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Introduction: In the evolving healthcare landscape, we aim to integrate

hyperspectral imaging into Hybrid Health Care Units to advance the diagnosis of

medical diseases through the e�ective fusion of cutting-edge technology. The

scarcity of medical hyperspectral data limits the use of hyperspectral imaging in

disease classification.

Methods: Our study innovatively integrates hyperspectral imaging to

characterize tumor tissues across diverse body locations, employing the

Sharpened Cosine Similarity framework for tumor classification and subsequent

healthcare recommendation. The e�ciency of the proposed model is evaluated

using Cohen’s kappa, overall accuracy, and f1-score metrics.

Results: The proposed model demonstrates remarkable e�ciency, with kappa

of 91.76%, an overall accuracy of 95.60%, and an f1-score of 96%. These

metrics indicate superior performance of our proposed model over existing

state-of-the-art methods, even in limited training data.

Conclusion: This study marks a milestone in hybrid healthcare informatics,

improving personalized care and advancing disease classification and

recommendations.

KEYWORDS

hyperspectral imaging classification, Sharpened Cosine Similarity, deep learning, tumor

tissues, Hybrid Health Care

1 Introduction

Our research explores the utilization of hyperspectral imaging (HI) to revolutionize

tumor tissue classification in various body regions, aiming to impact the medical field

significantly. This approach promises to refine diagnostic accuracy and pave the path for

more personalized treatment plans. Taking a step toward the era of highly personalized,

adequate healthcare, our study aims to enhance patient care. The reason HI is utilized

for disease diagnosis is grounded in the understanding that changes in tissue’s optical

properties, stemming from morphological and biochemical alterations during disease
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progression, can be detected (1). For instance, rapid cell division in

malignant cells leads to increased metabolic enzyme levels and the

formation of new vessels through angiogenesis to meet the demand

for nutrients and oxygen (2).

HI capitalizes on these changes to identify lesions and abnormal

tissue without needing histological examination, saving time

and improving treatment efficacy. Biopsy samples, which are

stable and easily obtained from patients, implement scanning HI

feasible. Recent studies have explored correlations between HI

and histological examination results to validate HI as an accurate

disease diagnostic tool. Various tissues, including the breast (3),

liver (4), brain (5), kidney (6), stomach (7), head and neck (8),

and thyroid gland (9), have been investigated, demonstrating HI’s

capability for disease diagnosis. The complexity of HI is addressed

by employing artificial intelligence, which exhibits comparable

diagnostic accuracy compared to histology.

One notable advantage of HI-based disease diagnosis is its

ability to directly examine biopsy tissue during surgery. Unlike

histology, which typically takes hours, HI can analyze tissue

within minutes. This rapid analysis enables real-time assessment of

resection margins to check for residual tumor tissues. In a study,

HI successfully identified breast cancer from excised breast tissue

during surgery with an accuracy exceeding 84% (10). Additionally,

HI has found application in identifying blood cells, showcasing

its potential to delineate abnormal tissue without relying on

biochemical techniques (11). These applications underscore the

capacity of HI to support swift and accurate decision-making in

clinical settings. Our research contributes significantly to the field

in addressing the pressing need for more adaptable and precise

tumor classification in healthcare diagnostics. The following points

outline the key contributions made in this study:

• Versatile tumor classification: introduces a hyperspectral

imaging-based classifier offering location-independent and

adaptable tumor classification, surpassing the limitations of

existing methods.

• Sharpened Cosine Similarity (SCS): SCS is proposed as

an innovative technique within the hyperspectral imaging

classification framework, demonstrating superior precision

and efficiency for tumor classification, especially under limited

training data.

• Empirical evaluation: provides a rigorous empirical

evaluation of the proposed model, substantiating its

superior performance through metrics like Cohen’s kappa,

overall accuracy, and f1-score.

• Hybrid Health Care (HHC) integration: applies hyperspectral

imaging classification within HHC Units, contributing to

personalized and effective medical care solutions with broader

implications for healthcare informatics.

2 Literature review

Traditional imaging techniques like Magnetic Resonance

Imaging (MRI) (12), Computed Tomography (CT) Scans (13),

Positron Emission Tomography (PET) Scans (14), Functional MRI

(fMRI) (15), and Magnetic Resonance Spectroscopy (MRS) (16)

have their own set of challenges in tumor detection (17). While

these methods are indispensable, their specificity to specific tumor

types hinders widespread application. Furthermore, implementing

advanced deep learning algorithms presents scalability and real-

time processing issues in clinical environments (18). Addressing

these limitations, our approach offers a more versatile and

computationally efficient alternative, enhancing its potential for

clinical integration.

