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Objective: Clear cell renal cell carcinoma (ccRCC) is the most common type

of renal cancer and currently lacks effective biomarkers. This research aims

to analyze and identify RNA editing profile associated with ccRCC prognosis

through bioinformatics and in vitro experiments.

Methods: Transcriptome data and clinical information for ccRCC were retrieved

from the TCGA database, and RNA editing files were obtained from the Synapse

database. Prognostic models were screened, developed, and assessed using

consistency index analysis and independent prognostic analysis, etc. Internal

validation models were also constructed for further evaluation. Differential

genes were investigated using GO, KEGG, and GSEA enrichment analyses.

Furthermore, qPCR was performed to determine gene expression in human

renal tubular epithelial cells HK-2 and ccRCC cells A-498, 786-O, and Caki-2.

Results: An RNA editing-based risk score, that effectively distinguishes

between high and low-risk populations, has been identified. It includes

CHD3| chr17:7815229, MYO19| chr17:34853704, OIP5-AS1| chr15:41590962,

MRI1| chr19:13883962, GBP4| chr1:89649327, APOL1| chr22:36662830, FCF1|

chr14:75203040 edited sites or genes and could serve as an independent

prognostic factor for ccRCC patients. qPCR results showed significant up-

regulation of CHD3, MYO19, MRI1, APOL1, and FCF1 in A-498, 786-O, and

Caki-2 cells, while the expression of OIP5-AS1 and GBP4 was significantly down-

regulated.

Conclusion: RNA editing site-based prognostic models are valuable in

differentiating between high and low-risk populations. The seven identified RNA

editing sites may be utilized as potential biomarkers for ccRCC.

KEYWORDS

clear cell renal cell carcinomas, RNA editing, bioinformatics, ccRCC biomarker, ccRCC
risk score

1 Introduction

The regulation of blood pressure, elimination of metabolites from bodily fluids, and
maintenance of electrolyte balance are all dependent on the kidney, an essential organ in the
human body (1). Malignant transformation of the kidney can impair its normal function
and pose a significant risk to people’s lives and health (2). Kidney cancer is the second most
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prevalent malignant tumor of the urinary system, accounting for
approximately 3% of all malignant tumors, with a male-to-female
patient ratio of around 2:1 (3).

The most common type of kidney cancer, known as clear cell
renal cell carcinomas (ccRCC), accounts for around 70 to 80% of
cases, and its morbidity and mortality rates have been increasing
annually (4). Despite the popularity of clinical therapies such as
radiation, chemotherapy, and surgery, studies have shown that
these may be ineffective for individuals with advanced ccRCC (5).
Furthermore, recurrence rates can reach 40% even after surgery,
and 30% of patients with ccRCC have metastases at the time of
clinical diagnosis, leading to a poor prognosis (6). As a result,
finding biomarkers that may be utilized for early diagnosis and
precise prognosis is crucial and has become a popular area of study
in recent years.

RNA editing is a post-transcriptional mechanism that changes
the sequence of selected RNA transcripts (7, 8). In mammals,
the most common type of RNA editing is adenosine to inosine
(A-to-I), a molecular process that changes nucleotide sequences
of double-stranded RNAs (dsRNAs) by the deamination of the
canonical Adenosine (A) base to the Inosine (I) (9). This molecular
mechanism is mediated by the Adenosine Deaminases Acting
on dsRNA enzymes (ADAR). Three members of this family
are encoded in the mammalian genome: ADAR1 (also known
as ADAR), ADAR2 (also known as ADARB1) and ADAR3
(also known as ADARB2) (7, 10). When edited RNAs are
processed, the ribosomes and splicing machinery decode Inosines
as Guanosines instead of the Adenosines encoded in the genome.
Editing is classified as “recoding-type editing” if these A → G
mismatches occur in protein-coding sequences and lead to non-
synonymous substitutions that generate novel protein variants (11,
12). Editing can also occur in non-coding RNAs or non-coding
parts of mRNAs generating new protein isoforms by altering the
splicing pattern of the pre-mRNA affecting the cellular fate of an
mRNA and/or its probability of being translated, by editing of
microRNA (miRNA) binding sites in its 3′ untranslated region
(UTR) or by directly editing the related miRNAs themselves (10).
A-to-I RNA editing plays a significant role in human cancers,
which has been widely studied and discussed. Different cancer
types exhibit varying levels of ADAR enzyme expression and
RNA editing (13). For instance, brain cancers often display low
levels of RNA editing (14), while certain thyroid, head and
neck, lung, and breast cancers exhibit excessive or misregulated
editing (15). These differences may be closely related to the
occurrence, development, and treatment response of cancer.
Therefore, further understanding of the role of ADAR enzymes
and RNA editing in cancer is crucial for developing new cancer
treatment strategies.

