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Background: The aim of this study was to evaluate the ability of point-of-
care Doppler ultrasound measurements of carotid corrected flow time and 
its changes induced by volume expansion to predict fluid responsiveness in 
patients undergoing robot-assisted gynecological surgery.

Methods: In this prospective study, carotid corrected flow time was measured 
using Doppler images of the common carotid artery before and after volume 
expansion. The stroke volume index at each time point was recorded using 
noninvasive cardiac output monitoring with MostCare. Of the 52 patients 
enrolled, 26 responded.

Results: The areas under the receiver operating characteristic curves of the 
carotid corrected flow time and changes in carotid corrected flow time induced 
by volume expansion were 0.82 and 0.67, respectively. Their optimal cut-off 
values were 357 and 19.5  ms, respectively.

Conclusion: Carotid corrected flow time was superior to changes in carotid 
corrected flow time induced by volume expansion for predicting fluid 
responsiveness in this population.
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1 Introduction

Perioperative fluid management is essential to control vascular 
tone, ensure tissue perfusion, maintain the circulating volume, and 
improve cardiac output. Hypovolemia and hypervolemia can increase 
perioperative complications, including pulmonary edema, electrolyte 
imbalance, hemodilution coagulopathy, tissue hypoperfusion, and 
acid–base derangements. Optimizing perioperative fluid treatment 
often improves postoperative outcomes, reduces perioperative 
complications, and shortens hospital stays (1, 2). Therefore, assessing 
volume status and responsiveness is essential for fluid management in 
patients undergoing surgery and with critical illnesses. According to 
the Frank–Starling principle, increasing preload causes an increase in 
contractile strength and an increase in left ventricular stroke volume 
only if the ventricle is functioning on the steeply rising portion of the 
Frank–Starling curve. Fluid responsiveness can be used to identify and 
treat those patients who may benefit from an increase in venous 
volume through a fluid challenge to avoid volume overload (3, 4). 
Common metrics for assessing volume status and responsiveness 
include static (central venous, global end-diastolic volume index, and 
pulmonary arterial wedge pressure) and dynamic (stroke volume 
variation, pulse pressure variation) indicators. The static indicators 
used clinically cannot accurately assess volume status (5, 6), in 
contrast, dynamic indicators are derived from cardiopulmonary 
interactions (the passive leg raising test, end-expiratory occlusion test, 
and tidal volume challenge) during mechanical ventilation and may 
be  helpful in guiding fluid management. Although functional 
hemodynamic parameters have been shown to reliably predict fluid 
responsiveness, factors such as pulmonary compliance, cardiac 
function, and mechanical ventilation may limit their broad clinical 
applications, including their application in certain surgical types and 
positions (7, 8). Therefore, an ideal hemodynamic monitoring 
technique should be  less invasive, continuously dynamic, simple, 
generalized, and inexpensive to operate. We surmised that bedside 
ultrasound techniques that have emerged in recent years, such as the 
carotid corrected flow time (FTc), could be potential alternatives for 
predicting fluid volume in patients in the Trendelenburg, prone, or 
other position. Our group has proven that the FTc after tidal volume 
challenge reliably predicts fluid responsiveness in patients undergoing 
robot-assisted laparoscopic gynecological surgery in the modified 
head-down lithotomy position (9). In addition, the FTc measured in 
the common carotid artery is considered a reliable and efficient 
method to predict fluid reactivity (10–12). Previous studies have 
found that changes in FTc induced by the recruitment maneuver or 
the passive leg raise test could effectively identify “fluid responsive” 
patients (13, 14).

The primary aim of our research was to evaluate the value of 
point-of-care FTc and absolute changes in FTc (ΔFTc) induced by 
volume expansion (VE) in predicting fluid responsiveness among 
patients undergoing robot-assisted gynecological surgery.