Elaborating on existing imaging modalities, MRI stands out

for its high sensitivity (90%–95%) in brain tumor detection but

grapples with the risk of false results and limitations in pinpointing

specific tumor types or smaller lesions (19). CT Scans, utilizing X-

rays, exhibit a sensitivity range of 60%–90% and a specificity of

∼90%. Still, the method is constrained by radiation risks and less

detailed soft tissue imaging (20). PET Scans employing ionizing

radiation show varying sensitivity (70%–90%) and reasonable

specificity (80%–90%), yet are subject to sensitivity limitations due

to tumor characteristics and tracer use (21). fMRI, indicating brain

activity through blood flow, offers high sensitivity (80%–90%) and

specificity in identifying key brain areas but is susceptible tomotion

artifacts and variable interpretation (22). MRS provides a window

into the biochemical makeup of tissues, yielding crucial data

on tumor metabolism and types (23). Each modality contributes

uniquely to tumor diagnosis, balancing specific advantages and

inherent challenges.

Tumors, formed when cells behave abnormally, exhibit a range

of sizes and can emerge anywhere in the body. Genes mutation,

whether inherited, acquired gradually, or induced by substances

like alcohol and tobacco, transform cells into cancerous ones (24).

Growing tumors can invade neighboring tissues, displace normal

cells, and produce enzymes breaking down surrounding tissues.

Local invasion occurs when tumors grow larger, and metastasis

happens when cancer cells spread to other body parts through

blood or lymphatics (25). Classification involves categorizing

tumors broadly by tissue, organ, or system, specifically by type,

grading based on cellular and structural features using the World

Health Organization (WHO) system, and staging using the Tumor

Node Metastasis (TNM) system (26). Solid neoplasms, including

carcinomas, sarcomas, and lymphomas, are classified based on type.

The WHO Classification of Tumors provides detailed insights into

tumor histotypes across various organ systems (27). According to

the WHO system, tumor grading assigns a numerical grade (1–3)

based on cellular differentiation. Staging relies on the TNM system,

considering the presence of distant metastases (M), lymph node

involvement (N), and the size or extension of the primary tumor

(T) (28).

The most common cause of cancer death among children

under the age of 15 and the second fastest-growing cause of

cancer death among those over the age of 65 are brain tumors,

which originate in brain cells and may be benign or malignant

(29). Gene defects, exposure to certain chemicals, and radiation

therapy to the head increase the risk of these tumors (30).

Gliomas, the most common type, form from neural cells, including

astrocytomas and ependymomas (31). Other types, such as brain

stem gliomas, optic nerve gliomas, primitive neuroectodermal

tumors (PNET), medulloblastomas, craniopharyngiomas,
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FIGURE 1

RGB representations of dataset images with PatientID-ImageID codes, delineating approximate tumor areas guided by neurosurgeon expertise and

the IGS system.

and pineal region tumors, pose distinct challenges in terms

of location and characteristics (32). Understanding these

variations is crucial for tailored treatment approaches and

underscores the complexity of brain tumor classification and

detection.

Moreover, Lung carcinoma, or lung cancer (33), results

from genetic mutations in airway cells triggered by factors

like smoking (34). It manifests as non-small-cell lung cancer

(85%) and small-cell lung cancer (15%) (35). Breast cancer

originates from mutated breast cells, often spreading invasively,

with common types being lobular, ductal carcinoma in situ (DCIS),

and invasive ductal carcinoma (IDC) (36, 37). Meningiomas,

arising from brain membranes, may compress nearby tissues,

and their slow growth lacks a defined cause (38). HI stands

poised to revolutionize tumor classification and identification

by capturing unique optical properties associated with different

tumor types (39). HI offers a non-invasive and potentially

rapid method for precise diagnosis, contributing to improved

treatment strategies and patient outcomes in lung, breast, and

meningiomas.

3 Materials and methods

3.1 Dataset

The dataset we used to conduct experiments was initially

collected and published by the In-vivo HS Human Brain database

(40) comprising 36 in-vivo brain surface images from 22 unique

patients. This labeled dataset includes tumor and normal tissue,

blood vessels, and other irrelevant materials within the surgical

scene (referred to as background). Tumor types are differentiated

in the dataset, encompassing primary (grade IV glioblastoma and

grade III and II anaplastic oligodendrogliomas) and secondary

tumors (lung and breast). Additionally, RGB representations of

hyperspectral cubes within the in-vivo hyperspectral human brain

image database are presented in Figure 1. The dataset designates the

approximate tumor area using a yellow line, aiding in identifying

the rubber ring marker corresponding to pathological analyses of

the tumor tissue. Patient ID and Image ID details in Table 1 offer

a comprehensive overview, including image characteristics and the

pathological diagnosis of each image. The total number of labeled

pixels for each class and image is specified, addressing cases where
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TABLE 1 Patient-specific image data and label distribution where “N” refers to “normal” tissue, “T” signifies “tumor tissue,” “BV” represents “blood

vessels,” and “B” denotes the “background.”

