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Natural biomimetic nano-system 
for drug delivery in the treatment 
of rheumatoid arthritis: a 
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Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized 
primarily by synovitis, leading to the destruction of articular cartilage and bone 
and ultimately resulting in joint deformity, loss of function, and a significant 
impact on patients’ quality of life. Currently, a combination of anti-rheumatic 
drugs, hormonal drugs, and biologics is used to mitigate disease progression. 
However, conventional drug therapy has limited bioavailability, and long-term 
use often leads to drug resistance and toxic side effects. Therefore, exploring 
new therapeutic approaches for RA is of great clinical importance. Nanodrug 
delivery systems offer promising solutions to overcome the limitations of 
conventional drugs. Among them, liposomes, the first nanodrug delivery system 
to be  approved for clinical application and still widely studied, demonstrate 
the ability to enhance therapeutic efficacy with fewer adverse effects through 
passive or active targeting mechanisms. In this review, we provide a review of the 
research progress on the targeting mechanisms of various natural biomimetic 
nano-delivery systems in RA therapy. Additionally, we predict the development 
trends and application prospects of these systems, offering new directions for 
precision treatment of RA.
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1 Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized by bilateral 
inflammation of multiple joints. It involves the infiltration of synovial inflammatory cells 
in local joint cavities, leading to tenosynovitis, cartilage destruction, and bone erosion (1). In 
addition to the progression of joint inflammation and cartilage destruction, the extra-articular 
system is frequently affected during the course of the disease (2). Conventional drugs including 
nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs 
(DMARDs), glucocorticoids (GCs), and biologics are currently used for RA treatment (3, 4). 
These medications predominantly aim to suppress the immune response or the inhibit specific 
inflammatory mediators in order to alleviate symptoms associated with RA. However, the 
efficacy of drug treatment limited by the drug’s short effective half-life and its insufficient 
ability to specifically target diseased tissues, leading to poor clinical outcomes (5). Furthermore, 
upon in vivo administration, the drug is disseminated throughout the body, resulting in an 
elevated risk of side effects on extra-articular organs (6).

Nano-delivery systems emerge as a promising therapeutic strategy to enhance the efficacy 
of drugs and optimize their therapeutic outcomes. Clinical studies reported that nano-delivery 
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systems have made remarkable contributions to the treatment of 
diverse diseases (7–9). Nano-delivery systems enhance drug solubility, 
prolong drug circulation time, reduce drug clearance, and deliver 
drugs to disease sites in a controlled manner (10, 11). In recent years, 
the design of multifunctional nanocarriers with sophisticated targeted 
drug delivery capabilities or transformable properties has gained 
significant attention (12, 13). These advancements enable smart drug 
delivery and aim to enhance therapeutic efficacy for RA. In brief, the 
integration of an efficient drug with a nano-delivery system holds 
promising potential as a therapeutic approach. Importantly, in 
comparison to exogenous nano-delivery systems (14, 15), the 
utilization of natural biomimetic nano-system for drug delivery offers 
superior biocompatibility, reduced cytotoxicity, and 
non-immunogenicity (16, 17). In this review, we  focus on the 
utilization of natural biomimetic nanomaterials in the field of drug 
delivery for RA treatment, and discuss their advantages 
and limitations.

2 Methods

An extensive literature review was undertaken to understand the 
natural biomimetic nano-systems for drug delivery in the treatment 
of RA. A literature search was conducted on ScienceDirect, PubMed, 
and Web of Science for literature published between 2019 and 2023, 
using the keywords natural biomimetic, drug, nucleic acid, RNA, 
delivery system, endogenous albumin, extracellular vesicle, cell 
membrane, genetically engineered membrane, viral vectors, non-viral 
vectors, and nanoparticles (NPs) combined with rheumatoid arthritis. 
Other available resources were also used to identify relevant articles.

