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Introduction: Artificial Intelligence (AI) has proven effective in classifying skin 
cancers using dermoscopy images. In experimental settings, algorithms have 
outperformed expert dermatologists in classifying melanoma and keratinocyte 
cancers. However, clinical application is limited when algorithms are presented 
with ‘untrained’ or out-of-distribution lesion categories, often misclassifying 
benign lesions as malignant, or misclassifying malignant lesions as benign. 
Another limitation often raised is the lack of clinical context (e.g., medical 
history) used as input for the AI decision process. The increasing use of Total 
Body Photography (TBP) in clinical examinations presents new opportunities for 
AI to perform holistic analysis of the whole patient, rather than a single lesion. 
Currently there is a lack of existing literature or standards for image annotation 
of TBP, or on preserving patient privacy during the machine learning process.

Methods: This protocol describes the methods for the acquisition of patient 
data, including TBP, medical history, and genetic risk factors, to create a 
comprehensive dataset for machine learning. 500 patients of various risk profiles 
will be recruited from two clinical sites (Australia and Spain), to undergo temporal 
total body imaging, complete surveys on sun behaviors and medical history, 
and provide a DNA sample. This patient-level metadata is applied to image 
datasets using DICOM labels. Anonymization and masking methods are applied 
to preserve patient privacy. A two-step annotation process is followed to label 
skin images for lesion detection and classification using deep learning models. 
Skin phenotype characteristics are extracted from images, including innate and 
facultative skin color, nevi distribution, and UV damage. Several algorithms will 
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be developed relating to skin lesion detection, segmentation and classification, 
3D mapping, change detection, and risk profiling. Simultaneously, explainable 
AI (XAI) methods will be  incorporated to foster clinician and patient trust. 
Additionally, a publicly released dataset of anonymized annotated TBP images 
will be released for an international challenge to advance the development of 
new algorithms using this type of data.

Conclusion: The anticipated results from this protocol are validated AI-
based tools to provide holistic risk assessment for individual lesions, and risk 
stratification of patients to assist clinicians in monitoring for skin cancer.

KEYWORDS

artificial intelligence, total body photography, dermatology, melanoma, 
computer—aided diagnosis, computer image analyses

Introduction

The potential application of Artificial Intelligence (AI) in medicine 
has been increasingly explored in recent years (1). The ability of 
convolutional neural networks (CNN) to recognize patterns in images 
for medical diagnosis has surpassed the accuracy of clinical specialists 
in experimental settings in various medical fields (2). To date 
algorithms have been successfully applied to image analysis for 
radiology (3), cardiology (4), ophthalmology (5), and dermatology 
(6). However, the translation of AI into clinical practice is still in its 
early stages, as researchers navigate complex issues relating to patient 
informed consent and privacy, representative and diverse training 
datasets, patient and clinician trust, explainable AI, and clinical 
workflow (7).

In dermatology, AI has the potential to reshape diagnostic 
processes using numerous imaging modalities including dermoscopy 
and sequential digital dermoscopy imaging (SDDI), wide-field clinical 
imaging and total body photography (TBP), reflectance cutaneous 
confocal microscopy (RCM), optical coherence tomography (OCT), 
line-field confocal OCT (LC-OCT), and lastly digital pathology. The 
majority of machine learning algorithms are commonly utilized for 
the analysis of single lesion dermoscopic images, with notable focus 
on the specific task of detecting melanoma (8). A landmark study by 
Esteva et al., reported higher accuracy for algorithms in classifying 
keratinocyte carcinoma and melanoma, compared to the average 
accuracy score from 16 expert dermatologists (9). While several other 
AI models have been reported with similar high accuracy, very few 
have been tested in a clinical setting (10). One promising study 
showed support for AI-clinician collaboration, where AI supported 
clinician decisions scored higher accuracy than decisions made by AI 
or clinician alone (11).

To date, a limited number of AI models in dermatology have 
been applied to TBP or wide-field photography (12, 13). TBP for 
skin cancer monitoring provides the advantage of objectively 
capturing the entire skin surface and ability to compare sequential 
images between appointments. Furthermore, TBP requires 
operating software, which presents an ideal opportunity for 
implementation of AI support models. The appeal of applying AI 
tools to TBP platforms includes the potential to utilize image input 
from a whole patient, and to incorporate common patient-level 
metadata often recorded in TBP user interfaces (14). This presents 

an opportunity to train algorithms to consider not just a single 
lesion image, but also the patient’s skin characteristics and clinical 
background in the skin lesion evaluation process. Furthermore, 
algorithm output can go beyond lesion classification and extend to 
skin phenotype analysis, and patient risk stratification for future 
screening recommendations. To date there are few published 
articles regarding methods and standards for image annotation of 
TBP, incorporating skin phenotype characteristics, or on methods 
for preserving patient privacy when using TBP for Machine  
Learning.

The protocol reported within this paper was developed as part of 
a wider European Horizons grant (Grant ID: 965221), to design an 
intelligent Total Body Scanner (iToBoS) with computer aided 
diagnostic tools for lesion classification and patient risk profiling. This 
protocol describes the ‘Clinical Data Acquisition Study’, including the 
collection, annotation, and use of clinical data to develop the iToBoS 
Cognitive Assistant. This study represents a collaborative effort of a 
multidisciplinary team, including clinicians, software engineers, 
medical data annotation experts, data management specialist, 
bioethics experts, and patient advocates. The wider objective is to 
present solutions to existing challenges and aims to set standards 
which benefit the international AI research community. The study will 
include a release of an anonymized dataset for an international image 
analysis challenge, in which participating researchers can benchmark 
developed algorithms. The larger goal of this study is to foster 
collaborative and ethical research in the field of artificial intelligence 
and medical data, to facilitate advancements in technology for skin 
cancer detection.