One of the hallmarks of normal cells is the association
between RNA and proteins, as well as the accurate translation
of proteins. RNA is typically stable. Many types of cancer,
such as hepatocellular carcinoma, lung carcinoma, and breast
carcinoma, have been linked to increased RNA editing during
cancer development (16, 17). The abnormal increase in RNA
editing disrupts biological balance during cancer development,
leading normal cells to become cancerous (18). Imbalances in
A-to-I RNA editing catalyzed by ADAR1 are associated with
cancer. Through rigorous bioinformatics methods, identified
differential RNA editing sites (DES) related to low or high

sensitivity, which were validated using breast cancer (BC)
cell lines. In BC patients found that DES was primarily
present in immune response genes, and a significant association
was observed between RNA editing levels in the genes LSR,
SMPDL3B, HTRA4, and LL22NC03-80A10.6 and progression-free
survival (19). A detailed analysis of the oncogenic mechanisms
of A-to-I RNA editing events in 33 cancer types covered
in the Cancer Genome Atlas was conducted. For individual
candidates among approximately 1,500,000 quantitative RNA
editing events, a variety of downstream functional annotations
were performed. Identified 24,236 A-to-I RNA editing events
with potential functions, involving several key genes and
molecules such as APOL1, IGFBP3, GRIA2, BLCAP, and miR-589-
3p (20).

After in-depth research, scientists have identified hundreds
of A-to-I RNA editing sites, which are specifically labeled as
differential editing sites because they are closely associated with
clinical outcomes of cancer (21). The study reveals significant
differences in the editing of ubiquitination sites between tumor
and non-tumor samples, as well as between different tumor
subtypes in the TCGA dataset. This difference is not only reflected
in the editing frequency, but more importantly, it is closely
related to the clinical outcomes of cancer. Non-synonymous
editing sites on genes such as GSTM5, WDR1, SSR4, and PSMC4
have become the focus of research in this field. These editing
changes at these sites may serve as important biomarkers for
predicting cancer progression and treatment effectiveness (22).
Through in-depth analysis of small RNA sequencing data from
154 patients with ccRCC and 22 normal control kidney tissues,
a total of 1025 miRNA editing sites were identified from 246
precursor miRNAs. Compared with normal kidney tissue samples,
122 editing events with significantly different editing levels were
found in ccRCC, including two A-to-I editing events in the seed
regions of has-mir-376a-3p and has-mir-376c-3p, and one C-to-
U editing event detected in the seed region of has-mir-29c-3p,
demonstrating the complexity and diversity of miRNA editing in
ccRCC (23). The aforementioned related studies demonstrate the
significant potential of RNA editing as a biomarker and therapeutic
target in ccRCC.

This research will analyze the transcriptome and clinical data
of ccRCC patients from the TCGA database. It will screen for
prognosis-related RNA editing using unifactorial COX analysis,
LASSO regression analysis, and multifactorial COX regression
analysis. Finally, it will establish a training group and an internal
validation group to evaluate the diagnostic and clinical utility
of RNA editing in ccRCC patients using survival analysis and
independent prognostic analysis, and validate it through in vitro
experiments. Ultimately, the study will introduce a new concept for
the development of gene therapy, targeted therapy, and individually
tailored therapy for patients with ccRCC.