3 Molecular mechanisms of RA 
pathogenesis

The occurrence and progression of RA are associated with 
dysregulated signaling pathways and autoimmune dysfunction. 
Abnormal regulation of signaling pathways (Figure  1), including 
MAPK, NF-κB, PI3K/AKT, JAK/STAT, among others, leads to 
abnormal expression of inflammatory cells and mediators such as 
fibroblast-like synoviocytes (FLSs), synovial macrophages, and other 
inflammatory mediators within the affected joint cavities (18). The 
interplay between multiple inflammatory cells and cytokines 
contributes to the inflammatory response in RA, leading to 
hyperactive immune system activity that drives the development and 
perpetuation of the disease (18, 19). In the early stages of RA 
pathogenesis, B cells secrete pro-inflammatory cytokines such as 
rheumatoid factor and anti-citrullinated protein antibody, which play 
a pivotal role in mediating T cell and macrophage activation (20). 
Upon activation, T cells and macrophages secrete inflammatory 
mediators such as tumor necrosis factor-α (TNF-α), matrix 
metalloproteinases (MMPs), interleukin-1 (IL-1) and IL-17. These 
mediators further exacerbate the inflammatory response, promote the 
formation of vascular opacities, and contribute to the damage of 
articular cartilage. In addition, immune cells such as dendritic cells 
and FLSs play a crucial role in mediating the pathophysiologic process 
of RA. In the advanced stages of immune system dysregulation during 
RA pathogenesis, these synovial cells undergo excessive proliferation 

and differentiate into tissue-invasive effector cells, thereby stimulating 
the formation of osteoclasts, ultimately resulting in progressive joint 
damage and the persistent presence of invasive inflammation within 
the synovial tissue (21).

4 Drugs delivery system

Based on the biological attributes of biomimetic units, natural 
biomimetic nano-systems offer three primary advantages: extended 
circulation within the body, precise targeting capabilities, and reduced 
toxicity. Currently, natural biomimetic nano-systems in the field of 
drug delivery for RA treatment including endogenous albumin, 
extracellular vesicles, cell membranes, and genetically engineered 
membranes. These innovative systems have demonstrated effectiveness 
in delivering therapeutic drugs or NPs to the affected joints, thereby 
enhancing the overall therapeutic outcome (Figure 2).

4.1 Endogenous albumin

Human serum albumin (HSA), the primary component of serum 
proteins, serves as a versatile carrier for therapeutic and diagnostic 
drugs with inflammation-targeting properties. Given its naturally 
biocompatibility, biodegradability, ease of production, and cost-
effectiveness, HSA stands as a promising multifunctional drug carrier 
(22–24). In recent years, several preclinical studies have reported 
albumin-based biomimetic nano-systems as drug delivery vehicles for 
RA treatment in animal models (25–27).

A previous study revealed the overexpression of secreted protein, 
acidic and rich in cysteine (SPARC) in the synovial fluid and synovium 
of both RA patients and collagen-induced arthritis (CIA) mice (28). 
Moreover, augmented metabolism of synovial cells was observed in 
inflamed joints compared to healthy tissues, necessitating increased 
utilization of albumin for nitrogen and energy. These metabolic 
alterations in inflamed joints were found to be associated with the 
occurrence of hypoalbuminemia in RA patients. Consequently, the 
specific aggregation of albumin at inflammation sites can be attributed 
to increased blood albumin consumption, augmented permeability, 
and upregulated expression of SPARC.

In 2019, Liu and colleagues successfully developed HSA-NPs with 
specific targeting abilities to enhance the safety and therapeutic 
effectiveness of methotrexate (MTX) in CIA mice (29). Subsequently, 
Lyu et al. (30) and Chen et al. (31) developed two types of mannose-
modified MTX-loaded HSA-NPs (MTX-M-NPs) to further augment 
the targeting capabilities of albumin NPs to inflammatory sites in 
animals. These targeted nano-systems enables the precise delivery of 
therapeutic agents to neutrophils specifically at the inflamed joint site 
by binding to the mannose receptor on the surface of neutrophils. 
Consequently, the utilization of MTX-M-NPs holds significant 
potential in enhancing the anti-inflammatory capabilities of 
neutrophils at the joint site in patients with RA. The application of 
albumin NPs in RA treatment was summarized in Table 1.