Objectives

Primary objective

The first objective is to build a database comprising skin images 
enriched with annotations related to skin lesion diagnostic categories, 
skin phenotype information, and patient-level metadata. This dataset 
aims to facilitate the development of algorithms tailored for both 
lesion-specific and patient-level risk assessment for melanoma. This 
master dataset will be partitioned to create separate training, test, and 
validation datasets.
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Secondary objectives

The training dataset will be used for design and development of 
deep machine learning models with the following objectives:

 1. Assess the risk associated with a captured lesion.
 2. Provide diagnostic classification for the lesions presented 

in images.
 3. Identify ‘ugly duckling’ lesions within a given individual.
 4. Provide patient holistic risk assessment for future melanomas.

Concurrently, an anonymized dataset of TBP images labelled with 
metadata will be released for an international image analysis challenge 
to foster research and collaboration on the development of AI 
technologies for skin cancer detecting and risk profiling.

Methods

The methods described in this article pertain to procedures for data 
acquisition, data anonymization, image annotation, and algorithm 
development. A flow chart of steps involved is provided in Figure 1.

Data acquisition

The clinical data acquisition study is carried out in two study sites: 
The Barcelona Hospital Clinic in Barcelona, Spain, and The University 
of Queensland, in Brisbane, Australia, each obtaining prospective 
local Human Research Ethics Committee (HREC) approval. Both 

studies require participants to provide written, informed consent, and 
collect standardized data. However, distinct protocols for recruitment 
and data acquisition are followed by each site.

Barcelona study site
Patients attending regular clinical skin examination appointments 

at the Barcelona Hospital Clinic are approached for participation in the 
study. Upon obtaining written informed consent, study participants 
undergo TBP imaging, complete a survey, and provide a saliva or blood 
sample for genetic analysis. Alternatively, they may consent to the 
utilization of pre-existing samples already held by the hospital.

Brisbane study site
Individuals who received TBP as part of a previous research study 

are contacted via email with a brief description of the new study. If 
individuals express interest, they are guided to an online consent form 
that outlines participation requirements. This includes consenting to 
the utilization of pre-existing TBP images from a prior research study, 
existing genetic samples, and the prospective completion of an online 
survey. If individuals consented to participate, a link to the online 
survey is provided via email for completion.

Participant timeline
Participants for the Australian site were enrolled between October 

2022 and April 2023. Participants granted consent for the utilization 
for TBP images captured with the VECTRA WB360 during previous 
research visits spanning from September 2016 to February 2020.

Enrolment of participants at the Spanish site commenced in 
January 2023 and is currently ongoing, with an expected finish date in 
mid-2024.

FIGURE 1

Workflow of data management for ML using multimodal data. Recruitment of patients (clinical studies); collection of images (TBP and dermoscopic 
images) and metadata (medical records and genetics); anonymization; annotation by HITers and dermatologists; dataset for ML training, validation and 
test; holistic risk score for individuals and individual lesions.
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Sample size
Optimal sample sizes for AI-based image classification tasks are 

difficult to estimate. Therefore, for the purpose of this study, a target 
sample size of 500 patients will be recruited. It is expected that 15% 
(n = 75) will be  low/average risk for melanoma, 50% (n = 250) will 
be moderate/high risk, and 35% (n = 175) will be very high risk. The 
majority of the patients will have up to six sequential TBP captures, 
taken at intervals of every 6 to 12 months. From each TBP capture, an 
average of 500 image tiles (8 cm × 10 cm) will be produced, annotated 
and available for development of the photodamage CNN algorithm.

Over a 2 years period, considering the melanoma incidence in 
Queensland (Australia) (15), we anticipate incidence rates of 0.3, 1.2, 
and 2.8% for individuals classified under low/average risk, moderate/
high risk, and very high risk, respectively. Therefore, we expect 8 
annotated melanomas (n = 0.2, n = 3, n = 5  in sequence). 
Correspondingly, it is expected that there will be  67 keratinocyte 
cancers for every melanoma diagnosed (16). Therefore, we expect 549 
keratinocyte cancers (13 in the low/average risk group, 201 in the 
moderate/high risk group and 335 in the very-high risk group).

With respect to benign lesions, the median general population 
total body nevus counts >2 mm in diameter in the Queensland general 
population are 32 nevi per person (17). Higher counts are expected 
for those at higher risk of melanoma with a median number of nevi 
>2 mm in diameter reported in a Swiss cohort at 189 per person (18). 
We therefore conservatively estimate those at moderate/high risk to 
have a median around 80 nevi >2 mm in diameter. Hence, a total of 
approximately 66,475 nevi (2,400, 20,000, 33,075 respectively) will 
be annotated across 500 individuals at one time point. We estimate a 
ratio of 1:4 for nevi:other benign lesions (19), and therefore estimate 
an additional 265,900 other benign lesions for annotation.

Image acquisition
All participants underwent 3D total body photography using the 

VECTRA WB360 whole body 3D imaging system (Canfield Scientific 
Inc., Parsippany, New Jersey, United States). In Barcelona, TBP was 
conducted prospectively (after consent signed); in Brisbane 
retrospective TBP image archives were accessed after consent to 
participate was provided. The VECTRA WB360 system is a framework 
of 92 cameras, in which a study participant is asked to stand, holding 
a specific anatomical pose. All 92 cameras simultaneously capture 
images of the patient, and software is used to construct a 3D avatar 
from those images. An attached dermoscopy camera (Visiomed 
D200e dermatoscope, Canfield Scientific), allows additional high-
resolution images of single lesions to be recorded and mapped to the 
3D avatar. This 3D Imaging System enables the objective 
documentation of all skin lesions (excluding scalp, soles of feet and 
any skin covered by underwear) and facilitates the monitoring of 
changes over time.