2 Methods

2.1 Study population

After obtaining approval from the Institutional Review Board of 
Chongqing University Cancer Hospital (approval number: 

CZLS2021041-A, date of approval: April 1, 2022) and registering in 
the Chinese Clinical Trial Register (CHiCTR2200060573), this 
prospective study was conducted at Chongqing University Cancer 
Hospital between June and October 2022. This study protocol 
conformed to the tenets of the Declaration of Helsinki and has been 
reported in line with the Standards for the Reporting of Diagnostic 
accuracy studies (STARD) criteria (15). Written informed consent was 
obtained from all participants. We enrolled 55 patients scheduled to 
undergo robot-assisted gynecological surgery with American Society 
of Anesthesiologists (ASA) classes I–III. The exclusion criteria were a 
body mass index of more than 30 or less than 15 kg/m2, arrhythmia, 
decreased cardiac function (left ventricular ejection fraction less than 
50%, right ventricular dysfunction), severe valve regurgitation, a 
history of carotid artery stenosis of 50%, chronic obstructive 
pulmonary disease, chronic kidney dysfunction, pregnancy, or denial 
to participate in the study.

2.2 Anesthesia technique

The patients were placed in the supine position in the operating 
room and subjected to standard monitoring using the IntelliVue 
MP40 monitor (Philips Medizin Systeme Boblingen GmbH, 
Boeblingen, Germany), for noninvasive blood pressure, heart rate 
(HR), continuous five-lead electrocardiography, and peripheral 
oxygen saturation. No preoperative medications were used in any 
patient. Anesthesia induction using propofol (2–3 mg/kg), sufentanil 
(0.3–0.5 μg/kg), midazolam (1–2 mg), and tracheal intubation was 
facilitated after 1 min of intravenous rocuronium (0.6–0.9 mg/kg) 
administration. Intraoperative anesthesia was maintained with 
continuous intravenous infusion of propofol (1.5–3 mg/kg/h), 
remifentanil (0.02–0.2 μg/kg/min), and sevoflurane (1–3 vol%). 
Neuromuscular blockade was maintained with rocuronium (0.15 mg/kg) 
administered at 30–40-min intervals. The radial artery was 
catheterized after the induction of anesthesia. Mechanical ventilation 
was controlled using a WATO EX-65 anesthesia machine (Mindray 
Medical Systems, Shenzhen, China), and the tidal volume was adjusted 
at 6 mL/kg of the predicted body weight in the volume-controlled 
mode. An end-tidal carbon dioxide concentration between 35 and 
45 mmHg was maintained by controlling the respiratory rate, and the 
positive end-expiratory pressure was set at 5 cm H2O. At the beginning 
of surgery, the patients were placed in the modified head-down 
lithotomy position. Pneumoperitoneum was achieved by continuous 
carbon dioxide insufflation, and the intra-abdominal pressure was 
maintained at 12 mmHg. Intraoperative maintenance fluids were 
administered at a rate of 4 mL/kg per hour of Ringer’s solution.

2.3 Hemodynamic monitoring

Following arterial insertion, the arterial pressure signal was 
simultaneously connected and transmitted to the IntelliVue monitor 
and the hemodynamic monitoring system of the MostCare device 
(Vygon, Vytech, Padova, Italy) using a Y-cable. Each patient was 
positioned for surgery, and the arterial signal was calibrated to zero. 
MostCare, a multiparameter hemodynamic monitoring tool, utilizes 
pressure recording analysis methods to estimate cardiac output 
without requiring calibration. By analyzing the arterial waveform 
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signal sampled at a high rate of 1,000 Hz, MostCare accurately 
identifies the dicrotic notch’s position and calculates the area under 
the arterial pressure waveform and systemic vascular impedance to 
determine the stroke volume (16, 17). Notably, the square-wave test 
was performed to ensure the normalcy of the arterial waveform after 
connecting the monitor, effectively excluding any under- or over-
damping of the pressure signal (18).

