is the lightest

among all the least tuneable parameters and thus most efficient

requiring lesser training and computational resources. MiT-B5, on

the other hand, is the larger and more powerful model with greater

number of tuneable parameters, as shown in Table 1, promising

higher accuracy and performance at a higher computational cost.

2.1.2 Hierarchical feature representation
Multiple transformer blocks of hierarchical transformer

encoder generate multi-level features from an input image. Each

block takes a certain level of features as input and outputs a higher

level of features. The model combines these features of different

levels hierarchically and therefore can capture multi-scale context,

enhancing its performance at semantic segmentation tasks. Patches

TABLE 1 Default specifications of di�erent MiT models.

Model Depth Attention
heads

Hidden
layers

Parameters

MiT-B0 [2,2,2,2] [1,2,5,8] [32,64,160,256] 3,319,292

MiT-B2 [2,2,2,2] [1,2,5,8] [32,64,160,256] 24,196,288

MiT-B3 [2,2,2,2] [1,2,5,8] [32,64,160,256] 44,072,128

MiT-B5 [2,2,2,2] [1,2,5,8] [32,64,160,256] 81,443,008

generated from input image having size of H ×W × 3 are merged

to generate hierarchical feature map Fi having resolution of H
2i+1 ×

W
2i+1 × Ci, where i ∈ {1, 2, 3, 4} and Ci+1 are larger than Ci.

2.1.3 Overlapped patched merging
The process of merging patches for Segformer (36) is developed

on the patchmerging process of ViT (37) where a patch ofN×N×3

is converted into a vector of 1× 1×C. The process can similarly be

used to convert a feature map of 2×2×Ci into a 1×1×Ci+1 vector

to obtain a hierarchical feature map. The same method can be used

to obtain feature map F2
(

H
8 × W

8 × C2

)

from F1
(

H
4 × W

4 × C1

)

and other features in the hierarchy. This is, however, important

to highlight that the patch merging process for ViT (37) was non-

overlapping which compromised local continuity around patches,
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whereas Segformer uses an overlapping patch merging process.

This overlapping is achieved by introducing padding and a stride

that is smaller than the size of the patch. For the sake of consistency

with Segformer, we also use K, S, and P to denote patch size, stride

between adjacent patches, and padding, respectively. We have used

K = 7, S = 3, and P = 3 to generate overlapping patches to

preserve continuity.

2.1.4 E�cient self-attention
Transformer-based models require higher computational

resources for the processing of high-resolution images because of

the self-attention layer in encoders. As multi-head self-attention

layer calculates self-attention as follows:

Attention (Q,K,V) = Softmax

(

QKT

√

dhead

)

V (1)

where Q, K, and V have the same dimension of N × C,

where N = H × W is the length of sequence. The calculation of

attention using Equation (1) results in computational complexity

of O(N2) which restricts these models from being used for high-

resolution images in given computational resources. To address the

complexity issue and make the self-attention module efficient, the

spatial reduction attention (SRA) layer is employed as proposed in

the study mentioned in the reference (38). SRA efficiently reduces

the sequence length of K and V before processing. The sequence

reduction process for stage i is given as follows:

SRA(Q,K,V) = Concat(head0, ..., headNi)W
o (2)

headj = Attention(QWQ
j , SR(K)W

K
j , SR(V)W

V
j ) (3)

where Concat(·) is the concatenation. W
Q
j ∈ R

ci×dhead , WK
j ∈

R
ci×dhead , WV

j ∈ R
ci×dhead , and Wo ∈ R

ci×ci are linear projections.

Ni denotes the number of heads for attention layer at ith stage and

thus dimension of each head, dhead, is
Ci
Ni
. SR(·) is spatial reduction

mechanism for input sequences K and V and is given as follows:

SR(x) = Norm(Reshape(x,Ri)W
S) (4)

where x ∈ R
Hi×Wi×Ci is the input sequence, Ri is the reduction

ratio at ith stage, and Reshape(x,Ri) reshapes input sequence to a

size of Hi×Wi

R2i
× (R2i Ci).W

s ∈ R
(R2i Ci)×Ci is the linear projection to

reduce the size of the input sequence to Ci, and Norm(·) denotes

layer normalization.