Patient ID Image ID Size True labels Diagnosis

N T BV B

004 02 389× 345× 826 ✓ ✗ ✓ ✓ Normal brain

005 01 483× 488× 826 ✓ ✗ ✓ ✓ Renal carcinoma (S)

007 01 582× 400× 826 ✓ ✗ ✓ ✗ Normal brain

008 01 460× 549× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

008 02 480× 553× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

010 03 460× 549× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

012 01 443× 497× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

012 02 445× 498× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

013 01 298× 253× 826 ✓ ✗ ✓ ✓ Lung carcinoma (S)

014 01 317× 244× 826 ✗ ✓ ✓ ✓ Grade IV glioblastoma (P)

015 01 376× 494× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

016 01 376× 494× 826 ✓ ✗ ✓ ✓ Normal brain

016 02 335× 326× 826 ✓ ✗ ✗ ✓ Normal brain

016 03 376× 494× 826 ✓ ✗ ✓ ✓ Normal brain

016 04 383× 297× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

016 05 414× 292× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

017 01 441× 399× 826 ✓ ✗ ✓ ✓ Grade IV glioblastoma (P)

018 01 479× 462× 826 ✓ ✗ ✓ ✓ Grade I glioblastoma (P)

018 02 510× 434× 826 ✓ ✗ ✓ ✓ Grade I glioblastoma (P)

019 01 601× 535× 826 ✓ ✗ ✓ ✓ Meningioma

020 01 378× 330× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

021 01 452× 334× 826 ✓ ✓ ✓ ✓ Breast carcinoma (S)

021 02 448× 324× 826 ✓ ✓ ✓ ✓ Breast carcinoma (S)

021 05 378× 330× 826 ✓ ✗ ✓ ✓ Breast carcinoma (S)

022 01 597× 527× 826 ✓ ✗ ✓ ✓ Grade III anaplastic

oligodendroglioma (P)

022 02 611× 527× 826 ✓ ✗ ✓ ✓ Grade III anaplastic

oligodendroglioma (P)

022 03 592× 471× 826 ✗ ✓ ✗ ✗ Grade III anaplastic

oligodendroglioma (P)

025 02 473× 403× 826 ✓ ✓ ✓ ✓ Grade IV glioblastoma (P)

026 02 340× 324× 826 ✓ ✗ ✓ ✗ Normal brain

027 02 493× 476× 826 ✓ ✗ ✓ ✓ Normal brain

028 03 422× 398× 826 ✓ ✗ ✓ ✓ Normal brain

028 04 482× 408× 826 ✗ ✗ ✗ ✓ Lung adenocarcinoma (S)

028 05 482× 390× 826 ✗ ✓ ✗ ✗ Lung adenocarcinoma (S)

029 02 365× 371× 826 ✓ ✗ ✓ ✓ Normal brain

029 04 399× 342× 826 ✗ ✓ ✗ ✓ Grade II anaplastic

oligodendroglioma (P)

030 02 382× 285× 826 ✓ ✗ ✓ ✓ Normal brain
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FIGURE 2

Streamlined tumor diagnosis in hybrid healthcare: a patient-centric approach from initial scan to tailored treatment.

certain images were diagnosed as specific tumor types without

labeled tumor samples due to procedural challenges.

The authors (40) mention the inherent challenges in acquiring

in-vivo HI during neurosurgical procedures; the dataset primarily

captures common tumor types over two years. The customized

hyperspectral acquisition system, a preliminary demonstrator,

is designed to capture tumor images on the surface or in easily

focused deeper layers. The authors utilize a push broom camera

for spatial scanning; the system’s limitations include increased

acquisition time and potential spatial coherence issues due to

patient brain movement and procedural artifacts. As snapshot

cameras offer real-time image acquisition but have fewer spectral

bands than push-broom cameras, future investigations using

high spectral resolution push-broom cameras are warranted. The

dataset creation process by authors (40) addresses challenges

from limited patient availability, presenting a preliminary

database for exploring HI applications in tissue and tumor

identification, tumor boundary delineation, and providing

pertinent information for neurosurgeons. Their methodology

leverages spectral characteristics guided by intraoperative

MRI, surgeon expertise, and pathological analysis results.