2 Materials and methods

2.1 Data collection

The TCGA database provided transcriptomic and clinical
information for 614 samples, including 72 normal samples (normal
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human kidney tissue) and 542 KIRC samples (TCGA project
ID:TCGA-KIRC).1 The Synapse database provided the TCGA-
KIRC related RNA editing data (Project SynID: syn2374375)2

obtained as described in Han et al. (15). These samples were
randomly assigned to two groups: a training group (n = 269) and
a validation group (n = 179). The transcriptome data was arranged
by Perl language, and the data analysis and mapping were realized
by R package of R software.

2.2 Construct the prognostic model

Unifactorial COX analysis was used to screen the samples, and
multifactorial COX analysis was then used for further screening.
LASSO regression analysis was employed to identify associated
genes. Seven RNA editing profiles (CHD3| chr17:7815229,
MYO19| chr17.34853704, OIP5-AS1| chr15:41590962, MRI1|
chr19:13883962, GBP4| chr1:89649327, APOL1| chr22:36662830,
and FCF1| chr14:75203040) were found to be linked with
prognosis. The genome version used hg19. The survival curves of
the seven RNA editing profiles were shown in conjunction with the
clinical survival data.

The pertinent risk coefficient values from multifactorial
COX analysis results and the RNA editing expression levels
were used to establish the risk score. The risk score for
patients with ccRCC was determined using the following
formula:

RiskScore = EXPgene(CHD3| chr17:7815229)∗9.815022558
62103+EXPgene(MYO19| chr17:34853704)∗6.79871066441166+
EXPgene(OIP5-AS1| chr15:41590962)∗(-12.6723541150907)+EXP
gene(MRI1| chr19:13883962)∗2.37600410996414+EXPgene(GBP4|
chr1:89649327)∗(-4.43936413502299)+EXPgene(APOL1| chr22:36
662830)∗5.71192867618665+EXPgene(FCF1| chr14:75203040)∗6.8
0208663828929, where the numerical value is the risk coefficient
and EXP represents the gene expression.

2.3 Evaluating prognostic models

Samples with incomplete clinical information (including
TMN stage, age, gender, etc.) were deleted. Forest plots,
unifactorial independent prognostic analysis, and multifactorial
independent prognostic analysis were carried out based on the
clinical information and risk scores of each sample. Analysis
of the consistency index (C-index), calibration, time-dependent
ROC curves, decision curves, and PFS survival curves were
conducted. A nomogram created using the “Rms” program
was used to predict the 1-, 2-, and 3-year survival rates
of ccRCC patients.

For internal model validation, the 448 samples were divided
into high and low-risk groups based on the median value of the
risk score. These groups were then subjected to survival analysis,
and risk and survival curves were plotted. Heat maps showing the
expression of the RNA editing in the samples were applied to both

1 https://portal.gdc.cancer.gov/

2 https://www.synapse.org/#!Synapse:syn2374375/files/

the training group (n = 269) and the validation group (n = 179) to
perform internal model validation.

2.4 Enrichment analysis

Genes in the high and low-risk groups underwent differential
analysis. Volcano plots and heat maps were created for the top 50
differential genes, with filter conditions adjusted to | logFC| > 1 and
FDR < 0.05 to obtain differential genes. GO and KEGG enrichment
analysis was performed on the differential genes to examine
variations in molecular processes and functional pathways. Box line
plots were created to compare the expression differences of seven
RNA editing between normal and tumor samples. Furthermore,
the study compared risk scores and clinical features, used gene
set enrichment analysis (GSEA) to analyze biological function
differences, and analyzed the correlation between RNA editing
and gene expression, as well as the correlation between risk
scores and ADAR genes.