Albumin-based nano-systems offer advantages in enhancing 
targeted therapeutic efficacy at inflamed joint sites, as well as extending 
the half-life and improving the bioavailability of drugs. Fatty acids, 
such as palmitic acid, are commonly used to prolong the half-life of 
proteins or peptides. Accordingly, Gong et  al. (36) synthesized 
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FIGURE 1

The role of signaling pathways in RA.

FIGURE 2

(A) Represents the schematic structure of a non-viral vector, (B) Represents the schematic structure of a viral vector.
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palmitic acid (PA)-modified bovine serum albumin (BSA) NPs (PAB-
NPs). Through in vivo pharmacokinetic experiments, it was 
demonstrated that PAB-NPs significantly prolonged the drug’s 
circulation time and improved its bioavailability compared to 
BSA-NPs. Targeting studies additionally revealed the prominent 
scavenger receptor-A (SRA) targeting properties of PAB-NPs, 
resulting in a remarkable 9.1-fold higher uptake of PAB-NPs by 
activated macrophages compared to BSA-NPs (36).

4.2 Extracellular vesicle

In recent years, significant advancements have been made in the 
field of RA treatment with regards to extracellular vesicles (EVs) (37, 
38). These membrane-bound vesicles derived from various cells, play 
a crucial role as messengers in inter-cellular communication and the 
regulation of various pathophysiological conditions. EVs can 
be categorized into three primary subgroups based on their biological 
origin and size: exosomes (Exo, 30 to 200 nm), macrovesicles (MVs, 
200 to 1,000 nm), and apoptotic vesicles (Avs, >1,000 nm) (39, 40). 
EVs can naturally be  secreted by diverse cell types, such as 
macrophages and cancer cells, and are known for their 
non-cytotoxicity, non-immunogenicity, and excellent biocompatibility 
(41). In addition, the presence of consistent adhesion molecules on the 
EV surface facilitates preferential binding to host cells and helps them 
evade phagocytosis by endothelial reticulocytes (42, 43). EVs also play 
a crucial role in intercellular communication by transferring their 
cargo to various cells, thereby promoting cell transcription and 
proliferation (44). Therefore, the utilization of EVs as nano-systems 
for drug encapsulation can achieve effective drug delivery. Compared 
to cell-mediated nano-systems, EVs provide the advantage of reducing 
clearance by the mononuclear phagocyte system (MPS) and enhancing 
the accumulation of NPs in tissues (45).

Considering the involvement of macrophages in the inflammatory 
micro-environment of RA and their pro-inflammatory properties, 
researchers have explored the potential of using macrophage-derived 
EVs as drug carriers for RA treatment (46). Macrophages possess 
specific targeting properties due to the presence of surface membrane 
proteins, and EVs secreted by macrophages can inherit these targeting 
abilities from their host cells. Yan et al. (47) developed a biomimetic 
nanoparticle utilizing macrophage-derived Exo, wherein 

dexamethasone sodium phosphate (Dex) was encapsulated (Exo/Dex). 
The surface of these Exo was further modified with a folic acid 
(FA)-polyethylene glycol (PEG)-cholesterol (Chol) compound to 
create an active targeted drug delivery system known as FPC-Exo/Dex. 
Their results showed that the biomimetic drug delivery system 
exhibited an extended systemic circulation time for the drug, enhanced 
targeting efficiency at the site of inflammation, and offered enhanced 
protection against bone and cartilage damage in mice with CIA (47).

In another study, researchers utilized macrophage-derived micro 
vesicles (MMVs) encapsulated within NPs (MNPs) as a targeted 
approach for RA treatment (48). The proteomic profile of MMVs was 
analyzed using iTRAQ (isobaric tags for relative and absolute 
quantitation) labeling, providing insights into the relative and absolute 
protein levels. The presence of membrane proteins in MMVs that 
closely resemble those found on macrophage suggests that MMVs can 
exhibit similar biological activities to macrophage-targeted RA 
therapy. In addition, poly (lactic-co-glycolic acid; PLGA) NPs were 
encapsulated with MMVs, and the targeting efficacy of the MNPs 
system for inflammatory therapy was evaluated both in vitro and in 
vivo. Their results indicating that MNPs hold great promise as a 
biomimetic nano-delivery system for RA treatment (48). The 
application of EVs in RA treatment was summarized in Table 2.