The computational complexity, O(N2), of the self-attention

mechanism is reduced toO(N
2

R2i
) as lengths of the sequences are now

reduced using Equations (2)–(4). We have used R = [64, 16, 4, 1] in

our experiment at each reduction stage.

2.1.5 Mix-feed-forward network
Transformer-based models generally use positional encoding

(PE) to capture spatial information regarding input features. The

method causes deterioration in the performance of models for

cases where the resolution of training images is different from

test images. In such cases, PE, originally having a fixed resolution,

is interpolated, resulting in reduced performance of the model.

To address this issue, conditional positional encoding (CPE) (39)

introduces a data-driven positional encoding generator (PEG)

that can handle sequences that are longer than those used for

the training of the model. PEG has been implemented by 2-D

convolution with the kernel of size 3 × 3 in combination with

PE. Based on the idea that CNN implicitly encodes positional

information because of zero padding and border (40), the

Segformer maintains that PE is not explicitly required for semantic

segmentation tasks. Therefore, Segformer (36), capitalizing the

idea of CNN capturing the positional information because of zero

padding, employs Mix-FFN. We, therefore, use 3 × 3 convolution

kernel for implementing Mix-FFN as follows:

Xout = MLP(GELU(Conv3×3(MLP(Xin))))+ Xin (5)

where Xin is the feature extracted by the efficient self-attention

module. An MLP and 2-D convolution with a kernel of size 3 ×

3 are combined in mix-FFN to generate output with positional

information using Equation (5).

2.1.6 Lightweight all MLP-decoder
The method employs a rather simpler and lighter decoder

consisting of MLP layers. The decoder operates automatically

without the need for hand-crafted features or manual tuning,

and performs efficiently with fewer computational resources.

The latent capability of the hierarchical transformer encoder to

capture a larger effective receptive field (ERF) than CNN encoders

complements the performance of the MLP decoder, enabling it to

demonstrate higher performance.

The MLP decoder performs four distinct functions

progressively as given by Equations (6)–(9). The first MLP

layer takes multi-level features Fi, extracted by the MiT encoder,

as inputs and combines dimensions of their channels. Taking

the output of the first layer, the second MLP layer up-samples

features by 1
4 and concatenates them together. The third layer

fuses concatenated features as F, and the final layer generates a

segmentation mask of size H
4 × W

4 × NCats, indicating NCats in

segmented output. The decoder has been shown in Figure 1 and

represented as follows:

F̂i = Linear(Ci,C)(Fi), ∀i (6)

F̂i = Upsample(
W

4
×

W

4
)(F̂i), ∀i (7)

F = Linear(4C,C)(Concat(F̂i)), ∀i (8)

M = Linear(C,NCats)(F) (9)

• M in the equation represents the output segmentation mask,

• Linear(Ci,Cout)(·) refers linear layers with Cin and Cout as

dimensions of input and output vectors, respectively.
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TABLE 2 Distribution of pixels and percentage representation of classes

in the dataset.

Classes Pixels Representation

FOL 675,714 0.20%

GLD 1,379,800 0.40%

EPI 2,276,658 0.60%

IEC 3,527,541 1.00%

BCC 3,984,910 1.10%

PAP 5,965,621 1.70%

KER 7,438,263 2.10%

SCC 8,778,154 2.40%

INF 10,120,508 2.80%

HYP 33,716,745 9.30%

RET 71,645,463 19.80%

BKG 211,444,704 58.60%

3 Experiment/implementation

3.1 Data

The dataset provided by the study mentioned in the reference

(41) containing 290 histopathology images and corresponding

hand-annotated segmentation masks has been used. In total,

290 slides containing specific tissue sections which principally

represented typical cases of non-melanoma skin cancer are part

of the dataset. The dataset contains three types of non-melanoma

skin cancer in varying proportions such that 140 slides of BCC,

60 slides of SCC, and 90 slides of IEC. Moreover, specimens have

been extracted differently as it includes 100 specimens of shaved,

58 specimens of punched, and 132 specimens of excisional biopsies.