2.5 In vitro experimental validation

Human renal tubular epithelial cells HK-2 and ccRCC cells
A-498, 786-O, and Caki-2 were provided by the ATCC and were
grown in RPMI-1640 media with 10% FBS at 37◦C in an incubator
with 5% CO2. Total RNA was extracted from the transfected cells
in each group using TRIzol reagent, and the Nano Drop 2000
system was used to measure the RNA’s concentration and purity.
Whole RNA was reverse transcribed into cDNA using the Prime
ScriptRT Master Mix reagent. The miScript SYBR Green PCR kit
was utilized for quantitative polymerase chain reaction (qPCR), and
the relative expression of the target genes was determined using
the 2-11Ct method, with β-actin serving as the internal reference
gene. The primer sequences required for this investigation are listed
in Table 1.

TABLE 1 Primer sequence.

RNA Sequence (5′ to 3′)

β-actin Forward Primer TCCGGCACTACCGAGTTATC
Reverse Primer GATCCGGTGTAGCAGATCGC

CHD3|
chr17:7815229

Forward Primer CCGTCAGCATTGGGTGTGAA
Reverse Primer TCTTGCGTTTTCGGGGTTTTC

MYO19|
chr17:34853704

Forward Primer GGGTGAATCCTGTGACACTAGA
Reverse Primer GCCAGCATTGGTGTAGAATGT

OIP5-AS1|
chr15:41590962

Forward Primer GTGTTGTGGAGATTGAGGCAGGAG
Reverse Primer GGCAAGGTGAAGGACAGACAGC

MRI1|
chr19:13883962

Forward Primer GATCCCCGCCACCCTTATC
Reverse Primer GTCTCCAGACGGAGGTCACAT

GBP4|
chr1:89649327

Forward Primer ATGGGTGAGAGAACTCTTCACG
Reverse Primer TGCGGTATAGCCCTACAATGG

APOL1|
chr22:36662830

Forward Primer TGGACTACGGAAAGAAGTGGT
Reverse Primer CCTCCTTCAATTTGTCAAGGCTT

FCF1|
chr14:75203040

Forward Primer AGGAAGTATGCGACCATGAAGC
Reverse Primer AACGAGGATGTGGTAAGGTGG
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2.6 Statistical analysis

The data were analyzed using the R program. Group differences
were analyzed using one-way ANOVA. Two-by-two comparisons
were conducted using the LSD test, unpaired t-test, and Wilcoxon
test for non-normally distributed data. Differences were considered
statistically significant when P < 0.05.

3 Results

3.1 Screening RNA editing profiles and
constructing prognostic models

Figure 1A shows that samples with an RNA editing rate of
less than 5% were excluded from the initial 63,717 data points
of RNA editing sites collected, resulting in a total of 20,882
remaining data points. A unifactorial COX analysis was performed,
and the results are presented in Figure 1B. The Manhattan plot
was utilized to visualize the data with P < 0.001 significance.
The data from the unifactorial COX analysis underwent LASSO
regression, and the findings are illustrated in Figure 1C. To ensure
the accuracy of the results and avoid overfitting, the regression
parameters were adjusted 1,000 times for cross-validation. The
LASSO model’s logarithmic (λ) sequences produced coefficient
profiles, as shown in Figure 1D. Table 2 displays the results of
the multifactorial COX regression analysis, highlighting seven
significant RNA editing sites: MRI1| chr19:13883962, GBP4|
chr1:89649327, APOL1| chr22:36662830, FCF1| chr14:75203040,
CHD3| chr17:7815229, MYO19| chr17:34853704, OIP5-AS1|
chr15:41590962. Plotting the survival curves in Figure 1E revealed
that Patients with high expression of CHD3| chr17:7815229,
MYO19| chr17:34853704, MRI1| chr19:13883962, APOL1|
chr22:36662830 and FCF1| chr14:75203040 had higher
survival rate, while patients with high expression of OIP5-
AS1| chr15:41590962 and GBP4| chr1:89649327 had lower
survival rates.