Subsequent data acquisition efforts are anticipated to broaden

the database, encompassing more tumor types with detailed

pathological descriptions.

3.2 HHC: AI tumor diagnostics

Our innovative methodology for tumor tissue classification

within an HHC Unit unfolds with the patient’s arrival at the

facility. The initial phase involves a hyperspectral sensor scan,

capturing intricate details of the patient’s internal composition.

This technology provides a comprehensive overview, laying the

foundation for precise diagnosis. Following the hyperspectral scan,

the acquired data undergoes processing through Factor Analysis.

This step is crucial for dimension reduction, ensuring that the

hyperspectral cube retains only relevant features essential for

accurate classification. The processed data then traverses through

the layers of our SCS model. As a breakthrough in tumor

classification, the SCSmodel enhances precision, evenwhen trained

with limited data. This stage is pivotal for predicting and classifying

tumor tissues, contributing to superior performance compared to

existing models.

Once the classification is complete, the results are securely

stored within the hospital’s private records, ensuring data

confidentiality. This stored information becomes a valuable

resource for future reference and analysis. Integrated into

the HHC Unit is a seamless access mechanism through

Healthcare APIs. Healthcare professionals can leverage

these APIs to access detailed reports and results related to

tumor tissues. This integration streamlines the diagnostic

process, providing a user-friendly interface for medical

interpretation.

The final phases of our methodology involve the medical

interpreter within the Healthcare API, aiding healthcare

professionals in interpreting results and making informed

recommendations. These recommendations extend to surgical

interventions and ongoing medical care, all tailored to the specific

classification of tumor tissues and their respective locations.

Figure 2 presents a comprehensive and patient-centric approach

to tumor tissue classification within the HHC Unit. By seamlessly

integrating hyperspectral imaging, Factor Analysis, and the
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innovative SCS model, we aim to revolutionize healthcare

diagnostics and enhance the overall patient experience.

3.3 Proposed Sharpened Cosine Similarity
method

HI represented as X ∈ R
(M×N)×B, where the dimensions

(M × N) correspond to a specific area on the tissue surface and

B denotes the total number of spectral bands in the HI. Each pixel

within X, indicated as xij where i = 1, 2, . . . ,M and j = 1, 2, . . . ,N,

is grouped into C unique tissue types, collectively expressed as

Y = (y1, y2, . . . , yn). Moreover, every xij ∈ X describes a tissue

pixel through a spectral vector xij = [xi,j,1, xi,j,2, . . . , xi,j,B] ∈ X,

containing a series of B spectral data points.

In the initial processing phase, spatial characteristics are

emphasized by implementing a patch extraction method. This

preliminary step involves the creation of a hyperspectral cube, xi,j ∈

R
(s×s)×D, encapsulating the area surrounding the focal pixel (i, j)

over a region of dimensions s × s. This approach is instrumental

in enhancing the model’s ability to distinguish between different

features by integrating spectral and spatial attributes. As such,

the spectral-spatial cubes xi,j, drawn from the primary data and

conforming to the dimensionality R
(s×s)×D, are consolidated into

the dataset X in preparation for subsequent feature extraction

processes. The concluding step involves the selection of training

and testing samples across each distinct class.

In neural networks, the convolution operation involves a

sliding dot product operation, symbolized as w · xij, between

an image patch xij and a filter w, which might miss crucial

information due to its basic similarity measure. Enhancing this

with normalization transforms the operation into cosine similarity,

defined as
w·xij

‖w‖‖xij‖
. This is similar to calculating the cosine of the

angle between vectors, utilizing Euclidean distance.

To address these limitations, Strided Cosine Similarity (SCS)

was developed as expressed in Equation (1). It operates similarly to

convolution but includes key differences. In standard convolution,

the operation is a dot productw·xij, while SCS involves normalizing

the vectors. The normalization in SCS ensures the magnitude of

vectors is unity before the dot product, leading to an expression like
w·xij

‖w+q‖‖xij+q‖
, where q is a small value to avoid numerical instability.

The similarity measure in SCS ranges between –1 and

1, indicating complete opposition or perfect alignment of the

kernel and image patch, respectively. To mitigate the issue of

small magnitudes, which can lead to noise inclusion, additional

parameters are introduced in SCS, formulated as;

SCS(w, xij)=
w · xij

‖w+ q‖‖xij + q‖
(1)

Similar to conventional convolution in deep learning, SCS is

a striding operation that extracts features from an image patch.