The tissue sections which were most representative of cancer were

indicated on each slide by pathologists. The data were collected over

4 months from late 2017 to early 2018. The ages of patients range

from 34 to 96 years with a median of 70 years while the male to

female proportion is 2:1. The images of biopsy samples were taken

using high magnification and pre-processed so that each pixel of

image saved as TIF represents 0.67 µm of tissue.

3.2 Segmentation and ground truth

Twelve classification categories, including carcinomas, were

identified in specimen slides. These include BCC, SCC, IEC, Glands

(GLD), Hair Follicles (FOL), Inflammation (INF), Reticular Dermis

(RET), Hypodermis (HYP), Papillary Dermis (PAP), Epidermis

(EPI), Keratin (KER), and Background (BKG). The pixel counts

and percentage representation of these classes in the data are

shown in Table 2. All these categories were painted with different

colors over images using ImageJ for creating ground-segmentation

truth. It is, however, highlighted that a perfectly healthy epidermis

has been marked as EPI, and anomaly features such as dysplastic

keratinocytes (solar keratosis) and carcinomas have been included

in IEC. This ensures that variations in the epidermis that are non-

cancerous but different from healthy epidermis are not wrongly

classified. These segmentation masks have been created by trained

professionals in consultation with pathologists in ∼250 h and

saved in PNG format, specifying each pixel as 1 of the 12 classes

with a different color. These classes and color pallets are shown

in Figure 2. The diligent work that put in to classify each pixel,

on one hand, ensures the accuracy of masks while, on the other

hand, it brings conceptual and implementation challenges. While

evaluating slides for distinguishing class boundaries, pathologists

work on slides at different magnification levels. In addition, they

work on different conceptual levels, depending on competence

and previous exposure based on experience. This is necessitated

as boundaries between certain tissues such as the basement

membrane between epidermis and papillary dermis layers are

only distinguishable at high magnifications, whereas boundaries

between some classes such as papillary and reticular dermis are even

more diffused and indistinguishable at lower resolutions (32).

Segmentation accuracy is commonly measured on a pixel

basis and is also contingent upon the resolution of images.

As magnification can influence the accuracy of a pathologist,

similar resolution of images in the dataset can also influence the

performance of an algorithm. To validate this point, all images

are down-sampled by a factor of 2, 5, and 10 and saved as 2x,

5x, and 10x, respectively. As shown in Figure 3, a critical visual

study of multiple images and masks reflects that no discernible

difference was observed in original resolution and at 2x as logically

understandable, and certain features and their boundaries became

indistinguishable at 10x.

3.3 Experimental setting and training

We implemented Segformer with Python using the platform of

hugging face. The model was trained using Dual NVIDIA GeForce

RTX 2070 of 8 GB. We arranged training in batches of size 8 with

50 epochs using Adam optimizer and a learning rate of 0.0006.

We used layer normalization with 1 × 10−6 to achieve better

generalization considering our smaller batch size. We used the

Gaussian error linear unit (GELU) activation function for hidden

layers of the decoder and used a dropout rate of 0.1 to keep the

model from over-fitting. The data were randomly split into training,

validation, and test sets with a proportion of 80, 10, and 10%,

respectively. A deliberate effort was made to distribute all types of

cancers and biopsies evenly in each split. The overlapping patches

were created using K = 7, S = 3, and P = 3. The original patch size

of 256×256 was re-scaled later to 512×512.Moreover, to overcome

the scarcity of our data, we incorporated data augmentation and

assess the sensitivity of our model toward the resolution of data,

and we separately used three different resolutions 2x, 5x, and 10x

for validation and testing after training on 2x.