2.4 Study procedures

The study was performed at least 45 min after the establishment 
of pneumoperitoneum, when the patients were hemodynamically 
stable [i.e., the change in the mean arterial pressure (MAP) and HR 
was less than 10% over 5 min] and the intra-abdominal pressure 
was maintained at 12 mmHg. In order to eliminate the potential 
effects of external interventions on peripheral vascular resistance 
and to improve data reliability, vasoactive medications were not 
administered during the study period. Upon program initiation, 
baseline hemodynamic variables including HR, MAP, pulse 
pressure variation (PPV), and stroke volume index (SVI) were 
obtained, and carotid FTc was measured (T0). Subsequently, a 
250-mL infusion of Ringer’s solution was administered for 10 min. 
Hemodynamic variables were re-recorded 5 min after fluid 
expansion (T1). Fluid responsiveness was defined as an SVI 
increase of ≥10% after fluid administration, and the patients were 
classified as responders based on SVI ≥ 10% after the volume 
loading test, otherwise as non-responders (14).

2.5 Carotid ultrasonography

Ultrasound examinations and measurements are performed by 
experienced physicians using a portable ultrasound equipment 
(Mindray Medical Systems, Shenzhen, China). Considering that 
part of the patients underwent right internal jugular vein 
cannulation, we uniformly measured left common carotid artery. 
The following scanning protocol was followed to acquire images of 
the common carotid artery: (1) a high-frequency line array 
transducer was placed transversely at the lower border of the 
thyroid cartilage, ensuring the common carotid artery was centered 
on the screen; (2) the long axis B-mode image of the common 
carotid artery was obtained with the probe marker pointing toward 
the patient’s head; (3) the sample volume was placed at the center 
of the arterial vessel, and the cursor angle was adjusted parallel to 
the direction of blood flow, with an insonation angle of ≤60°, 
approximately 2 cm proximal to the carotid bifurcation; (4) a 
satisfactory spectrum displayed was frozen by adjusting the optimal 
sampling volume and angle, and then, the measurement was 
performed using the caliper function on the machine (10, 13). Flow 
time (FT) was measured from the beginning of the systolic upstroke 
to the dicrotic notch. HR was automatically calculated from 
measurement intervals between the beginning of two consecutive 
Doppler flow upstrokes. The average of three consecutive cycles was 
recorded once stability was achieved and the quality reached an 
acceptable level (Figure 1). FTc was calculated for the compensation 

of HR using the Wodey formula: FTc = FT + [1.29 × (HR − 60)]. 
ΔFTc was calculated as follows: ΔFTc = FTcT1 − FTcT0 (19).

2.6 Sample size calculation and statistical 
analysis

PASS ver.15.0 (IBM Corp, Armonk, NY, United States) was used 
to calculate the sample size. According to Yang et al., the area under 
the curve (AUC) to predict fluid responsiveness was 0.82  in the 
descending aorta FTc. We hypothesized that the carotid FTc might 
have a low predictive capacity of 0.75 (12). We compared this value 
with the null hypothesis (AUC = 0.50, ratio of sample sizes in the 
negative/positive groups = 1) and generated a sample size of 50 
patients (type I error = 0.05, power = 0.90). With an expected dropout 
rate of 10%, 55 patients were included in our study.

Normality was evaluated for all quantitative data using 
Kolmogorov–Smirnov test. Data are expressed as mean (standard 
deviation), median (interquartile range), and absolute number or 
percentage (%). Continuous variables of patient characteristics were 
compared between the groups using an independent-sample t-test or 
Mann–Whitney U test and the chi-squared test for categorical data. 
Hemodynamic parameters before and after VE were assessed using 
the paired t-test or Wilcoxon signed-rank sum test. In contrast, 
between-group comparisons were performed using the t-test or 
Mann–Whitney U test.

The ability of FTc and ΔFTc as predictors of fluid responsiveness 
was assessed using receiver operating characteristic (ROC) curve 
analysis, and different ROC curves were compared using the DeLong 
method (20). The optimal thresholds were defined using the 
maximum Youden index (sensitivity + specificity − 1) (21). We applied 
a gray-zone approach to describe an inconclusive range, considering 
threshold values corresponding to a sensitivity and specificity of 90% 
(22). Pearson correlation coefficient was used to investigate the 
association between carotid ultrasound variables and percentage 
changes in SVI after VE. The value of the correlation (r) coefficient 
ranges from −1 and 1; the closer the absolute value of r to 1, the 
stronger the correlation between the measured parameter and 
fluid responsiveness.