However, it includes an additional step of magnitude normalization

before the dot product, leading to what some literature refers

to as Sharpened Cosine normalization. The effectiveness of SCS

surpasses traditional convolutional processes in terms of speed due

to fewer required parameters and the absence of normalization or

activation functions.

In contrast to standard pooling, absolute max-pooling is

employed in SCS for backpropagation filter updates, selecting the

highest magnitude irrespective of the sign. The overall model with

SCS is trained over 50 epochs, a batch size of 256, and a learning

rate of 0.001. The learning rate significantly influences the model’s

learning rate, while momentum aids accuracy and speed. An root

mean square prop andmomentum-based optimizer, specifically the

Adam optimizer, is utilized for its efficiency and computational

advantages.

4 Experiment analysis

This section presents an overview of the evaluation metrics,

baselines SOTA and implementation details.

4.1 Evaluation metrics

The results presented in this study are evaluated using the

following metrics:

Kappa statistic: This statistical measure assesses the level

of agreement between predicted classifications and ground-truth

maps, as defined by Equation (2). In this equation, Ao represents

the observed agreement, calculated using Equation (3), while Ae

denotes the expected agreement, computed using Equation (4).

κ =
Ao − Ae

1− Ae
(2)

where,

Ao =
TP + TN

TP + FN + FP + TN
(3)

and,

Ae =

(

FN + TN

TP + FN + FP + TN
×

FP + TN

TP + FN + FP + TN

)

+
TP + FN

TP + FN + FP + TN

(4)

Here, TP and FP denote true positives and false positives,

respectively, while TN and FN represent true negatives and false

negatives.

Average accuracy (AA): AA signifies the average classification

performance across different classes, as depicted in Equation (5).

AA =
TP + TN

TP + TN + FN
(5)

Overall accuracy (OA): OA is computed as the ratio of correctly

classified examples to the total number of test examples, as defined

by Equation (6).

OA =
1

N

N
∑

i=1

TPi (6)

In the equations above, TP represents true positives, FP

represents false positives, TN represents true negatives, and FN

represents false negatives.
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FIGURE 3

Visualization of validation loss and accuracy for 2D CNN, RNN, LeeNet, Xception and SCS.

4.2 Baseline models

4.2.1 Recurrent Neural Networks
The Recurrent Neural Networks (RNN) architecture (41)

presents a blend of convolutional and fully connected layers within

a Sequential model. Beginning with a Conv2D layer employing a

3 × 3 kernel and ReLU activation, the subsequent MaxPooling2D

layer downsamples the spatial dimensions. Flattening the output

precede a fully connected layer of 100 neurons, integrated with

Batch Normalization and ReLU activation for regularization. With

softmax activation, the final layer tailors the output to fit the

specified number of classes. This design reflects a hybrid approach,

incorporating convolutional operations followed by dense layers,

offering flexibility for various applications in classification tasks.

4.2.2 2-Dimensional Convolution Neural
Network

The 2-Dimensional Convolution Neural Network (2D CNN)

architecture (42) is structured within a Sequential model, featuring

a Conv2D layer with a 3 × 3 kernel and ReLU activation,

applied to input data of shape (window size, window size,

kernel size). Subsequently, a MaxPooling2D layer down-samples

spatial dimensions with a pooling size adjustment option. The

flattened output leads to a fully connected layer with 100 neurons,

supplemented by Batch Normalization and ReLU activation for

regularization. The final layer, employing softmax activation, tailors

the output to match the specified number of classes. This design

reflects a standard 2D convolutional neural network suitable for

diverse classification tasks with image data. Adjustments to the

pooling size provide adaptability based on specific requirements.

4.2.3 LeNet
The LeNet architecture, a seminal convolutional neural

network devised by Yann LeCun in the 1990s, marked

a breakthrough in computer vision (43). Comprising two

convolutional layers with 5 × 5 filters and ReLU activation, each

succeeded by average pooling; the network captures hierarchical

features in the input. The subsequent dense layers, with 120 and

84 neurons, distill high-level representations. The final layer,

employing softmax activation, tailors the output to the number

of classes. LeNet’s simplicity and efficacy laid the foundation for

modern CNNs, influencing subsequent developments in image

classification.

4.2.4 Xception
The Xception architecture (44) is a 2D variant of the

Xception neural network, known for its depth-wise separable

convolutions and exceptional performance in image classification

tasks. The model begins with an entry flow featuring a series of

convolutional layers with batch normalization and ReLU activation.

