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Background: Fungal infections are associated with high morbidity and mortality 
in the intensive care unit (ICU), but their diagnosis is difficult. In this study, 
machine learning was applied to design and define the predictive model of ICU-
acquired fungi (ICU-AF) in the early stage of fungal infections using Random 
Forest.

Objectives: This study aimed to provide evidence for the early warning and 
management of fungal infections.

Methods: We analyzed the data of patients with culture-positive fungi during 
their admission to seven ICUs of the First Affiliated Hospital of Chongqing 
Medical University from January 1, 2015, to December 31, 2019. Patients whose 
first culture was positive for fungi longer than 48  h after ICU admission were 
included in the ICU-AF cohort. A predictive model of ICU-AF was obtained using 
the Least Absolute Shrinkage and Selection Operator and machine learning, and 
the relationship between the features within the model and the disease severity 
and mortality of patients was analyzed. Finally, the relationships between 
the ICU-AF model, antifungal therapy and empirical antifungal therapy were 
analyzed.

Results: A total of 1,434 cases were included finally. We used lasso dimensionality 
reduction for all features and selected six features with importance ≥0.05 in the 
optimal model, namely, times of arterial catheter, enteral nutrition, corticosteroids, 
broadspectrum antibiotics, urinary catheter, and invasive mechanical ventilation. 
The area under the curve of the model for predicting ICU-AF was 0.981 in the 
test set, with a sensitivity of 0.960 and specificity of 0.990. The times of arterial 
catheter (p  =  0.011, OR  =  1.057, 95% CI  =  1.053–1.104) and invasive mechanical 
ventilation (p  =  0.007, OR  =  1.056, 95%CI  =  1.015–1.098) were independent risk 
factors for antifungal therapy in ICU-AF. The times of arterial catheter (p  =  0.004, 
OR  =  1.098, 95%CI  =  0.855–0.970) were an independent risk factor for empirical 
antifungal therapy.

Conclusion: The most important risk factors for ICU-AF are the six time-
related features of clinical parameters (arterial catheter, enteral nutrition, 
corticosteroids, broadspectrum antibiotics, urinary catheter, and invasive 
mechanical ventilation), which provide early warning for the occurrence of 
fungal infection. Furthermore, this model can help ICU physicians to assess 
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whether empiric antifungal therapy should be administered to ICU patients who 
are susceptible to fungal infections.

KEYWORDS

fungal infection, ICU-acquired fungi, machine learning, empiric antifungal therapy, 
risk factors

1 Introduction

Infections are been a key medical issue in in intensive care units 
(ICUs). In a recent survey of a worldwide sample of ICU patients, the 
prevalence of suspected or proven infection was 8,135 out of 15,202 
(54%), and the in-hospital mortality rate was 2,404 out of 7,936 (30%) 
(1). Fungi are opportunistic pathogens that normally colonize the 
skin and mucous membranes of ICU patients (2). The entry of fungi 
into the body results in fungal infection when the body’s defense 
barrier or immune system is disrupted (3, 4). Although this decade 
the prevalence of fungal infection has decreased from 963 out of 
4,947 (19%) to 864 out of 5,259 (16%) in the ICU, it is still the third 
most common pathogen in ICU (1, 5). A study reported that invasive 
fungal infections have a mortality rate of more than 30% in critically 
ill patients (6). The mortality rate after Candida infection is more 
than 40% (7, 8). Furthermore, the mortality rate attributable to 
invasive aspergillosis >42% (9). Fungal infections occur at different 
sites with varying rates. The mortality rate of patients with 
candidemia was 28%, which was higher than that of patients with 
abdominal invasive candidiasis (16%) and non-abdominal sterile 
sites (10%) (10). Therefore, it is important to focus on the early 
characteristics of fungal infections to reduce the infection and 
mortality rates in the ICU.