4.3 Cell membrane

In recent years, there has been a surge of interest in the study of 
cell membrane-coated NPs owing to their remarkable biocompatibility, 
ability to retain cellular properties, and versatility in a wide range of 
therapeutic and imaging applications (50). Various immune cells have 
been identified to have crucial involvement in the progression of RA, 
and their cell membranes offer potential as nano-delivery systems 
with functionalities and targeting abilities. In addition, from a 
biological and immunological perspective, a novel interfacial 
attachment technique known as cell membrane capping technology 
has emerged as a promising approach to enhance the efficacy of 
synthetic nanocarriers (51). Apart from the extensively studied red 
blood cells (RBCs), various cell types such as platelets, white blood 
cells, cancer cells, stem cells, and even bacteria offer potential as 
sources for membrane materials, each possessing distinct properties 
and exerting diverse targeting characteristics (52, 53).

TABLE 1 Application of albumin NPs in RA treatment.

NPs Therapeutic advantages Animal models

MTX-loaded albumin NPs

(32)

MTX prodrug selectively binds to the cysteine-34 position of endogenous albumin and is 

efficiently cleaved by histone B and fibrinolytic enzymes overexpressed in RA and releases MTX.
CIA mice

Albumin-TRAIL coupling polymers

(33)
Has significant targeted RA and long circulation CIA mice

PAB-CLT

(30)
PAB has significant SR-A targeting over BSA maleate (SR-A ligand) AIA rat

HAS-PD/CU

(34)

Accumulates in inflamed joints through the ELVIS effect and exhibits a slow release, synergistically 

delivering a high therapeutic effect at a low dose.
AIA rat

HAS-MTX

(28)
Based on the high expression of SPARC in RA and the inherent high affinity of SPARC for albumin CIA mice

MTX-M-NPS

(35)
Targeting of drugs to neutrophils by binding to mannose receptors CIA rat
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Upon coating with cell membranes, NPs not only acquire the 
physicochemical attributes of native cell membranes but also inherit 
distinctive biological functionalities arising from the presence of 
membrane-anchored proteins, antigens, and immune components 
(54, 55). The inherent biological properties and functions derived 
from these cell membrane-coated NPs, including immunosuppressive 
effects, prolonged circulation, and targeted recognition, underscore 
their significant potential in the field of biomedicine (56). 
Consequently, the development of a biomimetic nano-delivery system, 
emulating endogenous cells, holds promise for enabling molecular 
imaging and precise drug delivery to inflamed joint sites.

Erythrocytes, favored by researchers due to their remarkable 
circulatory longevity of up to 120 days, exhibit immense potential as 
carriers for drug delivery (57). Erythrocyte membrane-coated NPs 
have been proven to effectively extend the half-life in the systemic 
circulation, surpassing the performance of polyethylene glycol-coated 
nano-delivery systems (58). Li et al. reported a resveratrol-loaded 
PLGA NPs functionalized with erythrocyte membranes as a 
biomimetic delivery system significantly prolonged the circulation 
time of resveratrol in mice (32). During the last two decades, PEG has 
been the focus of studies due to its immunogenicity, which may trigger 
accelerated blood clearance (ABC) and hypersensitivity reactions to 
PEGylated NPs (59, 60). However, erythrocyte membrane-coated NPs 
are not affected by the “ABC” effect. The presence of CD47, a 
distinctive “do not eat me” protein expressed on the surface of RBCs, 
plays a crucial role in enabling the NPs to evade immune clearance by 
interacting with signal regulatory protein-α receptors (33). 
Furthermore, researchers have explored the intrinsic interaction 
between P-selectin expressed on platelets and inflamed tissues to 
develop platelet membrane NPs loaded with FK506 (tacrolimus), a 
potent immunosuppressant, for targeted treatment of RA at inflamed 
joint sites (34). These platelet membrane NPs exhibited prolonged 
drug circulation time in the bloodstream, enhanced accumulation at 

inflamed joint sites, and effectively mitigated joint swelling 
and inflammation.