Metadata acquisition
A 45-item survey was designed to collect information relevant to 

melanoma risk, while maintaining a low risk of being individually 
identifiable. The questions included were based on previously 
validated surveys to include known risk factors for melanoma (20–
22). The questionnaire collected four categories of information:

 1. Demographics: age, year of birth, sex, country of birth, current 
country of residence, previous country of residence, height 

(cm), weight (kg), marital status, education level, occupational 
status, and ancestry.

 2. Previous History of Skin Cancer: number of previous 
melanomas/BCCs/SCCs and age of first melanoma/BCC/SCC, 
number of benign melanocytic lesions excised, family history 
of melanoma.

 3. Sun Exposure and Health Factors: occupation (indoor/
outdoor), frequency of clinical skin checks, history of 
sunburn, sunbed use, sunscreen use, smoking status and 
history, ongoing (significant) medical treatment, e.g., 
immunosuppressants.

 4. Phenotype Information: hair/eye/skin color, skin type (e.g., 
easily burns/tans), freckle and nevi density.

Survey answers are collected directly from study participants, and 
stored using the online web-based application, REDCap (Research 
Electronic Data Capture). REDCap is highly secure and compliant 
with standards set by the Clinical Data Interchange Standards 
Consortium (CDISC). All data collected in this study will be entered 
directly into an eCRF (electronic case report form) in REDCap under 
a designated Study ID code for each participant. A separate 
confidential record of personal details (name and contact details) will 
be kept on an enrolment log, separate from the eCRF.

Data anonymization

Image anonymization
To effectively anonymize the 3D TBP images for annotation, the 

original 2D macro images are divided into small tiles of approximately 
8 cm × 10 cm, padded with a 5% overlap in each direction, to ensure 
coverage of all lesions. For each tile, a set of tile masks are also 
produced representing (a) the unique regions of the tile for which the 
tile has the best (most orthogonal) view of those regions, (b) the area 
of the tile excluding any padding, and (c) the initial AI-based lesion 
detection produced by the VECTRA WB360 (13). Average resolution 
and primary anatomic location are also recorded for each tile. 
Anatomic location is specified as one of ten categories: Torso (front & 
back), Left & Right Arm (Upper & Lower), Left & Right Leg (Upper 
& Lower).

For further anonymization, the patient’s face and head are 
automatically identified and masked out in any tile. Tools are also 
available to paint any additional areas that may be identifiable, such 
as tattoos.

The tile masks, lesion auto-detection, and associated metadata are 
saved for direct uploading to the annotation software, Darwin 
platform (V7 Labs, London, United Kingdom). Sufficient metadata on 
each tile are recorded so that any later annotation on the tiles can 
be mapped back to the 3D TBP avatar image.

Metadata masking
Before uploading any patient data files to the iToBoS Project 

cloud, different masking and/or anonymization methods are applied 
to reduce the risk of patient re-identification. The metadata collected 
via participant surveys are exported from REDCap into both CSV files 
and in DICOM metadata headers. The IBM masking tool (23) is used 
to mask this metadata for both file types in a consistent manner across 
all files belonging to the same patient.
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The main types of fields that are currently masked using the IBM 
masking tool are:

 1. Patient related IDs—Hospitals store information that connects 
these IDs to a specific patient. They are masked using an 
irreversible format-preserving tokenization.

 2. Dates - Since visit dates can also potentially re-identify specific 
individuals, noise is added to all dates within a specified range 
(of 60 days). In order to preserve the order (and gaps) of the 
dates to enable correct analysis, the noise is computed per 
patient and applied consistently to all dates belonging to a 
specific patient.

 3. Ages—Ages above 89 are rounded down to 89 as per 
HIPAA requirements.

Artificial intelligence privacy
As part of the project’s dedication to patient privacy and 

compliance to regulations, once the AI models are trained and 
validated we also plan to apply two additional tools for anonymizing 
the AI models themselves (24) and for minimizing the data collected 
for analysis in accordance with GDPR’s data minimization 
requirement (25).

Image pre-annotation

Pre-annotation workforce
The Isahit workforce is composed of HITers (stands for Human 

Intelligent Tasks workers) responsible for annotating skin lesions and 
sun damage levels on each image tile. This workforce is composed of 
women from Africa, Southeast Asia and South America, who receive 
extensive training and support in image annotation and digital skills.

Researchers from the Barcelona and Brisbane clinical sites provide 
a set of guidelines including text, images, and videos to train the 
HITers for the pre-annotation process. Initially, HITers annotate 
multiple test datasets to facilitate the training process. Clinicians can 
then review and provide feedback after each dataset, and this iterative 
process continues until the annotation achieves an acceptable quality 
and accuracy of >80%. A lower threshold of accuracy for 
pre-annotation is permitted as opposed to annotation for lesion 
diagnostic categories, as the potential impact on ML is less 
consequential (e.g., estimate of sun damage vs. detection of 
skin cancer).

After training is complete, each image annotated by the HITers is 
reviewed by a second person from the Isahit team to ensure protocols 
are followed correctly and accuracy is maintained. Initially, all images 
are additionally reviewed by a medical researcher from the clinical 
sites until quality and accuracy is acceptable. After this, 10% of images 
will continue to be reviewed by the clinical sites to ensure ongoing 
accuracy of >80%.

Annotation software
V7’s Darwin platform facilitates the viewing and complex 

annotation of the skin image tiles. The platform enables users to 
designate a workflow in which images are assigned to various HITers 
and subsequently reviewed by clinical sites. Users across this workflow 
can view and edit image labels simultaneously, while allowing 

reviewers to provide comment, explanation and reject incorrectly 
annotated images.