A multicenter study involving global ICU infections found that 
1706 out of 8,135 (16%) infections were ICU-acquired (1), which are 
summed up in hospital-acquired infections (HAPs) (11). The 
mortality rate of ICU-acquired infections (461 out of 1706, 27%) was 
higher than that of community-acquired infections (697 out of 3,474, 
20%) and hospital-acquired infections (661 out of 2,724, 24.9%) (1). 
Among the 848 (30%) cases of fungal infections, 255 were 
“ICU-acquired fungal infections (ICU-AFIs),” which are attributed to 
the special pathophysiology of critically ill patients during ICU stay 
(1, 8). Mainstream diagnostic methods are classified as proven, 
probable, and possible (12). However, diagnosing fungal infection is 
difficult. The false-negative rate of ICU-acquired candidemia, which 
is a conventional fungal infection in the ICU, can reach 60% (13). It is 
puzzling that the basis for the initial diagnosis of ICU-AFI limits early 
identification because the fungal samples belong to the ICU (255 out 
of 848, 30%) or other medical units (300 out of 848, 35%) (1). It is very 
difficult for clinical doctors to accurately confirm and treat 
ICU-AFI. Therefore, distinguishing between ICU-acquired fungi 
(ICU-AF) and non-ICU-acquired fungi (non-ICU-AF) is beneficial 
for the early management of ICU-AFI.

In the real world, studies on the same target may yield different 
results owing to multiple confounding factors. A recent study by 
Poissy and Keighley on the risk factors of candidemia in the ICU 
produced conflicting conclusions regarding urinary catheters and liver 
disease (14, 15). This study is a retrospective clinical cohort study that 

used machine learning (ML) to identify the origin of ICU-AFIs and 
created a scoring chart to predict ICU-AF risk models.

2 Methods

2.1 Study design

This study was approved by the Institutional Ethics Committee of 
the First Affiliated Hospital of Chongqing Medical University 
(reference number: 2021–366). The ethics committee waived the 
requirement for informed consent because of the retrospective nature 
of this study. Patient data were sourced from medical record systems 
and analyzed anonymously to protect patient privacy.

We included a cohort of patients who had culture-positive 
fungi during their admission to seven ICUs (GICU, general ICU; 
SICU, surgical ICU; RICU, respiratory ICU; NICU, neurology ICU; 
NSICU, neurosurgery ICU; CSICU, cardiothoracic surgery ICU; 
CCU, cardiovascular ICU) at the First Affiliated Hospital of 
Chongqing Medical University from January 1, 2015, to December 
31, 2019. Culture-positive fungi refer to specimens obtained from 
ICU patients that were cultured positive for fungi by laboratory 
physicians in the microbiology room, and an official report was 
issued. Subsequently, all patient data, including basic information 
(age, gender and comorbidities), characteristics of fungi 
(microbiology and time to positivity of ICU), laboratory results (all 
results shall be  obtained within 24 h after the fungal culture is 
positive), and clinical data (days in the ICU, department, Acute 
Physiology and Chronic Health Evaluation (APACHE) II Score, 
diagnosis on ICU admission, and clinical characteristics), were 
extracted from our internal electronic medical records (Table 1). 
The 28-day mortality rates after ICU admission were recorded. 
Data were collected by three investigators and were checked by two 
other investigators to avoid bias. Notably, these features were 
chosen on the basis of their availability in all patients rather than 
on any a priori assumptions about their ability to predict fungal 
acquisition, although the goal of our prediction model was to select 
the most influential factors in the collected data for the prediction 
of ICU-AF.

2.2 Definition

According to guidelines, infection after 48 h of hospitalization is 
defined as HAP (11). Therefore, we  included patients whose first 
culture was positive for fungi longer than 48 h after ICU admission in 
the ICU-AF cohort and less than 48 h in the non-ICU-AF cohort. The 
cohort process and exclusion criteria are shown in Figure 1.

https://doi.org/10.3389/fmed.2024.1386161
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Zhao et al. 10.3389/fmed.2024.1386161

Frontiers in Medicine 03 frontiersin.org

All antifungal treatment decisions were jointly made by two or 
more deputy chief physicians with >15 years of clinical experience in 
critical care medicine. Among these, empirical antifungal therapy 
prior to fungal culture is based on guidelines (6).

2.3 Machine learning

ML methods are computer algorithms that automatically 
recognize complex patterns on the basis of empirical data. The goal is 
to enable algorithms to learn from past or present data and to use this 
knowledge to make predictions or decisions regarding unknown 
future events (16). In the current study, we used the random forest 
(RF) ML algorithm. It is a “tree-based” algorithm in which multiple 
decision trees are constructed using random classifications of 
independent features that are used to predict outcome labels for 
random subsets of samples (17). On the one hand, the RF technique 
is a regression tree technique that uses bootstrap aggregation and 
randomization of predictor variables to achieve a high degree of 
predictive accuracy and is often used in medical field analysis to 
construct classification prediction models (18–20). On the other hand, 
RF may be more suitable for feature selection during classification 
tasks in bioinformatics and related sciences, where it has a relatively 
low tendency to overfit and produces more robust results (21).