In a previous study conducted by Dehaini, a novel bio-coating was 
developed using fused cell membranes of RBCs and platelets, resulting 
in RBC-platelet membrane NPs (49). The fused membrane combines 
the functionalities of erythrocytes and platelets, and experimental 
findings indicated that this carrier possesses properties from both cell 
sources. This innovative approach paves the way for the development 
of biomimetic nano-delivery systems with diverse functionalities, 
tailored to overcome existing limitations of nanoparticle-based 
therapeutic and imaging platforms (49).

Neutrophils have been observed to accumulate at inflammation 
sites in RA, and play an important role in reducing inflammation and 
repairing tissue damage (61). Zhang et  al. developed neutrophil 
membrane-encapsulated NPs by fusing neutrophil membranes onto 
polymer cores (62). The resulting nano-delivery system retained the 
relevant membrane functions and antigenic properties of the host 
cells, making it an excellent candidate for targeted delivery to 
neutrophils. The NPs exhibited the ability to inhibit the secretion of 
pro-inflammatory cytokines, attenuate synovial inflammation, and 
provide protection against bone and cartilage damage in both CIA 
models and human transgenic arthritis mouse models (62). The 
application of cell membrane nano-system in RA treatment was 
summarized in Table 3.

4.4 Genetically engineered membrane

The advancements in naturally biomimetic nano-delivery systems 
have transformed cell membrane-coated NPs into a viable and 
practical therapeutic platform (64). In order to enhance the targeted 
delivery capabilities of nano-systems, it is possible to modify them 
with specific ligands that target inflammatory tissues or cells. However, 

TABLE 3 Application of cell membrane NPs in RA treatment.

NPs Therapeutic advantages Animal models

Neutrophil membrane-

encapsulated PLGA NPs

(57)

LFA-1 on neutrophil membranes binds to ICAM-1 and enhances targeting, a function-driven, broad-spectrum 

and disease-associated blocker that inhibits inflammatory cascades in disease processes

CIA mice/human TNF-α 

transgenic mice

Platelet membrane-

encapsulated PLGA NPs

(62)

Targeting disease sites by P-selectin and GVPI recognition CIA mice

TU-NPs

(63)

Neutralizes cytokines, inhibits synovial inflammation and provides strong cartilage protection to prevent joint-

damaging substances from penetrating deep into inflamed tissues.
CIA mice

TABLE 2 Application of EVs NPs in RA treatment.

NPs Therapeutic advantages Animal models

IL-10-treated DC-derived 

exosomes

(49)

Ability to inhibit the onset of arthritis and reduce the severity of established arthritis CIA mice

FPC-Exo/Dex

(44)

Targeted activation of FRβ expressed by macrophages inhibits the secretion of pro-inflammatory cytokines and 

increases the expression of anti-inflammatory cytokines for better protection of bone and cartilage in CIA mice
CIA mice

MNP

(45)
Enhancement of therapy by targeting ICAM-1 or p-selectin highly expressed by activated macrophages CIA mice
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certain chemical or physical modifications may potentially disturb the 
structure or functionality of proteins present in cell membranes. 
Nevertheless, genetic engineering provides a means for the specific 
expression of targeted ligands onto cell membranes, without 
disrupting the existing membrane proteins. Taking advantage of this, 
researchers utilized genetic engineering techniques to generate cell 
membranes expressing tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) from human umbilical vein endothelial cells 
(65). Subsequently, the fusion of the TRAIL-anchored membrane with 
hydroxychloroquine-loaded PLGA-NPs enables targeted delivery to 
activated M1 macrophages at the inflammation site, with the goal of 
therapeutically suppressing the secretion of pro-inflammatory. 
Following intravenous injection, the bionanoparticles were observed 
to accumulate and persist in the inflamed joints, leading to a favorable 
anti-inflammatory therapeutic outcome (65).