Each dataset of image tiles represents one VECTRA TBP capture 
for one patient. Once uploaded to the V7 Darwin platform, any 
detected lesions are auto-annotated with an ‘unlabelled’ tag. Every 
image tile contains a circular digital ruler with a standardized diameter 
of 2.5 mm, enabling HITers to measure lesions during the annotation 
process. The HITers are instructed to review the auto-annotated 
lesions for falsely pre-tagged lesions, either because they measure 
<2.5 mm, or because they are artefacts (e.g., umbilicus, hair, scratch/
scar etc.). Likewise, annotators will need to adjust segmentation 
borders when multiple lesions have been grouped together by the 
auto-annotating software. HITers are then instructed to update the 
‘unlabelled’ tag to a lesion color category (Brown, Pink/Red/Purple, 
Black, Blue, White, Skin Color, or Combination). Lastly, HITers will 
categorize the average sun damage for each image tile as (1) None/
Mild, (2) Moderate, or (3) Severe. Annotators are provided with image 
examples to use as reference in their assessment. An example of the 
Darwin user interface is displayed in Figure 2.

Image annotation for diagnostic categories

A second round of annotation is completed by expert 
dermatologists, or dermatologically trained clinicians, for the 
diagnostic categories displayed in Table  1. This process is to 
be completed by the two recruitment sites (Barcelona and Brisbane), 
as well as an additional clinical site, the University of Trieste, 
Trieste, Italy.

This is conducted using V7’s Darwin platform and verified 
through VECTRA WB360 DermaGraphix Software. The image tiles 
annotated in the Darwin platform are reconstructed and projected 
back to the 3D TBP image for native visualization in the 
DermaGraphix software. This software allows the expert dermatologist 
to view the annotated lesions with the 3D avatar as a reference, with 
the ability to further annotate each lesion into diagnostic categories. 
The diagnostic classes for annotation were selected to be appropriate 
for the lower resolution of TBP images (as compared to dermoscopy). 
The diagnostic hierarchy available for melanocytic lesions (benign, 
suspicious, melanoma), reflect increasing levels of confidence in lesion 
categorization, including the pre-annotation of color.

Skin phenotype annotation

Sun damage
As described in the previous section, the HITers workforce used 

a photo-numeric scale to evaluate the level of sun damage for each 
image tile during the pre-annotation step. This scale used three 
categories of sun damage: none/mild, moderate, and severe. Each rater 
was provided with written instructions, including several image 
examples, on how to rate photodamage. Each image tile is assigned 
only one sun damage label, with the highest sun damage level being 
designated if multiple levels are evident within the tile. Sun damage is 
then summarized for each individual patient by calculating the 
percentage of skin surface categorized for each level of sun damage, as 
well as providing sun damage scores for anatomical sites, i.e., arms, 
legs, and torso.
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Nevi distribution characteristics
Implemented within the Canfield VECTRA DermaGraphix 

software, a Convolutional Neural Network (CNN) offers the 
probability assessment for each lesion, indicating the likelihood of it 
being a nevus. This algorithm was trained using ratings from an 
expert dermatologist as the gold standard (13). In addition, the 
longest diameter and 3D spatial coordinates of each lesion are 
calculated. For this study, all lesions with a diameter ≥ 3 mm with a 
nevus confidence >0.8 were considered nevi. This enables overall 
nevus count for the patient, as well as nevus distribution across 
anatomic sites.

Skin color measurement
Average skin color can be automatically measured across the 3D 

TBP image as the individual topography angle (ITA), calculated in the 
L*a*b* color space. A recent study in a highly sun-exposed population 
showed that most people had no photodamage on their lower torso 
and lower back third (26). Therefore, to calculate innate skin color the 
average of the non-lesion skin color from these locations is calculated. 
To estimate facultative skin color the average non-lesion skin color is 
calculated for the dorsal side of lower arms. The L* and b* values may 
be adjusted using a regression equation if it results in higher agreement 
with gold standard colorimeter values.

Algorithm development

Algorithms will be developed to apply automatic annotations on 
previously unseen images acquired with the VECTRA WB360 and 
identify evolving changes in a patient’s skin images over time. Task 
specific algorithms include lesion detection and segmentation on the 
image tiles, inter-exploration lesion-matching, ugly duckling 
detection, classification of the detected lesions, intra-exploration 
lesion matching and lesion change detection. From the results of these 
algorithms, imaging phenotypes to compute the lesion risk assessment 
are extracted.

Data splitting
The annotated image tiles are divided into three distinct datasets 

(training, validation, and test datasets), for AI-based model 
development and evaluation process. This allocation ensures that the 
models are trained on a substantial portion of the data (training set), 
evaluated and tuned based on the validation subset, and ultimately 
tested on unseen data (test set) to estimate its real-world 
performance accurately.

FIGURE 2

Work view in V7 software, enabling annotation and classification of lesions and sun damage. Symbols on the left side panel represent annotation tools 
available, allowing users to generate new annotations or edit existing lesion masks. All annotations or masks applied to the image are visible on the 
right-side pane. The red areas on image tiles are denoted as “area not valid,” as they are better represented for annotation in another image tile. One 
sun damage (SD) tag can be applied per image based on assessment of the valid area.

TABLE 1 Final diagnostic categories for lesion annotation, with shorthand 
acronym in brackets.

Diagnostic categories for annotation Shorthand

Benign melanocytic lesion BM

Suspicious melanocytic lesion SM

Melanoma MM

Solar Lentigo SL

Seborrheic Keratosis SK

Angioma AG

Actinic Keratosis/Intraepidermal carcinoma AK/IEC

Dermatofibroma DF

Basal Cell Carcinoma BCC

Squamous Cell Carcinoma SCC

Inflammatory Lesion IL

Collision Tumor CT

Unknown UN

Other OT
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The methodology employs a stratified randomization technique 
with 65% of the data allocated to the training set, 20% to the validation 
set, and the remaining 15% to the test set. Stratification is used to 
ensure all diagnostic classes (Table 1) are sufficiently represented in 
each dataset. This is vital to prevent potential class imbalances that 
could adversely affect the models’ performance and generalization.