2.4 Data set division

We randomly assigned 1,434 cases to the sample, with 50% of the 
cases used as the training set and the rest as the test set. We also 
ensured that there was no gender or age bias between the training set 
and testing set.

2.5 Feature extraction

For the training set, we first used the Least Absolute Shrinkage 
and Selection Operator (LASSO) to reduce the dimension of features 
according to whether the patient is ICU-AF. We performed feature 
reduction using LASSO on the training set. LASSO performs feature 
selection during model construction by penalizing the respective 
regression coefficients. As this penalty increases, more regression 
coefficients shrink to zero, thus resulting in a more regularized model 
(22). In this process, 49 significant features with nonzero coefficients 
were obtained. We then used them in the RF prediction model. By 
using a ten-fold cross-validation analysis, we selected the best model 
parameter on the basis of the accuracy of each fold of the model. At 
the same time, we  ranked the features in this model by setting a 
threshold of 0.05 to select the features in reference to previous articles 
(23, 24). These features were retained, and the randomized forest 
model was trained to predict patient ICU-AF by using ten-fold cross-
validation. Finally, the model was tested using the test set. Both 
downscaling and ten-fold cross-validation were used to prevent 
overfitting. Overfitting can occur when excessive features affect the 
predictive performance of a model. However, the use of nested k-fold 
cross-validation allows us to perform model training independently 
of hyperparameters optimization, which prevents overfitting or 
incorrect generalization estimates (25). The R language was used to 

TABLE 1 The characteristics of training set and test set.

Train N =  717 Test N =  717

Age 67.89 ± 15.645 68.32 ± 15.91

Gender (male) 479, 66.8% 452, 63.0%

Days in ICU 11 (5,18) 10 (5, 18)

APACHE II Score on ICU 

admission

20.90 ± 6.654 20.87 ± 6.05

Department

  GICU 230, 32.1% 216, 30.1%

  SICU 148, 20.6% 150, 20.9%

  RICU 202, 28.2% 209, 29.1%

  NICU 92, 12.8% 99, 13.8%

  NSICU 14, 2.0% 16, 2.2%

  CSICU 13, 1.8% 8, 1.1%

  CCU 18, 2.5% 19, 2.6%

Diagnosis on ICU admission

  Medical 450, 62.8% 449, 62.6%

  Surgical 219, 30.5% 223, 31.1%

  Trauma 48, 6.7% 45, 6.3%

Surgery 216, 30.1% 211, 29.4%

Comorbidities

  Diabetes 208, 29.0% 240, 33.5%

  COPD 157, 21.9% 164, 22.9%

  Heart failure 229, 31.9% 261, 36.4%

  Chronic liver disease 37, 5.2% 57, 7.9%

  Chronic kidney disease 68, 9.5% 70, 9.8%

  Solid tumours 95, 13.2% 97, 13.5%

  Haematological malignancy 5, 0.7% 9, 1.3%

  Solid organ transplant 2, 0.3% 2, 0.3%

  Acute pancreatitis 44, 6.1% 43, 6.0%

  Sepsis 241, 33.6% 256, 35.7%

  SOFA score 5.29 ± 3.06 5.38 ± 3.09

Microbiology

  Undefined Saccharomyces 185, 25.8% 191, 26.6%

  Candida albicans 257, 33.1% 254, 35.4%

  Candida tropicalis 75, 10.5% 86, 12.0%

  Candida glabrata 88, 12.3% 83, 11.6%

  Candida parapsilosis 24, 3.3% 24, 3.3%

  Candida krusei 4, 0.6% 9, 1.3%

  Other Candida 33, 4.6% 13, 1.8%

  Undefined Aspergillus 20, 2.8% 10, 1.4%

  Aspergillus fumigatus 30, 4.2% 30, 4.2%

  Aspergillus niger 5, 0.7% 4, 0.6%

  Aspergillus flavus 6, 0.8% 6, 0.8%

  Other Aspergillus 1, 0.1% 1, 0.1%

  Cryptococcus neoformans 2, 0.3% 3, 0.4%

  Other fungi 6, 0.8% 3, 0.4%

(Continued)
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draw the density map between each feature and APACHE II, and the 
lm function was used to fit the regression model. The “pheatmap” 
package implements heatmap to display sample survival and 
feature performance.