4.5 Bacteria

Remarkable progress has been made in the research of utilizing 
bacteria as a natural biomimetic nano-system for drug delivery in RA 
treatment. Studies primarily focus on harnessing the unique attributes 
of bacteria, such as their inherent targeting capabilities, 
programmability, and biocompatibility, to develop novel therapeutic 
approaches (66, 67). Through genetic engineering techniques, 
researchers have successfully engineered bacteria to target 
inflammatory sites in RA and subsequently release anti-inflammatory 
drugs or bioactive molecules, including anti-inflammatory proteins, 
immune modulators, siRNA, and miRNA, upon reaching the 
designated location. A preclinical study by Fan et al. developed an 
orally administered light-activated bacterial system that can 
specifically release TNF-α at inflammatory sites for tumor treatments, 
demonstrating the potential of utilizing bacteria for targeted therapy 
(68). Tao et al. presented a novel approach for the highly effective and 
dual-selective ablation of hypoxic tumors using engineered bacteria 
sensitized with near-infrared nanoantenna (69). These breakthrough 
methods hold promise as a new conceptual framework for potential 
applications in the treatment of RA.

In addition, outer membrane vesicles (OMVs) play crucial roles 
in various bacterial physiological activities and pathogenicity. 
Leveraging the physiological characteristics of OMVs, delivery of 
therapeutic substances such as siRNA, miRNA, and proteins to 
tissues has been achieved (70, 71). Effective liposomal nanocarriers 
designed through biotechnology methods have enhanced targeting 
drug delivery and immunogenicity through homologous and 
heterologous antigen modification (70). The lipid bilayer topology of 
liposomes allows for encapsulation of amphiphilic therapeutic drugs, 
which not only increases their stability and reduces side effects but 
also prolongs their half-life. Liposome encapsulation of adjuvant 
chemotherapy drugs for the treatment of colorectal cancer is 
considered a promising targeted drug delivery system. OMVs can 
serve as natural or engineered carriers of cell-protective factors or 
cytotoxins, making them a novel therapeutic tool applicable from 
regenerative medicine to targeted cancer therapy (72). To promote 
the release of therapeutic drugs under specific conditions, further 
research based on OMVs is required to engineer liposomal nano-
carriers, thereby improving targeting specificity and increasing the 
uptake of therapeutic drugs.

While study on the use of bacteria-based nano-systems for drug 
delivery in the treatment of RA is currently limited, it is important 
to acknowledge the several key challenges that must be addressed 
before undertaking further studies. These challenges include 
ensuring the overall safety of bacterial carriers, improving delivery 
efficiency and precision, and achieving precise control over drug 
release. In summary, bacteria-based nano-systems hold great 
promise for the development of innovative treatments in the 
field of RA.

5 Nucleic acid delivery system

Nucleic acids are biocompatible materials with unique properties 
and structures. Small molecule nucleic acids such as sgRNA, siRNA, 
and shRNA can be specifically employed to silence target proteins, 
making them valuable tools for targeted delivery in nanomaterial 
applications. RNA is a versatile biomolecule present in biological cells 
as well as certain viruses and viroids. In a broader sense, RNA can 
be  categorized into two types: coding RNA and non-coding 
RNA. Coding RNA refers to mRNA, which can be translated into 
proteins. On the other hand, non-coding RNA encompasses various 
types, including rRNA, tRNA, siRNA, miRNA, and antisense 
oligonucleotides (ASO), among others (73). In the field of drug 
research, small molecule drugs and protein-based therapeutics hold a 
dominant position, as these molecules function by acting on 
downstream target proteins of disease-causing genes. However, there 
is a lack of targeted drugs for many disease-related proteins, 
necessitating the exploration of more precise and effective 
therapeutic strategies.

The advent of RNA interference (RNAi) technology has 
revolutionized the ability to manipulate molecular processes with 
unprecedented precision (74). Compared to DNA, RNA is less stable 
and therefore requires more demanding delivery vehicles. Based on 
the composition of delivery system, RNA delivery vehicles can 
be  broadly categorized into non-viral vectors and viral vectors 
(Figure 3; Table 4).

5.1 Non-viral vectors

Non-viral vectors primarily include lipid NPs (LNPs), 
N-acetylgalactosamine (GalNAc), polymer NPs (PNPs), and inorganic 
NPs (INPs) (75, 76). With their flexible size, shape, structure, low 
toxicity and accessible surface modification, non-viral vectors show 
great promise for application in RNA delivery. Among them, LNPs 
have found widespread application and are considered the optimal 
carriers for mRNA vaccines (75). However, their utilization is mainly 
limited to liver tissue targeting (77), and there is still a need for 
develop targeting capabilities toward extra-liver tissues. LNPs have 
been widely acknowledged as a promising delivery approach in the 
treatment of RA, as summarized in a previous review article (78).