The residual block 1 introduces separable convolutions, preserving

spatial information efficiently. The middle flow comprises eight

repeated blocks, each containing three separable convolutional

layers, facilitating feature extraction. The exit flow further refines

features with a combination of separable convolutions and residual

connections. The model concludes with a global average pooling

layer and a dense layer with softmax activation, tailoring the

output to the specified number of classes. The Xception architecture

is designed to capture complex hierarchical features in image

data, making it suitable for various image classification tasks.

Adjustments to the number of filters and other parameters can be

made based on specific requirements.

4.3 Implementation details

For our empirical assessment, we utilized in-vivo

HS Human Brain database which is already discussed

in Section 3.1 and accessible on request on this
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TABLE 2 Performance analysis of the SOTA models on each predicted class for di�erent patient IDs and image IDs.

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model

004 02

Normal tissue 0.88 0.86 0.97 0.77 0.96

Tumor tissue – – – – –

Hypervascularized tissue 0.44 0.18 0.26 0.00 0.82

Background 0.54 0.68 0.75 0.00 0.77

005 01

Normal tissue 0.85 0.87 0.95 0.72 0.98

Tumor tissue – – – – –

Hypervascularized tissue 0.50 0.22 0.28 0.10 0.98

Background 0.50 0.63 0.80 0.15 0.86

008 01

Normal tissue 0.82 0.85 0.89 0.82 0.99

Tumor tissue 0.95 0.92 0.98 0.15 1.00

Hypervascularized tissue 0.84 0.81 0.89 0.16 0.99

Background 0.89 0.92 0.96 0.19 1.00

013 01

Normal tissue 0.99 0.89 0.99 0.95 0.99

Tumor tissue – – – – –

Hypervascularized tissue 0.92 0.88 0.95 0.11 1.00

Background 0.94 0.93 0.99 0.15 0.99

018 01

Normal tissue 1.00 1.00 1.00 0.98 1.00

Tumor tissue – – – – –

Hypervascularized tissue 0.98 0.98 0.99 0.18 1.00

Background 1.00 1.00 0.25 0.15 1.00

019 01

Normal tissue 0.97 0.87 1.00 0.91 1.00

Tumor tissue – – – – –

Hypervascularized tissue 0.94 0.31 0.99 0.25 0.99

Background 0.91 0.69 0.99 0.18 1.00

021 01

Normal tissue 0.93 0.26 0.98 0.95 1.00

Tumor tissue 0.71 0.47 0.97 0.35 0.99

Hypervascularized tissue 0.95 0.42 1.00 0.13 1.00

Background 0.98 0.73 0.95 0.23 0.98

022 01

Normal tissue 1.00 0.80 1.00 0.89 1.00

Tumor tissue – – – – –

Hypervascularized tissue 0.95 0.69 1.00 0.19 1.00

Background 0.97 0.81 1.00 0.23 1.00

028 05

Normal tissue – – – – –

Tumor tissue 1.00 1.00 1.00 0.95 1.00

Hypervascularized tissue – – – – –

Background – – – – –

029 04

Normal tissue – – – – –

Tumor tissue 0.98 0.76 0.98 0.86 1.00

Hypervascularized tissue – – – – –

Background 0.99 0.75 0.86 0.12 1.00

The bold values represent the Class-Wise Performance Analysis Based on F1-Score for Different Patient IDs and Image IDs.
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TABLE 3 Comparative performance analysis of SOTA at patient and image level for each predicted class.