3.2 Evaluation of prognostic models

The risk score in the prognostic model primarily conveys
the probability or degree of risk of an individual experiencing
a certain adverse outcome (such as disease recurrence, death,
disability, or complications) within a future period. This score is
derived from a multifactorial model that typically considers various
factors influencing the individual’s prognosis, including disease
type, disease stage, patient age, gender, treatment modalities, and
so forth. The results in Figures 2A, B of the univariate and
multivariate independent prognostic analyses indicate that age,
stage, grade, and especially the risk score, can serve as independent
prognostic factors. Figure 2G creates a nomogram combining risk
score with clinical characteristics, with predictive accuracies of
0.96, 0.914, and 0.862 for 1, 2, and 3 years, respectively. The
C-index value of the concordance curve in Figure 2C is greater
than 0.7, the AUC value of the ROC curve in Figure 2D is 0.738,
and the decision curve in Figure 2E confirms the accuracy of

the nomogram. Figure 2F shows the results of an PFS survival
curve, suggesting that patients at higher risk had reduced survival
rates.

3.3 Validation of internal models

The 448 samples were divided into high and low-risk groups
based on the median risk score. This allowed for the construction
of the internal model validation in both the training group (n = 269)
and the validation group (n = 179), the drawing of risk curves, and
the creation of a heat map. Figures 3A, C, E display the survival
curve, showing that patients in the high-risk group had a worse
prognosis for survival, indicating that the model accurately predicts
survival and prognosis, in line with the prognostic model’s forecast.
Figures 3B, D, F display the risk curves, indicating that the number
of patients who passed away grew as the risk score increased.
The heat map results identified OIP5-AS1| chr15:41590962
and GBP4| chr1:89649327 as protective factors, and CHD3|
chr17:7815229, MYO19| chr17:34853704, MRI1| chr19:13883962,
APOL1| chr22:36662830, and FCF1| chr14:75203040 as risk factors.

3.4 Variance and enrichment analysis

The differential genes of the high and low risk groups were
analyzed, as shown in the volcano map in Figure 4A, showing
230 differentially expressed genes. According to P < 0.05, |
log2FC| > 1.5, 208 genes were significantly up-regulated and 22
genes were down-regulated in the high risk group. Figure 4B
shows a heatmap of the top 50 differentially expressed genes.
The results of GO enrichment analysis in Figures 4C–E indicate
that, in terms of Biological Process (BP), the differentially
expressed genes were mainly enriched in immunoglobulin
production, production of molecular mediators of immune
response, and kidney development. Regarding Cellular Component
(CC), the differentially expressed genes were mainly enriched
in immunoglobulin complex, blood microparticle, and apical
part of cell. In the case of Molecular Function (MF), the
differentially expressed genes were mainly enriched in antigen
binding, sodium ion transmembrane transporter activity, and
secondary active transmembrane transporter activity. The KEGG
enrichment analysis results in Figures 4F, G show that the
differentially expressed genes were mainly enriched in Neuroactive
ligand-receptor interaction, PI3K-Akt signaling pathway, and
Cytokine-cytokine receptor interaction.

3.5 Clinical characterization analysis

As shown in Figure 5A, significant differences were observed
between tumor and normal samples for MRI1| chr19:13883962,
GBP4| chr1:89649327, and FCF1| chr14:75203040. However, no
significant differences were found between tumor and normal
samples for OIP5-AS1| chr15:41590962, CHD3| chr17:7815229,
MYO19| chr17:34853704, and APOL1| chr22:36662830. Risk scores
showed considerable variation in Grade, M-stage, N-stage, T-stage,
and Stage, but did not differ significantly by Age or Gender, as
illustrated in Figure 5B.
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FIGURE 1

Screening RNA editing profiles and constructing prognostic models. (A) Manhattan diagram for RNA editing data. (B) Circle graph. (C) Ten-fold
cross-validation for the coefficients in the LASSO model. (D) A coefficient profile plot was produced against the log (λ) sequence in the LASSO
model. (E) Survival curves.
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TABLE 2 Results of multifactorial COX regression analysis.