All statistical analyses were conducted using MedCalc ver. 20.1.0 
(MedCalc Software, Ostend, Belgium), GraphPad Prism ver. 9.4.0 
(GraphPad Software, San Diego, CA, United States), and SPSS ver. 
27.0 (IBM Corp, Armonk, NY, United States). Results with p values 
<0.05 were regarded as statistically significant.

3 Results

Of the 59 initially screened patients, 55 were enrolled in the study. 
Three patients were excluded because of excessive airway pressure, or 
unexpected cardiac arrhythmia and severe hypotension. Ultimately, 
52 patients were analyzed in this study, and the number of responders 
and non-responders was the same (Figure 2). The demographics of the 
participants are shown in Table 1. No significant differences were 
observed in patient characteristics between the responders and 
non-responders.
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FIGURE 1

Carotid Doppler waveform.

FIGURE 2

Flowchart of the study.
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The hemodynamic, ventilatory, and ultrasound parameters before 
and after VE are presented in Table 2. A higher MAP was observed in 
the non-responders than in the responders at each time point, but 
there was no difference before and after rehydration. The baseline 
PPV, SVI, and FTc were comparable between the responders and 
non-responders, and PPV significantly decreased in both groups after 
VE, whereas the FTc significantly increased. In contrast, SVI after VE 
showed significant changes only in the responders.

The responders showed a more significant increase in FTc after VE 
than the non-responders (17.2 ± 10.9 vs. 10.4 ± 9.0 ms, p < 0.05). There was 
a negative correlation between baseline FTc and percentage change in SVI 
after VE (r = −0.454, 95% confidence interval [CI]: −0.647–0.207, 
p < 0.001), and a positive correlation between ΔFTc and percentage 
change in SVI after VE (r = 0.307, 95% CI: 0.371–0.535, p < 0.05) 
(Figure 3).

The AUC value for FTc was 0.82 (95% CI: 0.705–0.937; p < 0.0001), 
showing excellent predictive capability for fluid responsiveness. The 
optimal cut-off value of FTc was 357 ms, with a sensitivity and specificity 
of 69.2 and 84.6%, respectively. In contrast, the ability of ΔFTc to predict 
fluid responsiveness with an AUC of 0.67 (95% CI: 0.520–0.815; p < 0.05) 
showed a lower accuracy (Figure 4). The optimal cut-off value of ΔFTc 
was 19.5 ms, with a sensitivity and specificity of 84.6 and 46.2%, 
respectively. However, for the predictive accuracy of fluid responsiveness, 
there was no significant difference in the AUC between the FTc and ΔFTc 
groups (p = 0.12). The gray zone for FTc (347.1–359.9 ms) contained 14 
patients (27%). The gray zone for ΔFTc (4.7–22.2 ms) contained 33 (63%) 
patients (Table 3).

4 Discussion

Among gynecologic patients undergoing robot-assisted 
laparoscopic surgery in the modified head-down lithotomy position, 
based on the results of our study, the carotid FTc assessed using 
Doppler ultrasound is an excellent predictor of fluid responsiveness. 
Although ΔFTc induced by VE also possessed the ability to predict 
fluid responsiveness, it showed only moderate capability. Compared 
to FTc, the broader gray area for ΔFTc, containing 63% of the patients, 
potentially limits its clinical effectiveness.

Perioperative fluid management is directly related to patient 
survival, and volume assessment is essential for guiding the 

individualization and accuracy of intraoperative fluid therapy. 
Monitoring has evolved from being static to dynamic. In recent years, 
researchers have focused on developing noninvasive techniques with 

TABLE 1 Patient characteristics.