2.6 Model performance

In the ten-fold cross-validation of the model, we  trained 
different model parameters and selected the model parameters 
with the best accuracy in one fold for application to the test set. 
The ability of the model to discriminate between acquired fungi 
was determined using the area under the curve (AUC), and the 
stability of the model was determined on the basis of sensitivity 
and specificity. From our learning models, we chose the model 
with the best discrimination ability.

2.7 Statistical analysis

All statistical analyses were performed using Stata 24.0 
software. To divide the training and test sets, we used analysis of 
variance (ANOVA) to analyze whether there was a difference in 
the age distribution between the training and test sets, and the 
chi-square test was used to analyze whether there was a difference 
in the gender distribution between them. The main specification 
of ML is that the models constructed from selected features 
perform well for predicting patient outcomes, AUC, sensitivity, 
specificity, and accuracy and are only used to determine the 
performance of the models (26). Therefore, many previous studies 
have used ML and logic methods (27, 28). In our research, factors 
associated with antifungal therapy and empirical antifungal 
therapy for acquired fungi were analyzed using univariate and 
multivariate conditional logistic regression models for all features 
of the ML model. Its odds ratio (OR) and 95% confidence interval 
(CI), p < 0.05 was considered significant.

3 Results

3.1 Cohort characteristics

For the submission of the manuscript, we  enrolled 2,147 
cases. A total of 1,434 cases with complete data were obtained 
after exclusion and screening (Figure  1, step  1). The cases 
were randomly and equally divided into the training (N = 717) and 
test (n = 717) sets. The distribution of outcome labels for 
patients in the training and test sets showed no significant 
differences (p = 0.37, chi-square test, not shown). The features of 
the two data sets are shown in Table 1; age (ANOVA, p = 0.60, not 
shown) and gender (chi-square test, p = 0.15, not shown) 
had no statistical difference, and the other features are 
shown in Table 1. On the basis of whether the fungi were ICU 
acquired, LASSO was performed to reduce the dimension of 
features. Thereafter, by using ten-fold cross-validation, the 
average accuracy of the random forest model was 0.907 ± 0.042, 
among which the third-fold accuracy we applied was the highest, 
which was 0.972 (Figure  2). We  took the third-fold model 
parameter as our optimal model parameter. We  selected six 
features with importance ≥0.05  in the optimal mode, namely, 
times of arterial catheter, times of enteral nutrition, times of 
corticosteroids, times of broad-spectrum antibiotics, times of 
urinary catheter and times of invasive mechanical ventilation 
(Figure 3A).

TABLE 1 (Continued)

Train N =  717 Test N =  717

Time to positivity of ICU admission 

over 48 h

321, 44.8% 303, 42.3%

Clinical characteristic

  Central venous catheter 482, 67.2% 464, 64.4%

  Arterial catheter 399, 55.6% 389, 54.3%

  Invasive mechanical ventilation 404, 56.3% 398, 55.5%

  Non-invasive mechanical 

ventilation

318, 44.4% 323, 45.0%

  Tracheotomy 127, 17.7% 124, 17.3%

  Urinary catheter 617, 86.1% 604, 84.2%

  Hemodialysis or continuous 

hemofiltration

88, 12.3% 94, 13.1%

  Parenteral nutrition 433, 60.4% 414, 57.7%

  Enteral nutrition 371, 51.7% 347, 48.4%

  Corticosteroids 183, 25.5% 166, 23.2%

  Broad-spectrum antibiotics 636, 88.7% 642, 89.5%

Candida score 1.80 ± 1.48 1.80 ± 1.47

Laboratory data

  T 37.05 ± 0.80 37.02 ± 0.77

  P 100.74 ± 21.35 100.31 ± 20.49

  R 22.79 ± 5.75 22.87 ± 5.37

  WBC 12.59 ± 7.72 12.19 ± 6.55

  N% 85.29 ± 8.77 84.71 ± 9.55

  PLT 204.23 ± 126.61 197.28 ± 123.56

  PCT 0.93 (0.23, 6.27) 1.06 (0.25, 5.46)