5.2 Viral vectors

Viral vectors, consisting of adenovirus vectors (AdV), adeno-
associated viral vectors (AAV), retroviral vectors (RV), and lentiviral 
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FIGURE 3

Biological transport barriers of nanodrug.

TABLE 4 Classification and characteristics of RNA Carriers.

Classification NPs Structure Advantages Disadvantages

Non-viral vectors LNPs Lipid vesicles with uniform 

lipid core

Uniform packaging, efficient intracellular and 

extracellular nucleic acid expression, high safety profile

Limited tissue targeting specificity

GalNAc Trivalent sugar compounds Suitable for subcutaneous administration, scalable 

in manufacturing, with a high safety profile.

Limited to targeting hepatocytes

PNPs Product formed by 

polymerization of a 

monomer

Controlled drug release rate, biodegradable and 

biocompatible, with target specificity

Encapsulation High of toxicity, hydro residualphil 

organicic sol drugsvents, challenges insufficient in 

encaps largeulation of-scale hydro productionphilic, 

drugs and, issues challenges in with large storage-scale 

production and, and sterile issues withization storage

INPs Synthesis of Inorganic Particles 

and Biodegradable Polycation

Hydrophilic, biocompatible, and highly stable Lack of clinical trial data, challenging clinical 

translation

Viral vectors AdV Large molecule double 

stranded uncoated 

icosahedral DNA virus

High thermal stability and strong ability to induce 

innate immunity, with only transient expression

immunogenicity, limited vector capacity, and 

restricted intracellular replication

AAV Icosahedral DNA deficient 

virus with non-enveloped 

single stranded linear structure

High safety profile, low immunogenicity, broad 

spectrum of infection, prolonged expression of 

exogenous genes in vivo

Limited size of the target gene fragment, delayed 

expression post host cell infection

RV Encapsulated spherical RNA 

virus

Broad infection spectrum, high specificity, high 

integration efficiency, capable of stable expression 

of the target gene

Presence of insertional mutations, potential risk of 

oncogene activation, with limited vector capacity

LV Encapsulated spherical RNA 

virus

Wider infection spectrum, high specificity, high 

integration efficiency, capable of stable expression 

of the target gene, with increased vector capacity

Presence of insertional mutations and potential risk 

of oncogene activation

Viral-like vector VLP Highly structured protein 

particles

High specificity and biological activity, high safety 

profile, high delivery efficiency

High immunogenicity
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FIGURE 4

Basic unit of biomimetic nanoparticle design.

vectors (LV), are prominent vehicles for RNA delivery (79). These viral 
vectors possess advantages such as broad and targeted transduction 
capabilities, high delivery efficiency, and prolonged expression profiles. 
Among them, AAV vectors offer high delivery efficiency and have 
already been applied in clinical gene therapy for both in vivo and ex vivo 
applications, making them a relatively mature delivery technology (80). 
However, AAV vectors have limitations in terms of the size of the target 
gene fragment they can accommodate and the delayed onset of gene 
expression after infection of host cells, highlighting the need for 
ongoing optimization.

5.3 Viral-like vectors

Virus-like particle (VLP) vectors stand as an innovative gene therapy 
platform that has been developed in recent years, providing a novel 
approach for RNA delivery (81). VLPs are highly structured protein 
particles that self-assemble from one or multiple viral structural proteins. 
They resemble the morphology and structure of their corresponding 
natural viruses, thereby exhibiting strong immunogenicity, specificity, 
and biological activity (82, 83). Importantly, VLPs do not contain viral 
nucleic acids, rendering them incapable of replication and thus offering 
enhanced safety (84). The VLP delivery system utilizes the recognition 
principle between mRNA stem-loop structures and phage coat proteins. 

Through the utilization of viral engineering techniques, the advantages 
of both viruses and mRNA are synergistically combined, leading to the 
development of a novel delivery technology known as VLP-mRNA. This 
emerging platform has garnered significant attention as the next frontier 
in RNA delivery carriers.