Overall (n  =  52) Responder (n  =  26) Non-responders (n  =  26) p value

Age, year 50.9 ± 10.9 51.4 ± 10.1 50.5 ± 11.8 0.773a

BMI, kg/m2 23.6 ± 3.2 23.6 ± 3.6 23.7 ± 2.8 0.966a

ASA physical status (II/III) 43,9 22,4 21,5 1b

Diagnosis, n (%) 0.637c

  Vaginal cancer 6 (11.5) 4 (15.4) 2 (7.7)

  Cervical cancer 28 (53.8) 14 (53.8) 14 (53.8)

  Endometrial cancer 18 (34.6) 8 (30.8) 10 (38.5)

Comorbidities, n (%) 0.206c

  Hypertension 5 (9.6) 1 (3.8) 4 (13.8)

  Others 5 (9.6) 4 (13.8) 1 (3.8)

BMI, Body mass index; ASA, American Society of Anesthesiologists physical status; aIndependent t-test, bMann–Whitney U, cChi-square test; Data are presented as mean (standard deviation), 
number of patients (%).

TABLE 2 The hemodynamic, ventilatory, and ultrasound parameter 
characteristics before and after volume expansion.

T0 T1 P (T0 vs. T1)

HR (beats/min)

  R 68.7 ± 9.5 66.9 ± 7.8 0.016

  NR 65.6 ± 8.3 68.3 ± 7.3 0.002

Map (mm Hg)

  R 75.6 ± 6.7* 75.5 ± 6.4* 0.689

  NR 80.3 ± 8.4 80.4 ± 8.5 0.889

Pplat (cm H₂O)

  R 20.9 ± 3.3 21.4 ± 3.1 0.004

  NR 20.6 ± 2.8 21.0 ± 2.7 0.009

VT (mL)

  R 319.1 ± 31.4 318.2 ± 32.9 0.697

  NR 323.5 ± 24.2 323.1 ± 23.3 0.777

Crs (mL/cmH₂O)

  R 17.0 ± 4.1 16.6 ± 3.8 0.11

  NR 17.8 ± 3.2 17.2 ± 2.8 0.013

PPV (%)

  R 7.0 (4.8–9.0)* 6.0 (4.8–6.3)* 0.014

  NR 5.0 (4.0–7.0) 4.0 (3.8–5.3) 0.003

SVI (mL/min2)

  R 41.4 ± 9.8* 46.5 ± 10.1 <0.001

  NR 48.2 ± 6.3 48.2 ± 7.1 0.932

FTc (ms)

  R 347.3 ± 11.4* 364.5 ± 11.8* <0.001

  NR 362.7 ± 15.1 373.1 ± 17.2 <0.001

HR, Heart rate; MAP, Mean arterial pressure; Pplat, Plateau pressure; VT, Tidal volume; Crs, 
Respiratory compliance, PPV, Pulse pressure variation; SVI, Stroke volume index; FTc, 
Carotid corrected flow time; R, Responder; NR, Non-Responders. Data are mean ± standard 
deviation or median (interquartile range). *p < 0.05 comparison between responders and 
non-responders at each time point.
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high accuracy and precision, thus avoiding the complications of 
invasive monitoring and analyzing the response to fluid therapy (5–8, 
23). Portable ultrasound has been widely recommended for volume 
status assessment in critical care, emergency, and perioperative 
patients because of its convenient, noninvasive, easy-to-acquire, and 
reproducible characteristics.

Recent studies have increasingly identified a significant correlation 
between FTc and changes in intravascular volume status (10, 11, 24). 
Accordingly, as intravascular volume decreases, FTc tends to decrease. In 
contrast, volume-deficient patients experience an increase in FTc 
following volume infusion. Patients with advanced renal failure show 
significantly lower FTc values after hemodialysis, and there is a significant 
negative correlation between the volume of fluid excreted during 
hemodialysis and changes in FTc (11). Mackenzie et al. (24) found that 
FTc decreases after acute blood loss and that passive leg raising restores 
FTc to predicted levels in acute hypovolemia. Assessing the correlation 
between the changes in volume status and those in carotid FTc, Blehar 
et  al. reported that dehydrated patients receiving fluid resuscitation 
showed an increase in carotid FTc from a mean of 299 ms before injection 
to a mean of 340 ms after injection. Moreover, the carotid FTc responds 
more significantly to changes in intravascular volume than to negligible 

changes in HR and MAP (10). Similarly, our results showed an increase 
in FTc in both groups of patients after fluid injection, a more pronounced 
increase in the responders, and no significant changes in blood pressure.