  ALB 29.51 ± 6.31 29.81 ± 5.58

  TBil 14.10 (9.50, 22.15) 14.3 (9.70, 23.55)

  ALT 32.00 (22.00, 56.50) 32.00(22.00, 55.50)

  AST 34.00 (22.00, 61.00) 34.00 (22.00, 59.50)

  Ur 12.28 ± 9.22 12.57 ± 9.73

  Cr 119.58 ± 117.72 123.31 ± 125.98

  UA 272.70 ± 167.113 270.35 ± 164.375

  PT 14.20 (12.80, 15.70) 14.40 (12.70, 15.65)

  APTT 38.86 ± 24.76 39.38 ± 24.64

Death of 28 days 165, 23.0% 187, 26.1%

The distribution of features in the training set and test set is randomly divided equally. ICU, 
Intensive care unit; APACHE II, Acute Physiology and Chronic Health Evaluation II; GICU, 
general ICU; SICU, Surgical ICU; RICU, Respiratory ICU; NICU, Neurology ICU; NSICU, 
Neurosurgery ICU; CSICU, Cardiothoracic Surgery ICU; CCU, Cardiovascular ICU; COPD, 
Chronic obstructive pulmonary disease; SOFA, Sequential Organ Failure Assessment; T, 
Temperature; P, Pulse rate; R, Respiratory rate; WBC, White blood cell count; N%, 
Neutrophil count%; PLT, Platelet count; PCT, Procalcitonin; ALB, Albumin; TBil, Total 
bilirubin; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; Ur, Urea 
Nitrogen; Cr, Creatinine; UA, Uric acid; PT, Prothrombin time; APTT, Activated partial 
thromboplastin time.
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3.2 The role of each feature

By using these features for ML analysis and testing on an 
independent test set, the results showed that the AUC for predicting 
ICU-AF was 0.981  in the test set, with a sensitivity of 0.960 and 
specificity of 0.990 (Figure 3B). Disease severity in ICU patients was 
represented by the APACHE II Score, which was analyzed separately 
with the continuous time of these six features. Only the times of 
invasive mechanical ventilation showed a significant linear correlation 
with the APACHE II Score (p = 0.031) (Figure 3C). The duration time 
of these features showed no significant differences in the 28-day 
mortality (Figure 3D).

3.3 Risk factors associated with antifungal 
therapy and empirical antifungal therapy

Considering the univariate and multivariate conditional logistic 
regression analyses of antifungal therapy in ICU-AF, the results 
showed that among these six features, times of arterial catheter 
(p = 0.011, OR = 1.057, 95%CI = 1.053–1.104) and times of invasive 
mechanical ventilation (p = 0.007, OR = 1.056, 95%CI = 1.015–1.098) 
were independent risk factors for antifungal therapy in ICU-AF 
(Table  2). In the sample on antifungal therapy, times of arterial 
catheter (p = 0.004, OR = 1.098, 95%CI = 0.855–0.970) was an 
independent risk factor for empirical antifungal therapy (Table 3).

4 Discussion

This retrospective clinical cohort study spanned 5 years, included 
1,434 cases with complete data, and identified 6 risk factors for 
ICU-AF using ML. Fungal infection, which is accompanied by 
difficult treatment and poor prognosis, is an important component of 
ICU infections (1, 29). He et al. used ML to establish predictive models 
for secondary candidemia in patients with systemic inflammatory 
response syndrome (SIRS) patients in the ICU. These models have a 
potential guiding role in the antifungal treatment of critically ill 
patients with SIRS (30). Researchers often focus on the pathogenic 
state and non-pathogenic state of fungi, which are known as 
“infection” and “colonization,” respectively (31, 32). Once a fungal 
infection emerges in critically ill patients in the ICU, colonization 
poses a high risk to individuals with immune disorders. Popular 
researches has considered fungal colonization, including multi-site 
colonization and the colonization of special strains, as a risk factors 
for fungal infection (33, 34). The risk of fungal infection increased 
significantly after fungal colonization in ICU patients. One study 
found that 93 out of 137 (68%) patients with candidemia had Candida 
colonization (30). The preconception was that fungal infection is 
opportunistic. However, the sensitivity of ICU blood cultures for 
invasive candidiasis (including intra-abdominal candidiasis) is 
approximately 40% (13). Up to 70% of patients with candidemia do 
not receive early empiric antifungal therapy early on (35). Generally, 
doctors in the ICU often value patients who already have the “fungi” 
label, but the preparation for a new onset one is insufficient. This could 
increase the risk of patients in the ICU. A study showed that a 12-h 
delay in starting antifungal therapy was associated with a 2.09-fold 
increase in mortality (36). Discovering the types of patients in the ICU 

who are at high risk for acquired fungal infections is an important part 
of critical illness warnings.