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model

004 02

Kappa accuracy 49.93 47.66 71.67 30.02 80.53

Overall accuracy 77.00 77.09 85.61 62.86 89.91

Average accuracy 59.23 54.37 67.09 33.33 86.25

F1-score 77 77 86 63 90

Training time (seconds) 10.15 10.35 10.23 226.65 68.92

Testing time (seconds) 0.75 0.78 0.70 4.68 2.04

005 01

Kappa accuracy 58.46 60.51 68.85 29.45 91.98

Overall accuracy 66.77 63.92 70.35 35.25 97.6

Average accuracy 61.66 57.33 67.66 32.33 94.0

F1-score 68 59 70 34 97

Training time (seconds) 39.63 41.60 42.93 254.75 83.45

Testing time (seconds) 1.71 1.95 2.10 5.65 3.12

008 01

Kappa accuracy 84.60 84.0 89.84 31.47 98.45

Overall accuracy 90.10 89.91 95.89 37.35 100.0

Average accuracy 87.50 87.25 93.90 33.45 99.50

F1-score 91 90 95 35 100

Training time (seconds) 8.94 8.42 7.30 154.89 75.2

Testing time (seconds) 1.38 2.91 1.63 2.84 1.73

013 01

Kappa accuracy 92.59 86.6 96.47 39.25 99.45

Overall accuracy 93.97 92.9 98.6 41.79 99.76

Average accuracy 95.16 90.4 97.66 40.33 99.89

F1-score 95 90 98 42 100

Training time (seconds) 5.73 7.94 6.76 107.21 80.72

Testing time (seconds) 0.23 1.71 1.60 2.40 1.65

018 01

Kappa accuracy 99.23 99.51 72.12 41.62 99.71

Overall accuracy 99.61 99.75 76.59 44.82 99.85

Average accuracy 99.11 99.40 74.66 43.66 99.38

F1-score 100 100 76 45 100

Training time (seconds) 36.57 107.21 86.04 352.47 239.37

Testing time (seconds) 1.36 1.60 1.40 4.37 1.83

019 01

Kappa accuracy 93.38 25.45 98.58 41.68 98.95

Overall accuracy 95.88 61.83 99.11 45.23 99.50

Average accuracy 86.93 43.01 98.45 44.66 99.33

F1-score 96 62 99 46 100

Training time (seconds) 17.17 95.1 38.46 537.42 354.81

Testing Time (seconds) 0.59 2.89 1.43 6.85 4.29

021 01

Kappa accuracy 85.12 45.74 97.83 38.61 98.55

Overall accuracy 90.99 48.39 98.91 42.35 99.75

Average accuracy 89.25 45.19 97.56 41.50 99.25

F1-score 90 47 98 41 100

Training time (seconds) 3.47 5.41 38.46 37.42 34.18

Testing time (seconds) 1.54 2.89 1.43 3.85 3.19

(Continued)
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TABLE 3 (Continued)

Patient ID Image ID Classes 2D CNN RNN LeeNet Xception SCS model

022 01

Kappa accuracy 97.86 65.68 99.82 43.12 99.80

Overall accuracy 98.92 79.33 99.89 47.98 99.90

Average accuracy 97.33 74.64 99.90 46.66 99.85

F1-score 98 79 100 48 100

Training time (seconds) 11.80 67.98 23.49 335.96 139.54

Testing time (seconds) 0.48 1.54 0.85 3.38 1.24

028 05

Kappa accuracy – – – – –

Overall accuracy 100 100 100 97.42 100

Average accuracy 100 100 100 95.36 100

F1-score 100 100 100 95 100

Training time (seconds) 4.71 6.45 9.08 96.41 43.18

Testing time (seconds) 0.20 0.37 0.53 1.76 0.93

029 04

Kappa accuracy – – – – –

Overall accuracy 98.9 75.8 92.69 50.81 100

Average accuracy 98.3 75.64 91.45 49.05 100

F1-score 99 78 92 50 100

Training time (seconds) 3.91 5.59 5.05 35.55 27.91

Testing time (seconds) 0.40 0.68 0.43 1.86 1.12

The bold values represent the Comparative Performance Analysis of SOTA and SCS Models Across Various Evaluation Metrics.

https://hsibraindatabase.iuma.ulpgc.es/. This experiment used

a Jupyter notebook running on an Intel 11th Gen processor and 32

GB of RAM. For all experiments, the training, validation, and test

samples distribution was set at 15%, 15%, and 70%, respectively.

To ensure an equitable comparison, all models, including the

RNN, 2D CNN, LeeNet, Xception, and proposed SCS models, were

executed simultaneously with a single, randomly chosen set of

samples. The reported results were achieved using a patch size of 3

× 3, and the three most informative bands were identified through

Factor Analysis (FA). Regarding training parameters, the models

began with randomly initialized weights, which were subsequently

optimized via backpropagation using the Adam optimizer and a

softmax loss function. Figure 3 present a detailed analysis of the

validation loss and accuracy for all models under consideration. In

this study, we adhere to this principle by keeping these parameters

uniform across all compared methods, including our SCS pipeline,

within a single execution run.

5 Discussion

In this section, we conduct a twofold comparative analysis

to evaluate the performance of our SCS pipeline for the Hybrid

Healthcare Unit. Firstly, at the patient level, we assess the system’s

efficacy in providing personalized tumor tissue classifications and

treatment recommendations. Subsequently, at the same tumor class

level, we analyze the system’s precision in distinguishing minute

variations within specific classes. These comparative experiments

aim to comprehensively understand the Hybrid Healthcare Unit’s

capabilities, addressing individual patient needs and the challenges

within distinct tumor classes.