4 Results and discussions

4.1 Initial results

We evaluated the performances of the segmentation models

through three different commonly used performance measures:

F1 score, mean intersection over union (mIoU), and average

accuracy. Initially, we performed experiments with four different
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FIGURE 2

Representative samples and corresponding segmentation masks (ground truth) from the dataset, indicating 12 distinct classes and their

corresponding color palette. (A) Sample histopathology images displaying instances of BCC, SCC, and IEC. (B) Corresponding segmentation masks

indicating BCC, SCC, and IEC regions and other classes within the images. (C) List of all 12 classes, including BCC, SCC, and IEC, along with the

corresponding color palette used for their visual representation.

segmentationmodels, namely, MiT-B0, MiT-B2, MiT-B3, andMiT-

B5. All these fine-tuned models were then trained on a 10x dataset

and later validated and tested on validation sets and test sets of

not only corresponding 10x but on 2x and 5x resolutions also. The

segmentation accuracy achieved by both untrained and pre-trained

models is shown in Table 3 for all resolutions.

Among datasets of different resolutions, the highest accuracy

has been achieved by the dataset of 10x resolution with F1 score,

mIoU, and average accuracy of 0.911, 0.654, and 0.780, respectively.

Moreover, the highest performance scores among all models have

been achieved by the pre-trained MiT-B5 with 10x dataset. It

achieved an F1 score of 0.911 and mIoU of 0.654, whereas the

highest average accuracy of 0.780 was achieved by pre-trainedMiT-

B3 on the same dataset. The variation can be attributed to the ways,

and these performance measures are calculated and affected by the

distribution and proportion of classes and background pixels in test

samples.

Table 3 further reveals correlations between data resolution,

pre-training, model size, and performance measures. It can be

observed that an increase in data resolution results in decreased

performance for all models. An explanation for this can be

sought by keenly observing specimens of various resolutions and

predictions, as shown in Figure 3. It is obvious to notice that

while moving from Figures 3A–C, predictions are getting better

and more similar to ground truths. Seeing predictions from high

resolution samples, one can suggest that additional detail in high

resolution samples acts as noise, thus confusing the model and

resulting in noisy predictions and deteriorated performance. The

trend also implies that there is sufficient information in 10x images

to enable the model to predict accurately. In addition, all models

may be performing better with 10x data than others because they

are trained on 10x, whereas they are being tested on 2x and 5x.

Moreover, considering the computational resources required for

training and processing high resolution images and desired results,
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FIGURE 3

Comparative analysis of specimen images, segmentation masks, and corresponding predictions at three di�erent resolutions. (A) Sample images of

BCC, SCC, and IEC at the resolution of 2x, alongside their corresponding segmentation masks and the predictions generated by the segmentation

model. (B) Sample images of BCC, SCC, and IEC at the resolution of 5x, alongside their corresponding segmentation masks and the predictions. (C)

Sample images of BCC, SCC, and IEC at the resolution of 10x, alongside their corresponding segmentation masks and the predictions.

it can be assumed that image resolution equivalent to 10x data may

deliver excellent results for most applications, and therefore, our

further study is based on data of 10x resolution.

It is also noticeable that the introduction of pre-training in

MiT-B0 results in an increase of more than 38% in average

accuracy. Moreover, the trend is similar to F1 score and mIoU

across all models. It is also noticed that performance measures

consistently improve from model MiT-B0, MiT-B2, MiT-B3 to

MiT-B5. We notice that the accuracy for 10x data increases from

75.4% for pre-trained MiT-B0 to 77.4% for pre-trained MiT-B5.

It is, however, highlighted that the gain in accuracy from MiT-

B0 to MiT-B5 is 2%, whereas the number of tuneable parameters

increased from 3,319,292 to 81,443,008; a tremendous increase

would require enormous computational and training resources.

This leaves us with a compromise between real-time fast processing

or high performance—we may settle for MiT-B0 while needing fast

processing compromising sightly on performance or use MiT-B2

or MiT-B5 for best performance. We further highlight that MiT-B0

has been used for detailed experiments in our study.