This study advances the warning line of fungal infection before 
colonization, which is called ICU-AF and is defined as fungi cultured 
after 48 h in the ICU. LASSO dimensionality reduction and ML 
methods were used to analyze patients admitted to the ICU over the 
past 5 years. Compared with non-acquired fungi, six features including 
times of arterial catheter, times of enteral nutrition, times of 
corticosteroids, times of broad-spectrum antibiotics, times of urinary 
catheter, and times of invasive mechanical ventilation, showed high 
significance in ICU-AF. These features are considered high-risk factors 
for fungal infection in the ICU (7, 37–42). The current study used ML 
to prove that ICU-AF has a higher risk of occurrence when ICU 
patients exhibit the above six features. However, the utility of risk 
factors in ICU-AF patients depends on differentiating between the 
dimensions of time, frequency, and intensity. ICU-AF is expected to 
provide an early warning for antifungal therapy or even empirical 
antifungal therapy.

Logistic regression analysis showed that the times of arterial 
catheter and invasive mechanical ventilation were independent risk 
factors for antifungal therapy in ICU-AF, and ductus arteriosus time 
was an independent risk factor for empirical antifungal therapy in 
ICU-AF. By using ML to study the early warning of ICU-AF, the times 
of arterial catheter insertion and invasive mechanical ventilation can 
be used to warn critical care physicians on whether antifungal therapy 
is needed. Patients with arterial catheters may require early empirical 
antifungal therapy.

4.1 Strengths and limitations

This study applied an unconventional method to study 
susceptibility to ICU-AF: First, we  used efficient ML methods to 
analyze clinical data to reduce the bias of manual analysis. Second, 
we focused on the early warning of fungal infection, namely, ICU-AF, 
and this approach is more in line with the needs of treating ICU 
patients. Finally, we investigated the role of the ICU-AF early warning 
model in antifungal therapy and empirical antifungal therapy for 
guiding the management of ICU-AF.

This study has the following limitations. First, this was a 
retrospective, single-center study. It should be  noted that this 
single-center study involved seven different ICU wards (GICU, 
RICU, SICU, NICU, NSICU, CSICU, and CCU), and some specific 
characteristics (such as major abdominal surgery and disturbance 
of consciousness) were diverse. However, even across seven 
different ICUs, each patient had these six features. As a routine 
treatment procedure for patients in the ICU, the duration of these 
six features was obtained via detailed nursing records and reflected 
the length of time that patients received treatment in the real world 
and the homogeneity of fungal infection risk factors across all ICUs. 
Second, there were more than 40 salient features in the optimal 
model (Figure 3A). However, we selected only six features with 
importance >0.05. When multiple features appear in the results, it 
is crucial to extract better and more convenient feature models for 
clinical applications. In addition to using 0.05 as a threshold to 
screen six features, we also explored the important role of these six 
features in ICU-AF on the basis of clinical practice. Other features 
(such as central venous catheter, abdominal surgery and SOFA 
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scores) that were reported to be connected with ICU-AF (43, 44), 
could probably have hidden roles. They still have potential value for 
future discussion. The prevailing view supports that the six features, 

analyzed in the current study are good predictors of ICU-AF (7, 
37–42). Controlling these six operations is an effective way to 
reduce ICU-AF. Blaize et  al. found that controlling the use of 

FIGURE 1

Flowchart for enrollment and screening. Step 1: Preliminarily screen the samples according to the inclusion and exclusion criteria. Step 2: Use lasso 
dimensionality reduction for all 61 features and select 6 features with importance ≥0.05. Step 3: All samples are randomly and equally divided into 
training set and test set. Max-min scale: normalization for continuous features, the formula is ′ =