Lesion detection and segmentation
For this task, a three-step approach is used to tackle lesion 

detection and segmentation. Given that image tiles may include 
background other than skin, images are pre-processed to obtain a 
corresponding skin mask. This is achieved by applying image 
thresholding within the HSV (hue, saturation, value) color space, 
followed by the application of morphological operations to enhance 
and clean the segmentation result. The resulting skin mask is applied 
to the final lesion segmentation, to eliminate the inaccurate detections 
(outside the skin region).

For lesion detection, the YOLO (You Only Look Once) model is 
employed (27), customized for our specific dataset. To expedite the 
model’s convergence and improve its performance, the training 
process is initialized using pre-trained weights on the COCO 
(Common Objects in COntext) dataset (28). This approach leverages 
the knowledge and features learned from a broader dataset and fine-
tunes the model for our dataset. By initializing with pre-trained 
weights, the model is built on a solid foundation and already possesses 
an understanding of basic object features, allowing it to adapt more 
efficiently to our data. This transfer learning strategy not only 
accelerates the training process but also often leads to better 
performance compared to training from scratch, particularly when 
working with limited data.

The bounding box predictions provided by the lesion detection 
model are used as initial prompts for subsequent instance 
segmentation, for which we leverage the Segment Anything Model 
(SAM) (29) performance. SAM is a state-of-the-art instance 
segmentation model known for its accuracy and robustness. Its 
impressive zero-shot performance, often comparable to or better than 
fully supervised models, highlights its versatility and potential for 
various applications. An example of the results of this three-step 
approach is presented in Figure 3.

Inter-exploration lesion matching
The objective of this task is to pinpoint the most optimal view, 

specifically the one that appears most orthogonal to the camera, for 
each detected lesion on the patient. With the help of the patient’s body 
geometry (i.e., acquired and properly anonymized 3D model), along 
with the system’s geometric calibration parameters, informed 
predictions can be made regarding the location of each lesion within 
the image tiles and approximate their image coordinates in each tile 
(with a margin for calibration error). To refine the predicted location 
based on the system geometry, we  take advantage of the image 
information and perform feature matching in a subsequent step, either 
based on lesion or image features, to obtain a more precise 
lesion location.

Once all the views corresponding to a particular lesion are 
identified, the best view is selected based on its positioning within 
the patient’s 3D model in relation to the camera system’s geometry. 
This optimal view for each lesion is then extracted from its 
respective image tile, resulting in a collection of cropped 
individual lesion images. This process is illustrated in 
Figures 4A–D.

Super-resolution
Machine learning models, particularly deep learning models, 

trained on high-resolution data tend to perform worse when applied 
to real-world scenarios, where image quality may vary. Methods to 
enhance fine details and subtle features in lower-resolution images 
allow for more precise analysis. Super-resolution techniques can 
significantly improve the visual quality and sharpness of images. By 
applying this technique to the collection of cropped individual lesion 
images, high-resolution versions of the images can be  generated, 
which are visually more appealing and detailed, and can improve the 
performance of the trained models.

For image super-resolution, the GAN prior embedded network 
(GPEN) (30) is used on the lesion crops. We fine-tune the GPEN 
model, which initially utilizes pretrained weights from the FFHQ 
(Flickr-Faces-High-Quality) dataset (31) on our own generated data, 
including artificially degraded dermoscopy images from the 
International Skin Imaging Collaboration (ISIC) challenge dataset 
(32). This degradation process includes resizing, blurring, and adding 

FIGURE 3

Algorithm steps for skin masking (A), lesion detection (B) and lesion segmentation (C). A three-step approach is used for lesion detection and 
segmentation. (A) as image tiles may include background of non-skin area, a skin mask obtained by thresholding of HSV color space, is applied to 
minimize inaccurate detections on non-skin area. (B) YOLO (You Only Look Once) (27) model, pretrained on COCO (Common Objects in Contexts) 
(28) dataset, is adapted to our datasets to detect skin lesions, depicted as bounding boxes. (C) The bounding box predictions are used as prompts for 
segmentation, leveraging SAM (Segment Anything Model) (29) model to provide precise segmentation of skin lesions.
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noise to the original images. It enables the model to be fine-tuned to 
match our specific super-resolution needs and achieve image quality 
as close as possible to dermoscopy.

Skin lesion classification
The outcomes of the previous steps generate datasets containing 

cropped single-lesion images. To make use of this data and their 
corresponding diagnostic annotations, we  employ a multi-class 
classifier to automatically identify skin lesions. This classifier 
categorizes the skin lesions into the classes provided in Table 1. Given 
that the provided images are approximately 210 × 210 pixels in 
resolution, we  opt for smaller deep learning models designed for 
handling such dimensions efficiently.

Given the established success of EfficientNet in tasks related to 
skin cancer detection, our approach involves the utilization of 
EfficientNet models, specifically choosing from smaller variant models 
B0, B1, B2, or B3 with fewer parameters for the analysis of our dataset. 
EfficientNet have demonstrated notable efficacy in achieving accurate 
results while managing computational efficiency. The flexibility of 
selecting among these variants allows us to tailor the model to the 
specific characteristics of our data, ensuring optimal performance in 
skin lesion diagnosis.

The choice of the final EfficientNet model is still pending, 
awaiting experimental evaluation to determine the most effective 
model considering the image resolution. However, the smaller 
EfficientNet models, in comparison to cutting-edge alternatives, are 
considered well-suited for application in TBP. Their smaller size not 
only aligns with the need for speed in this task but also ensures 
efficiency without compromising performance in the diagnosis of 
skin lesions.