4.2 Ablation studies

4.2.1 E�ect of change in model depth
As already highlighted in Table 1, all the MiT models under

discussion have a default depth of [2,2,2,2]. We experimented with

MiT-B0 by changing the default depth to [1,1,1,1] and [4,4,4,4]. We

observe that a change in depth from default to [1,1,1,1] and [4,4,4,4]

in a pre-trained model does not have any positive impact. The

average accuracy decreases from 75.42%, in the case of the default

model, to 72.12 and 73.10% for models with depths of [1,1,1,1]

and [4,4,4,4], respectively. The trend is similar for the F1 score and

mIoU.

4.2.2 E�ect of change in the number of attention
heads

The accuracy of MiT-B0 declines negligibly to 74.94% when

attention heads are changed to [1,1,2,4] from the default of [1,2,5,8].

The same number, however, increases to 77.1% when attention

heads are set to [2,4,10,16], yielding an increase of 2% from default.

Similarly, the F1 score and mIoU also decrease in the former case

and increase when attention heads are set to [2,4,10,16]. It is also

important to note that this combination results in the best accuracy,

as shown in Table 4. This model, therefore, has been further studied

and evaluated in succeeding paras and finally proposed for multi-

class segmentation.

4.2.3 E�ect of change in hidden layers
We experimented with hidden layers of the model both by

decreasing them to [16,32,80,128] and also by increasing them to

[64,128,360,512] from the default layers of [32,64,160, 256]. As

shown in Table 4, the change in hidden layers from default does

not improve accuracy, F1 score, or mIoU. It is, however, noticeable

that the model with hidden layers [16,32,80,128] shows a massive

decrease of 17% in accuracy dropping it to 62.3%.

4.2.4 Introduction of data augmentation
We have already ascertained that pre-trained MiT-B0 performs

better than one that is not pre-trained. We have also tried different

modifications in MiT-B0 and listed corresponding performance

measures, as shown in Table 4. The results show that pre-trained

MiT-B0 performs the best when attention heads are [2,4,10,16].

We, now, introduce data augmentation to our selected models to

evaluate its impact on segmentation performance measures. We

augmented data by flipping original images and later rotating each

of the original and flipped images by 90,180, and 270 degrees,

replacing every original image with eight images in the augmented

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2024.1380405
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Imran et al. 10.3389/fmed.2024.1380405

TABLE 3 Performance measures of MiT models with and without

pre-training for data resolutions of 2x, 5x, and 10x.