6 Limitations and prospects

While nano-system for drug delivery holds immense potential in 
overcoming challenges in disease treatment and diagnostics by 
leveraging the properties of nanomaterials, some inherent limitations 
should be considered, particularly concerning the potential for cellular 
toxicity at the cellular level (85). Upon cell exposure, nanomaterials 
can cause varying degrees of cell damage, resulting in the generation 
of reactive species such as reactive nitrogen and oxygen species (86). 
Therefore, in addition to assessing the therapeutic properties of the 
drugs themselves, it is crucial to evaluate the toxicological impact of 
nanomaterials to ensure their safety. However, this process is costly 
and may block nanomedicines promoting to clinical trials.

Nanocarrier-based drug delivery systems encounter several 
biological barriers in drug transport. These transport processes occur 
within different compartments, such as within the cytoplasm and 
between compartments. As shown in Figure 4., biological barriers, 
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including cell membranes, nuclear membranes, and endosomal 
membranes, significantly interfere with drug delivery (87). Firstly, 
upon contact with biological fluids, NPs accumulate molecules on 
their surface and form a protein corona. The dynamic multi-layer 
protein structure of the protein corona provides NPs with specific 
identities, which can influence their physicochemical properties and 
subsequent biological interactions and distribution. Secondly, the 
activation of resident macrophages in the reticulate endothelial system 
(RES) aids in the clearance of old blood cells and substances carried 
in the blood circulation to RES organs. A key limitation of 
nanomedicines is their rapid phagocytosis and clearance based on the 
RES, resulting in a decrease in the bioavailability of nanodrugs. 
Thirdly, NPs face complex fluid dynamics when passing through 
curved and bifurcated regions of healthy or diseased blood vessels 
(88). Fourthly, the extracellular matrix provides tissues with structural 
integrity, characterized by high collagen content, rigidity, and tensile 
strength. It serves as a major natural physical barrier that hinders the 
delivery of nanodrugs. Finally, once NPs extravasate from blood 
vessels to the site of infection, they can bind to cell membranes, 
leading to internalization. This highlights the challenges faced by 
nanotechnology in drug delivery. However, the development of 
targeted nanomedicines that can directly deliver drugs to the inflamed 
site by targeting molecular constituents involved in RA 
pathophysiology or immune cells can potentially overcome 
these barriers.

7 Conclusion

The clinical treatment RA poses several challenges, making the 
development of endogenous substances as drug delivery systems 
necessary. Endogenous albumin, extracellular vesicles, cell 
membranes, nucleic acids, and bacteria have been chosen as 
biomimetic nano-delivery systems. These systems are preferred not 
only for their non-immunogenic and low toxicity properties but also 
for their capability to effectively evade immune system clearance and 
prolong drug circulation in the body. However, the use of bacteria as 
biomimetic nano-delivery systems is still in the exploratory stage, 
and several challenges need to be  addressed, such as ensuring 
comprehensive safety of bacteria carriers, enhancing delivery 
efficiency and accuracy, and achieving precise control over drug 
release. Delivery carriers have improved the stability and target 
specificity of RNA formulations, thereby facilitating the clinical 
application of RNA-based therapeutics. Non-viral carriers, 

characterized by their low toxicity, high safety, large payload capacity, 
and design flexibility, offer several advantages. Among them, LNPs 
have wide-ranging applications and are considered the optimal 
carriers for mRNA vaccines. Viral carriers, on the other hand, exhibit 
broad-spectrum and strong targeting capabilities, high delivery 
efficiency, and sustained gene expression. Among viral carriers, AAV 
vectors have demonstrated high delivery efficiency and represent a 
relatively mature delivery technology. However, AAV vectors have 
limitations, such as restricted payload capacity for the target gene 
fragment and delayed expression after host cell infection, 
necessitating further optimization. VLP delivery strategies show great 
potential for efficient intracellular delivery of mRNA, offering broad 
applicability. In conclusion, further exploration is required to advance 
the clinical trials and applications of potential drug delivery systems 
in the field of RA, building upon existing biomimetic nano-
delivery systems.
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