ID Coef HR HR.95L HR.95H P-value

CHD3| chr17:7815229 9.815022559 31033556.91 34572.38131 27856966108 < 0.001

MYO19| chr17:34853704 6.798710664 7291.748144 289.1850817 183860.0756 < 0.001

OIP5-AS1| chr15:41590962 −12.67235412 0.000000013 0.000000001 0.000179865 < 0.001

MRI1| chr19:13883962 2.37600411 682.1990394 40.26762659 11557.56047 < 0.001

GBP4| chr1:89649327 −4.439364135 0.004552058 0.000522083 0.039689511 < 0.001

APOL1| chr22:36662830 5.711928676 676.8765148 39.79750187 11512.32602 < 0.001

FCF1| chr14:75203040 6.802086638 21095.89284 286.0605257 1555743.12 < 0.001

3.6 GSEA enrichment analysis and
correlation analysis

The GESA enrichment results in Figure 6A demonstrate
that complement and coagulation cascades, drug metabolism
cytochrome P450, drug metabolism other enzymes, metabolism
of xenobiotics by cytochrome P450, and retinol metabolism
were significantly active in the high-risk group. In contrast, the
results in Figure 6B indicate that endocytosis, endometrial cancer,
neurotrophin signaling pathway, tight junction, and vascular
smooth muscle contraction were significantly active in the low-
risk group. Given that ADAR acts as the primary mediator of RNA
editing, the results in Figure 6D show a substantial connection
(r = 0.18, P < 0.001) between the risk score and ADAR gene
expression. The findings presented in Figure 6C demonstrate
a significant correlation between the degree of RNA editing
of MYO19| chr17:34853704, OIP5-AS1| chr15:41590962, GBP4|
chr1:89649327, APOL1| chr22:36662830, and the expression of
their corresponding genes.

3.7 qPCR results

The Figures depicted in Figures 7A–C demonstrate that the
mRNA expression levels of CHD3, MYO19, MRI1, APOL1, and
FCF1 were significantly up-regulated in the ccRCC cell lines A-498,
786-O, and Caki-2 compared to the control group. Conversely, the
mRNA expression levels of OIP5-AS1 and GBP4 were significantly
down-regulated. These differences were statistically significant,
Each cell line was controlled by normal renal tubular epithelial cells
HK-2, which measured β-actin mRNA expression.

4 Discussion

Many individuals are not diagnosed with kidney cancer until it
has progressed to an advanced stage due to the subtle and generic
clinical symptoms and indicators of the disease in its early stages
(24). The most significant pathological subtype of renal cancer
is ccRCC. This prevalent form of renal cell carcinoma lesions
begins in the proximal tubules and is characterized by a thin-
walled vascular network and a high proportion of clear cells (25).
Chemotherapy and radiation treatment have little effect on ccRCC,
and its rate of recurrence and metastasis is significantly higher.
Patients with early-stage ccRCC have a 5-year overall survival rate

of up to 90%, while patients with locally progressed and metastatic
ccRCC have 5-year overall survival rates of 50 and 10%, respectively
(26, 27). For individuals with ccRCC, a precise prognosis and
prompt diagnosis are crucial.

Bioinformatics is a cross-disciplinary field that encompasses
the collection, management, preservation, distribution, analysis,
and understanding of biological data to uncover and interpret
the biological meanings of a vast amount of scientific data
(28). It also integrates the use of mathematical, computer, and
biological tools. Bioinformatics has the ability to extract useful
information for humans from the abundance of biological data,
enabling them to more effectively address pertinent biological
issues (29). Fundamental research on the actions of cancer factors
has been vigorously conducted in the field of bioinformatics,
particularly in genomics and proteomics, due to the progress
of sequencing technology and the human genome project in
several nations (30). Researcher participation in the analysis of
biological data, the development of untested and unexamined
information in biological data, and the execution of follow-up
external experimental studies have all been made possible by the
growing quantity and quality of public databases, thus contributing
to the advancement of various disciplines and fields of research
(31, 32).