Data
resolution

Model Pre-
trained

F1
score

mIoU Average
accuracy

2x

MiT-B0 False 0.844 0.402 0.518

MiT-B0 True 0.867 0.609 0.712

MiT-B2 False 0.782 0.381 0.487

MiT-B2 True 0.868 0.587 0.746

MiT-B3 False 0.827 0.371 0.472

MiT-B3 True 0.869 0.624 0.761

MiT-B5 False 0.779 0.305 0.409

MiT-B5 True 0.881 0.639 0.731

5x

MiT-B0 False 0.868 0.428 0.536

MiT-B0 True 0.899 0.627 0.745

MiT-B2 False 0.808 0.399 0.500

MiT-B2 True 0.897 0.604 0.762

MiT-B3 False 0.840 0.392 0.491

MiT-B3 True 0.893 0.640 0.772

MiT-B5 False 0.803 0.327 0.428

MiT-B5 True 0.907 0.651 0.762

10x

MiT-B0 False 0.873 0.435 0.546

MiT-B0 True 0.907 0.631 0.754

MiT-B2 False 0.852 0.404 0.507

MiT-B2 True 0.909 0.630 0.770

MiT-B3 False 0.846 0.400 0.498

MiT-B3 True 0.905 0.642 0.780

MiT-B5 False 0.812 0.330 0.441

MiT-B5 True 0.911 0.654 0.774

dataset. We assume that data augmentation using this technique

would also make the model rotation invariant. The segmentation

performance measures of different pre-trained models after data

augmentation are shown in Table 5. It can be observed that the

average accuracy for pre-trained default MiT-B0 increases by∼4%,

reaching 78.5%. Similarly, ∼2% increase is observed in mIoU,

which improves from 0.631 to 0.644, whereas no change is observed

in the F1 score. The best performing proposedMiT-B0, as evaluated

in Table 4, also performed better with data augmentation as its

average accuracy peaks to 83.1% from 77.1%; the mIoU also

improves to 0.653 from 0.643, whereas F1 score negligibly declines.

This experiment promises better and improved performance of the

model as more data are accumulated and used for training.

4.3 Quantitative results

We present performance measures for pre-trained default MiT-

B0 and our proposed modified MiT-B0 with data augmentation,

TABLE 4 Ablation studies with modifications in pre-trained MiT-B0.

Model Modification F1
score

mIoU Average
accuracy

Modification in model depth

MiT-B0

Depth [2,2,2,2]∗ 0.907 0.631 0.754

Depth [1,1,1,1] 0.900 0.589 0.721

Depth [4,4,4,4] 0.905 0.595 0.731

Modification in attention heads

MiT-B0

Attention Heads

[1,2,5,8]∗
0.907 0.631 0.754

Attention heads

[1,1,2,4]

0.906 0.618 0.749

Attention heads

[2,4,10,16]

0.909 0.643 0.771

Modification in hidden layers

MiT-B0

Hidden layers

[32,64,160,256]∗
0.907 0.631 0.754

Hidden layers

[16,32,80,128]

0.889 0.505 0.623

Hidden layers

[64,128,360,512]

0.895 0.536 0.655

Default parameters are indicated with the symbol of *.

as shown in Table 6. We also tabulate the results of the study

mentioned in the reference (32) in the same table for comparative

analysis. The table shows that the proposed model achieved an

average accuracy of 83.1%, which is significantly 4% higher than

the study mentioned in the reference (32). The proposed model

achieved an F1 score of 0.908 and mIoU of 0.653.

Moreover, Table 7 presents the classwise accuracy of models in

comparison. It is noticeable from the table that no single model

can be declared a categorical winner in classifying all classes

more accurately than others. The proposed MiT-B0 classified seven

classes more accurately than the study mentioned in the reference

(32), whereas the later one was more accurate in predicting five

classes. Moreover, the performance of default MiT-B0 and the

study mentioned in the reference (32) was equal for the class GLD

with an accuracy of 87.3%. The proposed model demonstrated a

significant increase in performance that ranges from a minimum

of 3% to a maximum of 30%. The highest increase in performance

is 30% which is observed in the case of RET, where the proposed

model achieved an accuracy of 91.2%. The minimum increase of

3% is observed in recognizing GLD, where the proposed model

achieved an accuracy of 89.7%. The leading accuracy was achieved

by the proposed model in recognizing BKG, HYP, and BCC with

a score of 98.7, 93.5, and 91.5%, respectively. The lowest accuracy

of 65.8% is observed in identifying FOL, which is still ∼7% higher

than the study mentioned in the reference (32). The other two

categories with lower accuracy of 71.5 and 74.8% are INF and PAP,

respectively. It is important to highlight that performance of the

proposed model is 25% higher than the study mentioned in the

reference (32) in the case of INF, whereas it is 7% lower in the case

of PAP. It is noticeable that lower results of FOL, INF, and PAP

are degrading the overall performance and causing lower accuracy.
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TABLE 5 Performance measures of pre-trained MiT-B0 models with data augmentation.

Model Data
augmentation

Modification F1 score mIoU Average accuracy

MiT-B0

False None 0.907 0.631 0.754

True None 0.907 0.644 0.785

True Attention head

[2,4,10,16]

0.908 0.653 0.831

TABLE 6 Performance measures of models in comparison; all models are

pre-trained and data augmented.