Comparative analyses and ugly duckling 
detection (nevus phenotype)

Most individuals exhibit a predominant type of nevus (e.g., 
signature nevus), sharing a similar clinical (or dermoscopic) appearance. 
Lesions outside of this common pattern in a given individual (i.e., the 
ugly duckling), must be considered with suspicion, even if it does not 
fulfill the ABCDE or dermoscopic melanoma-specific criteria. 
Conversely, an atypical lesion may be  completely normal in an 
individual whose skin is covered with similar lesions in the context of 
atypical mole syndrome (33, 34). The lesion classification model’s 
feature extraction capabilities are harnessed to identify “ugly ducklings.” 
This is achieved by computing the features of individual moles and 
comparing them with those of other lesions within the same exploration.

Upon mole detection, feature extraction is applied to all potential 
lesions. This entails computing the output of the last layers of the 
classification CNN model. To streamline the problem and retain only 
the most informative features for lesion description, Principal 
Component Analysis (PCA) (35) is carried out. Subsequently, the L2 
norm is employed to calculate a similarity score between each pair of 
lesions. Any lesion that significantly differs from the rest (indicated by 
a low similarity score relative to other lesions) is flagged as a potential 
“ugly duckling.”

Lesion change detection
A similar strategy used in inter-exploration lesion matching is 

applied to match the same lesion across different image captures of the 
same patient. First, a 3D-based hint for matching skin lesions is 
computed, and then further refined through a subsequent image-
based matching phase involving candidate skin lesions located within 
the predicted area.

FIGURE 4

Steps involved in inter-exploration lesion matching and change detection. (A) First image exploration (i.e., image capture). (B) Second image 
exploration (e.g., 6–12  months later). (C) Feature matching between sequential explorations. (D) Transformed first image exploration to match second 
image exploration. (E) Segmentation mask for first image exploration. (F) Segmentation mask for second image exploration. (G) Detected differences 
between explorations.
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The VECTRA WB360 3D model is transformed into a generic 
human avatar by fitting a Parametric Body Model (PBM) to the 
patient’s scan. The PBM serves as an intermediary layer between 
different explorations (i.e., image captures), allowing lesion positions 
to be mapped to the avatar and then matched to the next exploration. 
This position estimation is further refined by performing feature 
matching on the corresponding images.

Upon identifying lesion matches between the two explorations, 
changes in color, shape, and size are assessed, as well as pinpointing 
any newly appearing lesions. To analyze shape and size variations, the 
segmentation masks computed in the previous algorithms are 
registered and compared, as depicted in Figure 4. For color changes, 
the RGB intensities detected within the lesion mask are categorized 
into color groups including black, white, blue-grey, light brown, dark 
brown, and red, as illustrated in Figure 5. This categorical segmentation 
is then compared between both time points, yielding a quantification 
of color changes.

Genetic risk assessment
Patient samples (either blood or saliva) are used to extract DNA 

for genetic risk assessment for melanoma. Previous Genome Wide 
Association Studies (GWAS) have identified several single nucleotide 
polymorphisms (SNPs) associated with melanoma risk (36, 37). Most 
of these SNPs are located in genes associated with skin pigmentation, 
nevus lifecycle, DNA repair and telomere length. Each individual SNP 

represents only a small incremental change in melanoma risk, however 
the cumulative effect, calculated as a polygenic risk score (PRS), is 
estimated to contribute as high as 30% of melanoma susceptibility 
(38). Previous methods are used to calculate the PRS based on the 
reported incremental contribution of SNPs as genetic risk factors (36, 
39). Additionally, the applicability of AI-based methods for genetic 
risk assessment will be  explored. Preliminary results show that 
AI-based methods are quite effective in discovering potential complex 
interaction patterns among a large number of SNPs.

In addition to SNP analysis for polygenic risk, participants who 
meet familial melanoma testing criteria (40) are offered genetic testing 
for genes associated with high risk of hereditary melanoma. 
Pathogenic variations in these genes are associated with a >50% 
lifetime risk of melanoma (41). Inheritance of these variations follow 
an autosomal dominant pattern, meaning first-degree relatives of a 
carrier will have a 50% chance of harboring the same pathogenic 
variation. The detection of a pathogenic variation will be included as 
patient metadata to contribute to risk profiling. The actual variant 
details will not be released by the clinical sites, only the presence of a 
high-risk variation will be reported (e.g., yes/no).

Patient risk assessment
A cognitive assistant is built using AI-based methods for 

providing representative estimates of melanoma risk to the 
clinicians, combining different data modalities. The incremental 

FIGURE 5

Color detection of selected skin lesions. Two examples of original skin lesion images (A,B), and subsequent color detection applied (C,D). This step is 
used to compare sequential explorations of lesions to detect changes in color.
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contribution of individual risk factors is combined, including clinical 
metadata (collected in participant surveys), phenotype 
characteristics (extracted from total body photography), and genetic 
risk (calculated PRS and presence of high-risk pathogenic 
variations). Previous reported weightings for lifestyle and clinical 
risk factors for melanoma, collected in participant metadata surveys 
are applied (42, 43). Risk models are then fine-tuned using state-of-
the-art data-driven AI-based analysis methods, as non-negative 
neural networks, to reveal new possible factors that may contribute 
to risk through the interaction of multiple attributes.

The final individual melanoma risk scores, derived from 
various data modalities across multiple patient visits, will 
be combined to generate a global melanoma risk estimation. This 
holistic assessment offers clinicians the capability to review and 
thoroughly evaluate the factors contributing to the reported risk 
score, facilitating a comprehensive understanding of the patient’s 
melanoma risk.