A growing body of evidence highlights the significance of ultrasound 
measurement of carotid FTc in volume management. Kim et al. (12) 
identified that FTc could accurately predict volume responsiveness in 
spontaneously breathing patients with an AUC of 0.84. Jung et  al. 
considered carotid FTc as a reliable predictor to assess fluid responsiveness 
in patients with low tidal volume mechanical ventilation. A systematic 
review revealed that the diagnostic characteristics of FTc varied, with the 
sensitivity ranging from 60 to 73%, specificity from 82 to 92%, and 
optimal cutoff of AUC from 0.7526 to 0.8819 (25). A higher optimal 
cutoff value of 357 ms obtained in our study could be attributed to the 
patient’s positioning, potentially increasing venous return and affecting 
the FTc measurement values.

The absolute value of FTc alone as a static indicator has limitations as 
it depends on left ventricular preload, cardiac inotropy, and systemic 
vascular resistance (26). Based on the above findings, researchers have 
hypothesized that the changes in FTc could be considered an indicator of 
fluid reactivity. Jalil et al. first attempted to determine whether passive leg 
raising-induced increase in FTc could be  used to predict fluid 
responsiveness in critically ill patients with a cardiac output monitor, 
ultimately concluding that an increase of ≥24.6% in the FTc in response 
to passive leg raising is a reasonable predictor of fluid responsiveness (27). 
In patients with early undifferentiated shock, Barjaktarevic et  al. 
demonstrated, through prospective experiments, that not only the 
changes in FTc evoked by a passive leg raising operation can determine 
fluid responsiveness, but also a threshold of 7 ms as FTc to define fluid 
responsiveness (sensitivity of 68% and specificity of 96%) (14). Passive leg 
raising involves elevation of the lower extremities in order to rapidly divert 
venous blood and ultimately increase return blood volume. While a 
straightforward method of assessing volume status, it is associated with 
the risk of causing an increase in intracranial pressure and a decrease in 
pulmonary compliance, and its implementation during surgery is 
challenging (28). Consequently, alternative interventions are necessary. A 
subsequent experiment directly illustrated that the percent change in FTc 
induced by the recruitment maneuver used to predict fluid responsiveness 
in supine patients under general anesthesia is feasible (13). In our study, 
we obtained a higher absolute value for ΔFTc with a cutoff value of 
19.5 ms (sensitivity of 84.6% and specificity of 46.2%). Regardless of 

FIGURE 3

Relationship among FTc, ∆FTc, and SVI. A-SVI and FTC; B-SVI and ΔFTc.

FIGURE 4

Comparison of the receiver operating characteristic curves for the 
prediction of fluid responsiveness.
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whether the threshold for a change in FTc with a fluid challenge varied 
from 7 to 30 ms or a 25% relative change, possible reasons for this 
difference include the following. First, our participants were in a head-
down position, which would have increased venous return and cardiac 
preload. Second, the hemodynamic effects of pneumoperitoneum were 
complex. Finally, we  identified responders and non-responders by 
additional fluid supplementation (29, 30). Therefore, it can be concluded 
that the ΔFTc increases significantly in patients who respond to fluids 
after intravenous infusion or passive leg raising.

This study had several limitations. We  did not utilize the gold 
standard thermodilution method for monitoring cardiac output; instead, 
we used a less invasive continuous hemodynamic monitor. Although the 
MostCare monitor showed good agreement with echocardiographic 
measurements, potential errors may be unavoidable under the dual effects 
of pneumoperitoneum and head-down position. The effects of 
cerebrovascular tension on the common carotid artery cannot be excluded 
entirely, and brain autoregulatory mechanisms and blood carbon dioxide 
levels correlate with the former. Finally, the results obtained cannot 
be completely generalized to other patients because of the specificity of 
the type of disease and the surgical approach, such as facial and cerebral 
surgery or other open surgery.

In conclusion, carotid parameters were measured using Doppler 
ultrasound in gynecologic patients undergoing robotic-assisted 
laparoscopic surgery, and FTc seems to be a more reasonable predictor 
than ΔFTc induced by VE. We will continue to conduct additional 
clinical trials and offer additional reference points for perioperative 
volume management.
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