Model
(Pre-trained and
data augmented)

F1 score mIoU Average
accuracy

Thomas et al. (32) – – 0.799

MiT-B0 (default) 0.907 0.644 0.785

MiT-B0 (proposed) 0.908 0.653 0.831

The highest performance measures are highlighted as bold.

The lower performance for FOL, INF, and PAP may be attributed

to their lower representation in the dataset as the proportion of

their pixels is 0.2, 2.8, and 1.7%, respectively. The cause of lower

results in the case of FOL can also be traced by exploring the

way pathologists identify FOL by evaluating tissues at higher levels

rather than studying their high-resolution microscopic structures

(32).

While the proposed model performed considerably better than

the study mentioned in the reference (32) in most cases with an

average increase in accuracy nearing 13%, however, in the case of

SCC, EPI, PAP, HYP, and KER, it did not perform well where the

average decrease is 5%. The proposedMiT-B0 achieved an accuracy

of 78.6% in comparison to 85.7% in the case of SCC. Similarly, its

score was 79.1, 74.8, 93.5 and 81.3% for EPI, PAP, HYP, and KER,

respectively. The leading difference of 8, 7, and 5% is observed

in SCC, PAP, and EPI, respectively, in comparison to the study

mentioned in the reference (32). The lower performance in the case

of SCC may be a result of under representation as there are only

60 images of SCC with a pixel proportion of 2.4%. Figures 4A–D

presents the confusion matrices of the proposed model across

different test cases and a critical analysis of Figures 4C, D indicates

that there is a higher degree of confusion between these two cases,

and therefore, these are classified relatively less accurately. The

model, however, predicted IEC cases better because of their higher

representation.

4.4 Qualitative results

Three different data samples of 10x resolution, corresponding

segmentation masks, predictions, and uncertainty maps are shown

in Figure 5. The critical visual analysis of segmentation masks and

predictions reveals that both are greatly similar and thus confirm

the results, as presented in Tables 6, 7. The classes such as BCC and

IEC, which seem to be correctly classified in visual inspection, have

higher accuracy, whereas classes such as FOL and INF seem to be

classified less accurately.

The uncertainty maps have also been generated to visually

present the confidence of the proposed model in its prediction.

The concordance between expected accuracy, that is confidence

of the model in prediction, and accuracy is highly desirable.

Therefore, temperature-scaling of output was carried out for

calibration (42). The uncertainty maps have been generated after

achieving agreement in confidence and accuracy by subtracting the

maximum class probability of each class from unity. It is important

to highlight that the uncertainty, being referred to the current

scenario, is not the degree of variance. These uncertainty maps

point toward the areas where the model is not very confident in

its prediction and visual analysis indicates that boundaries between

classes and tissues such as FOL, INF, and PAP are the main

areas of uncertainty. Furthermore, the areas of higher uncertainty

highlight areas of higher complexity involving multiple tissue

classes and boundaries. It can be assumed that these complex areas

could be handled better provided images of higher resolutions

such as 2x or 5x and are used for training and predictions but

definitely at a much higher cost. It is also worth mentioning

that the visualization of uncertainty maps not only qualitatively

confirms our analytical results but it is also an interpretable way

of demonstrating performance, which could enhance the trust of

pathologists and clinicians in the segmentation model.

Furthermore, after critical evaluation of Figure 3, it can be

safely inferred that no discernable difference can be observed with

the naked eye in data samples of higher resolution when compared

with lower ones. Analysis of segmentation predictions generated

by different resolutions however reveals that they are different

from each other and some from ground truth as well. Predictions

from high resolution samples are not as close to segmentation

masks as are low resolution predictions. This is also shown in

Table 3. Moreover, high resolution predictions are more noisy than

lower ones which can be attributed to the ability of the model to

capture fine details and present them in predictions. Predictions

also indicate the ability of the model to distinctly identify the

boundaries between tissue types.