Lesion risk assessment
To assess the risk associated with a lesion, the outputs from 

previously described models are essential. These algorithms provide 
information of lesion size, color, diagnosis and skin tone used in the 
risk assessment algorithm as well as patient risk scores. This lesion risk 
assessment algorithm furnishes a final risk score ranging from 0 to 1 
for each identified lesion. This score is normalized based on the 
severity of the skin disease characteristics detected, for example 
between seborrheic keratoses and melanoma. A score of 0 indicates 
healthy skin, while a score of 1 signifies a high risk of skin cancer. The 
algorithm will incorporate knowledge of specific skin diseases and 
conditions to evaluate risk, leveraging well-established characteristics 
in this assessment.

Integration of explainable AI
Explainable AI (XAI) techniques are employed to gain insights 

into the decision-making processes and rationales of underlying AI 
algorithms used for diagnostic predictions. While local explainability 
methods, like layer-wise relevance propagation (44), are utilized to 
identify the most significant input features (i.e., pixel values) for the 
diagnostic AI algorithm’s predictions, global XAI approaches, such as 
spectral relevance analysis (45), reveal global prediction strategies 
employed by the model.

Furthermore, concept based explainability methods, e.g., concept 
relevance propagation (46), combine both perspectives, and explain 
individual prediction with human-understandable concepts employed 
by the diagnostic AI tool. This further allows the automated generation 
of XAI-based metadata, e.g., based on the existence of certain 
concepts, which, for instance, might align with domain expert 
knowledge. Alternatively, the occurrence of artefact-related concepts 
(e.g., skin markings), can be  used for the automated flagging of 
data samples.

Moreover, as suggested in the “Reveal to Revise”-framework 
(47), explainability techniques are seamlessly integrated into the AI 
model development life cycle. This involves leveraging metadata 
generated through XAI to iteratively identify and address model 
irregularities. For instance, the approach involves rectifying issues 
such as the utilization of data artefacts. This integration enhances 
the robustness and trustworthiness of the employed AI models 
over time.

International skin image analysis challenge

In recent years, it has been a common research practice to 
organize international competitions or challenges in which the 
algorithms of different researchers can be benchmarked on publicly 
released datasets.

Over the period of the iToBoS project, the wider consortium will 
organize two competitive challenges where world-leading groups can 
participate in solving new problems on: (1) lesion detection and 
boundary segmentation in regional (total) body images, and (2) on 
lesion classification.

These challenges will facilitate advancements in the development 
of AI and computer aided diagnostic tools and contribute to the 
knowledge dissemination in the field. A selection of non-identifiable 
skin images prepared in this study may be included in larger datasets 
for the analysis challenges. In this instance, minimal clinical 
non-identifiable information will also be included (age, sex, melanoma 
history, hair and eye color and body site of image), and whether 
certain genetic changes, i.e., risk associated genotypes are present.

Data management and quality assurance

Data management in iToBoS is controlled by a pre-defined Data 
Management Plan, which describes how we collect, store, organize, 
maintain, retrieve, and use information in a secure and effective manner. 
The primary platform of data management is the iToBoS cloud—a 
private cloud hosted within the Hungarian HUN-REN research cloud, 
which provides storage, compute and GPU capabilities for the various 
processing components of the project. All data is ultimately stored and 
processed in or via the iToBoS cloud. The Storage Cloud is based on 
Nextcloud software. Access to Nextcloud is managed by internal 
authentication and authorization backend. New users can be added by 
the administrators. The operating system of the virtual machines and 
the data stored in the cloud are encrypted leveraging the LUKS (Linux 
Unified Key Setup) technology provided by the Compute Cloud service. 
The Compute Cloud runs on OpenStack. The cloud infrastructure is 
accessible only by the project members using SAML (Security Assertion 
Markup Language) authentication. The compute cloud can host the 
necessary virtual machines for the project. The virtual machines can 
be run in a private network, which is not accessible from the outside 
world. It is also possible to create multiple private networks to separate 
the virtual machines within the project. The cloud compute provides a 
firewall which by default blocks all incoming traffic to the virtual 
machines. The virtual machines can be accessed using SSH (Secure 
Shell) protocol, which is protected by public key. The iToBoS cloud also 
provides GPUs for AI inferencing tasks.

Data monitoring

Patient consent, metadata, and image acquisition
Site reviewers will randomly select 10 participant visits on a 

monthly basis to retrospectively check for adherence to protocols in 
regard to:

 a. Patient consent for completeness and accuracy.
 b. Input of data into eCRFs for completeness and accuracy.
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 c. Images produced by VECTRA in regard to positioning of 
participants, consistency, and image quality.

Feedback from monitoring visits is to be  provided to clinical 
sites quarterly.

Image annotation
The first subset of participant image datasets pre-annotated by the 

ISAHIT workforce are 100% reviewed by the clinical sites for accuracy, 
with feedback provided after each dataset is reviewed. This process is 
repeated until accuracy has reached at least 80% agreement between 
ISAHIT annotators, and the clinical sites. After which, 10% of datasets 
pre-annotated by ISAHIT will receive clinician review, with direct 
feedback provided if annotation is rejected.

For lesion classification annotation performed by expert 
dermatologist, an initial review stage will take place after each clinical 
site has annotated 10 participant datasets. Each dataset will 
be reviewed by a different clinical site to calculate agreement between 
two expert dermatologists. If agreement is over 95%, then lesion 
classification annotation will continue without further review. If 
agreement is under, then the panel of dermatologist annotators will 
meet to discuss cases in disagreement. Dermatologists will then 
annotate and provide review for another 10 patient datasets and repeat 
this process until agreement is over 95%.