5.1 Comparative experiment—Class level

We present a comprehensive performance analysis based on

the F1-Score, comparing SOTA, including 2D CNN, RNN, LeeNet,

Xception, and our proposed SCS across different patients. The

objective of this comparative experiment class level is to evaluate

and compare the performance of these models in accurately

classifying different tissue types in HI as results discussed in

Table 2. Across different patients, our SCS consistently achieves

high accuracy in predicting tissue classes, as presented in the

Table 3. Notably, for Patient IDs 005, 008, 022, 028, and 029, SCS

achieves exceptional accuracy close to or at 100% in classifying

normal tissue, hypervascularized tissue, and background classes.

This demonstrates the model’s robustness in handling diverse

cases. In cases where tumor tissue is present, the SCS model also

successfully achieves accurate predictions comparison with other

models (2D CNN, RNN, LeeNet, and Xception 2D). The model’s

effectiveness in leveraging SCS-enhanced features for accurate

tissue classification irrespective of body location are shown in

classificationmap outputs (Figure 4). These sub-figures correspond

to different tumor tissue types: Normal Brain, Renal Carcinoma,

Lung Carcinoma, Meningioma, and Lung Adenocarcinoma. The

model’s ability to handle various tissue classes and consistent
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FIGURE 4

Output visualization of tumor tissues classification across di�erent body locations.

FIGURE 5

Visualization of evaluation metrics across SCS, RNN, 2D CNN, LeeNet, and Xception.

accuracy across different patients and images highlight its potential

as a valuable tool in medical diagnostics, particularly for tumor

tissue classification.

5.2 Comparative experiment—Patient level

A detailed analysis of the performance of SOTA models

on key metrics, including Kappa Accuracy, Overall Accuracy,

Average Accuracy, F1-Score, Training Time, Testing Time, and

Memory Consumption. Table 3 summarizes the performance

metrics for each patient and their corresponding image IDs

across various tissue classes. From the patient-level experiment,

the SCS model consistently outperformed both models across

multiple performance metrics. For instance, in Patient ID 004,

the SCS model achieved a Kappa Accuracy of 80.53, surpassing

2D CNN (49.93), RNN (47.66), LeeNet (71.67) and Xception

(30.02). Similar trends were observed regarding Overall Accuracy,

Average Accuracy, and F1 score, where the SCS model consistently

demonstrated superior performance across all patient IDs. Notably,

in Patient ID 021, the SCS model achieved a Kappa Accuracy

of 98.55, significantly surpassing 2D CNN (85.12), RNN (45.74),

LeeNet (97.83), and Xception (38.61). SCS model’s ability to

consistently attain high accuracy, coupled with efficient training

times and memory consumption, underscores its potential for

accurate tissue classification in HI data, highlighting its value in

practical medical applications. Although other models such as 2D

CNN, RNN, and LeeNet have less training time, their accuracy is

low compared to the SCSmodel; as we know, in deep learning, there

is a trade-off between speed and accuracy. Figure 5 shows results

underscore the superior performance of the SCS model across
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various metrics, indicating its efficacy in accurately classifying

tissue types in HI data. The consistent out performance of the SCS

model reaffirms its potential to enhance medical diagnostics and

contribute to real-world applications.

6 Conclusion

Our research highlights the pivotal role of HI integrated

with AI in advancing tumor tissue classification with the new

Hybrid Health Care Units landscape. The innovative application

of the Sharpened Cosine Similarity framework has proven highly

effective, achieving remarkable performance metrics of 91.76%

Cohen’s kappa, 95.60% overall accuracy, and 94.29% f1-score.

These results, surpassing current SOTA research even under

limited training data, affirm our proposed model’s robustness and

potential clinical impact. The scarcity of specific hyperspectral

medical data has been acknowledged as a challenge, emphasizing

the need for ongoing efforts to expand and diversify datasets

for further validation and generalization of our approach.

However, the demonstrated superiority of our model in tumor

classification positions it as a valuable tool for enhancing diagnostic

capabilities in medical imaging. Future research could extend

the proposed model by diversifying and expanding hyperspectral

medical datasets for broader validation. Exploring real-time

implementation in clinical settings and investigating additional

AI techniques could enhance predictive capabilities. Furthermore,

exploring broader applications beyond tumor classification, such

as skin conditions, could maximize the model’s utility. These

efforts would advance healthcare informatics, improving diagnostic

accuracy within Hybrid Health Care Units.
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