5 Conclusion

Our study manifested that non-melanoma skin cancer

comprising BCC, SCC, and IEC, which is more than 98% of all skin

cancers, can be segmented into tissues and carcinomas by a fully

automated transformer-based semantic segmentation framework.

Since the segmentation model was trained using the lowest

resolution 10x dataset, it is evident that promising segmentation
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TABLE 7 Classwise segmentation accuracy of models in comparison.

Model

(Pre-trained and data
augmented)

BKG BCC SCC IEC EPI GLD INF RET FOL PAP HYP KER

Thomas et al. (32) 0.95 0.865 0.857 0.707 0.831 0.873 0.574 0.702 0.615 0.808 0.962 0.846

MiT-B0 (default) 0.983 0.905 0.707 0.787 0.734 0.873 0.692 0.909 0.558 0.646 0.869 0.757

MiT-B0 (proposed) 0.987 0.915 0.786 0.814 0.791 0.897 0.715 0.912 0.658 0.748 0.935 0.813

Percentage difference 4% 6% -8% 15% -5% 3% 25% 30% 7% -7% -3% -4%

The highest accuracy for each class is highlighted as bold. The percentage difference in fourth row has been calculated considering accuracy achieved by Thomas et al. (32) as original and by

proposed model as the new one therefore, all the positive values which are highlighted as bold as well, indicating classes for which proposed model has performed better than others.

FIGURE 4

Confusion matrices presenting the performance of the proposed model across di�erent test cases. (A) Overall confusion matrix presenting the

performance of the proposed model for test cases of all carcinomas, i.e., BCC, SCC, and IEC. (B) Confusion matrix presenting the performance of the

proposed model for BCC test cases only. (C) Confusion matrix presenting the performance of the proposed model specifically for the SCC test case.

(D) Confusion matrix presenting the performance of the proposed model specifically for the IEC test case.

results can be achieved with low resolution histopathology images.

It has also been demonstrated that our framework performed fairly

well when tested with samples of higher resolutions of 2x and

5x, despite being trained on a lower resolution dataset proving its

robustness. Moreover, it is also important to highlight that these

results have been achieved for the segmentation of 12 different
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FIGURE 5

Segmented predictions by the model for test cases of BCC, SCC, and IEC along with visualization of the model’s confidence in its predictions

through uncertainty maps. (A) Sample images of BCC, SCC, and IEC. (B) Ground truth segmentation masks corresponding to the sample images. (C)

Segmented outputs generated by the network for the test cases of BCC, SCC, and IEC. (D) Uncertainty maps indicating the model’s confidence in its

predictions.

classes with a very limited number of samples. Therefore, the

excellent performance of the proposed segmentation model with

a fair degree of certainty implies a great potential which can be

capitalized for the automatic detection and classification of skin

cancer cases through transformer-based AI frameworks.

While our study primarily focuses on achieving high

segmentation accuracy, we recognize the importance of

computational efficiency in practical settings. Our findings

emphasize the need to strike a balance between accuracy and

computational resources. Through the modified variant of

Segformer, we demonstrate the model’s ability to effectively

handle the complexities of histopathology image analysis while

maintaining computational efficiency. Moreover, it is also essential

to highlight the limitations of our study. First, our comparison with

interpretable models is limited to only one benchmark, as there is

a lack of published results from studies employing interpretable

methods on the same dataset. This constraint highlights the

need for future research to explore additional interpretable

models and conduct comprehensive comparisons. Second, our

model’s performance was suboptimal for certain classes, such

as PAP, HYP, and KER, which have lower representation in the

dataset. This limitation underscores the importance of addressing

class imbalance issues in future studies, such as through data

augmentation techniques or specialized training strategies.

In light of the above-mentioned limitations, future research

recommendations include further investigation of interpretable

models for skin cancer segmentation, exploring techniques to

mitigate class imbalance effects and enhancing the computational

efficiency of segmentation frameworks. By addressing these

challenges, we aim to advance the field of automated skin cancer

diagnosis and contribute to improved patient care and outcomes.
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