−
−

x x x
x x

min

max min

. One-hot: setting unordered 
classification features to mutually exclusive dummy features.
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corticosteroids could reduce the risk of invasive pulmonary fungal 
infections in COVID-19 patients admitted to the ICU (45). Thirdly, 
regarding the question of whether ICU physicians can distinguish 
fungal colonization from fungal infection. The AUC of the optimal 
model for the fungal infection test obtained in this study was 0.670 

(Supplementary Figure S1). In the clinical cohort, these were 
indistinguishable at the time of diagnosis; thus, we advanced the 
field of view to the acquired fungus. Finally, increasing the amount 
of training data can enable us to obtain more information and make 
diverse learning in most cases, as well as increase the chances of 
achieving better results. Some important studies use 70% or 80% of 
samples in the training set (46–48). We randomly assigned 1,434 
cases to the sample, with 50% of the cases used as the training set 
and the rest as the test set, to improve the efficiency of model 
validation. Meanwhile, it was also ensured that there was no gender 
and age bias between the training set and the test set. Although this 
ratio is also a common ratio for dividing datasets in previous 
studies, such as in some studies on tumor diseases (49, 50), we will 
continue to collect and expand sample size data in future research 
to improve the sample ratio in the training set.

In summary, ML classifier models in clinical cohorts have the 
potential to predict the risk of ICU-AFI. The most important risk 
factors for ICU-AF are the six time-related clinical parameters 
(arterial catheter, enteral nutrition, corticosteroids, broad-spectrum 
antibiotics, urinary catheter, and invasive mechanical ventilation) that 
provide early warnings for the early prevention of fungal infection. 
Furthermore, this model, although needs to be  more clinically 
validated, has the potential to help ICU physicians assess whether 

FIGURE 2

Accuracy of models in ten-fold cross-validation.

FIGURE 3

(A) The 49 features with the highest relative gain for model predicting ICU-AF and the 5 features with importance ≥0.05. (B) Receiver operating 
characteristic curve (ROC) of models. (C) Scatter plot with linear regression line of best fit with APACHE II score analyzed separately with six features. 
r2: represents the degree of feature fitting; p  <  0.05 were considered significant; (D) The heatmap of different features in dead vs. surviving patients, and 
colors in the heatmap indicate the time (days) for the corresponding feature. AUC, area under the subject curve. APACHE II, Acute Physiology and 
Chronic Health Evaluation II.
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empiric antifungal therapy should be administered to ICU patients 
who are susceptible to fungal infections.
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TABLE 2 Independent risk factors associated with antifungal therapy according to ICU-AF.

Variable (Times of) Univariate Multivariate

OR 95%CI p value OR 95%CI p value

Arterial catheter 1.061 1.021–1.101 0.002 1.057 1.013–1.104 0.011

Invasive mechanical ventilation 1.056 1.023–1.089 0.001 1.056 1.015–1.098 0.007

Urinary catheter 1.028 1.003–1.053 0.027 0.984 0.950–1.020 0.378

Parenteral nutrition 1.036 0.989–1.085 0.136 1.01 0.957–1.066 0.718

Corticosteroids 1.029 0.980–1.080 0.253 0.999 0.947–1.054 0.978

Broad-spectrum antibiotics 1.037 0.996–1.079 0.077 1.005 0.959–1.052 0.846

OR stands for odds ratio, CI for confidence interval; The samples for logistic regression analysis were from all ICU-AF samples. Variables were selected with importance ≥ 0.05 in the 
training set.

TABLE 3 Independent risk factors associated with empirical antifungal therapy according to ICU-AF.

Variable (Times of) Univariate Multivariate

OR 95%CI p value OR 95%CI p value

Arterial catheter 1.088 1.035–1.143 0.001 1.098 0.855–0.970 0.004

Invasive mechanical ventilation 1.028 0.987–1.070 0.188 1.053 0.894–1.009 0.094

Urinary catheter 1.018 0.980–1.057 0.362 0.947 0.992–1.125 0.089

Parenteral nutrition 0.99 0.924–1.060 0.769 0.98 0.931–1.118 0.666

Corticosteroids 1.039 0.971–1.111 0.265 1.015 0.910–1.066 0.714

Broad-spectrum antibiotics 1.068 1.007–1.134 0.028 1.052 0.884–1.023 0.176

OR stands for odds ratio, CI for confidence interval; The samples for logistic regression analysis were from all ICU-AF samples with antifungal therapy. Variables were selected with 
importance ≥ 0.05 in the training set.
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