Ethics and dissemination

Clinical data acquisition studies received Human Research 
Ethics Committee (HREC) approvals from The University of 
Queensland HREC (2022/HE001866) for the Brisbane, Australia 
site, and from the Hospital Clinic of Barcelona HREC 
(HCB/2022/1051) for the Barcelona, Spain site. The study has been 
registered with ClinicalTrials.gov (ref NCT05955443). The study 
was conducted in accordance with the principles of Good Clinical 
Practice. The study was designed following the ethical principles 
of the Declaration of Helsinki from 1964. Results will be published 
in peer-reviewed journals and disseminated at international 
scientific meetings.

Patient and public involvement

The iToBoS Consortium include partnership with the Melanoma 
Patient Network Europe (MPNE), to ensure direct consultation and 
dissemination of research to melanoma patients and the public. 
MPNE reviewed this protocol prior to implementation to provide 
feedback on the study design on behalf of the melanoma patient 
network. Furthermore, MPNE are running a series of workshops for 
MPNE members over the course of the project, which include 
presentations and questions time with iToBoS Consortium  
researchers.

Additionally, iToBoS Consortium partner The University of 
Queensland hold regular consumer forums, to provide a platform for 
researchers, advocacy groups and consumer representatives to meet 
and exchange ideas. These forums also include presentations on recent 
research developments related to melanoma, with ample time 
allocated for consumer questions and discussion (48).

Anticipated results

At the completion of this study, we  anticipate having a 
comprehensive annotated dataset of total body photography images, 
anonymized, and labelled with patient-level metadata. Images will 
be annotated with information relating to skin phenotype and lesion 
diagnostic categories. Patient-level metadata will enable machine 
learning protocols to evaluate individual risk for melanoma. The AI 
tools we  anticipate will include algorithms for lesion detection, 
segmentation, matching (from previous imaging), change detection, 
ugly duckling assessment, and lesion diagnostic category. All these 
algorithms contribute to the final output of lesion risk assessment. A 
second holistic patient risk algorithm will be developed using patient-
level metadata and skin phenotype information.

Furthermore, with research partners dedicated to the development 
of explainable AI (XAI) procedures, we anticipate incorporating XAI 
description with all risk assessment algorithm output. Lastly, it is our 
objective to contribute annotated datasets to two international 
computer skin image analysis challenges to advance further 
developments in this field and promote wider collaboration.

Discussion

To our knowledge, this protocol is the first to describe the 
multiclass annotation of total body photography (TBP) for both skin 
lesion and phenotype characteristics. This includes DICOM labelled 
patient-level metadata designed for machine learning application. 
Algorithms developed with these datasets will address several 
clinically relevant gaps that previous skin lesion classifier algorithms 
often lack (49). The majority of algorithms to date are trained to 
consider a dermoscopic image of a lesion, in isolation of any clinical 
background. This has negatively impacted the translation of this 
technology into clinical practice. In a real-world scenario, a 
dermatologist would consider a patient’s medical history, phenotype 
(including skin/hair/eye color, nevi characteristics, and UV damage), 
review sequential imaging to detect lesion changes, and apply ‘ugly 
duckling’ methods, which draws attention to lesions that are unlike 
others on a given patient. The aim of this protocol is to develop 
computer aided diagnostic (CAD) tools capable of providing holistic 
risk assessment of both patient and individual lesions.

One advantage this protocol presents is the prospective collection 
of TBP from patients at various risk of melanoma, providing a 
representative image dataset of the entire skin surface for both general 
and higher risk populations. To date, algorithms for skin lesion 
classification are often developed using retrospective public datasets 
of mostly dermoscopy images, which may be restricted to ‘interesting 
cases’ and lack generalizability to day-to-day clinical practice (6). 
Furthermore, an algorithm applied to TBP or other wide-field clinical 
images, increases usability as a triage tool by non-dermatologists. Any 
AI triage tools dependent on dermoscopy images, must assume that 
the end-user has professional training to identify lesions requiring 
specialist review. In the scenario of a telehealth TBP appointment 
where dermatologists are not involved in the imaging, the imaging 
technicians could be  prompted by AI tools to take additional 
dermoscopy images of lesions flagged as suspicious or malignant.

A current challenge, particularly given the present melanoma 
overdiagnosis epidemic, is identifying those who are at the highest risk 
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of melanoma and would benefit the most from screening and 
surveillance (50). Existing risk stratification methods often rely on 
subjective assessments or self-report which result in varying levels 
inter- and intra-rater reliability and can lead to misclassification (51, 
52). This protocol uses experts to provide ground truth ratings using 
reproducible strategies, resulting in high quality data for training 
machine learning algorithms. Once trained, the algorithms will 
be able to provide automated and objective measures of phenotypic 
risk factors, removing the subjectivity of single raters and self-report.

Previously, the use of conventional total body photography 
imaging combined with sequential digital dermoscopy imaging has 
been shown to reduce the number of biopsies taken, as well as 
increasing the accuracy and timeliness of diagnosis in people at high 
risk of melanoma (53, 54). Therefore, incorporating an objective 
lesion-based risk as well as personal-based risk with these technologies 
has the potential to further aid in the early detection of melanoma, 
and reduce biopsies of benign lesions.

Conclusion

This protocol describes the methods to construct a comprehensive 
dataset for machine learning, encompassing sequential-TBP, lesion 
classification, phenotype information, and patient-level metadata. The 
outcome of this study is to introduce a holistic approach for AI-driven 
CAD tools for the early detection of melanoma. This protocol 
addresses limitations of clinical transferability of existing algorithms, 
by including contextual clinical information in training datasets that 
are normally considered by a dermatologist. The incorporation of 
these tools with the Intelligent Total Body Scanner (iToBoS), will 
produce an innovative platform to improve patient risk stratification, 
and surveillance for early signs of skin cancer.
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