Due to advancements in next-generation sequencing
technology, over a million A-to-I RNA editing sites have been
detected. A significant portion of these editing sites reside in
non-coding and repetitive element regions, and their functions
remain largely unknown (33). However, research suggests that
A-to-I RNA editing plays a crucial role in cancer prognosis and
predicting survival (34). Researchers have obtained glioma genome
and clinical data from the TCGA database and Synapse platform.
By employing regression analysis, they have identified RNA editing
sites related to prognosis and calculated their corresponding risk
coefficients. The results indicate that a higher risk score correlates
with poorer prognosis, weaker immune response, and lower
sensitivity to immunotherapy. The characteristics of prognosis-
related RNA editing sites can aid in risk stratification, prediction of
immunotherapy response, development of personalized treatment
strategies for glioma patients, and discovery of novel therapeutic
approaches (35). To investigate the impact of A-to-I RNA editing
on the prognosis of bladder cancer patients, researchers obtained
gene expression and clinical data from 251 patients in the TCGA
database. They randomly divided the patients into training and
testing groups. By identifying A-to-I RNA editing sites associated
with prognosis, they constructed a prognostic model and generated
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FIGURE 2

Evaluation of prognostic models. (A) Unifactorial independent prognostic analysis. (B) Multifactorial independent prognostic analysis.
(C) Consistency index analysis. (D) ROC curves. (E) Decision curves. (F) PFS survival curves. (G) Nomogram for predicting patients survival rate.

risk scores. Patients with higher scores exhibited significantly worse
OS compared to those with lower scores. Additionally, nomograms
combined with the scores provided improved prediction of patient

prognosis. Various functional and pathway changes related to
immune response, as well as significant differences in immune
cell infiltration levels and drug treatment response, were observed
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FIGURE 3

Validation of internal models. (A) Kaplan–Meier curve in the training group. (B) Survival state chart, risk curve and heatmap in the training group.
(C) Kaplan–Meier curve in the validation group. (D) Survival state chart, risk curve and heatmap in the validation group. (E) Kaplan–Meier curve in the
combination set. (F) Survival state chart, risk curve and heatmap in the combination set. The number of patients who passed away grew as the risk
score increased.
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FIGURE 4

Variance and enrichment analysis. (A) Volcano plot. (B) Heatmap of the top 50 differentially expressed genes. (C) Histogram of the GO enrichment
analysis. (D) Bubble plot of the GO enrichment analysis. (E) Circle plot of the GO enrichment analysis. (F) Bubble plot of the KEGG enrichment
analysis. (G) Histogram of the KEGG enrichment analysis.

between high- and low-scoring patients (36). In a related study
on A-to-I RNA editing sites associated with survival in lung
adenocarcinoma, 10441 A-to-I RNA editing site data from 440
LUAD patients in the TCGA database were evaluated. The ATIRE
landscape was merged with TCGA survival data. Tumor staging
and risk scores in lung adenocarcinoma patients were associated
with OS. Notably, the level of A-to-I RNA editing in tumor tissues
was significantly elevated, showing considerable variability among

patients. This suggests that A-to-I RNA editing can serve as a
unique predictor of lung adenocarcinoma survival rates (37).

The RNA editing profiles associated with the prognosis
of ccRCC were obtained through unifactorial cox analysis,
multifactorial cox analysis, and lasso regression analysis.
These RNA editing profiles were CHD3| chr17:7815229,
MYO19| chr17.34853704, OIP5-AS1| chr15:41590962, MRI1|
chr19:13883962, GBP4| chr1:89649327, APOL1| chr22:36662830,
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FIGURE 5

Clinical characterization analysis. (A) Expression of seven RNA editing sites in tumor and normal samples. Red is tumor sample, green is normal
sample. (B) Differential analysis of risk scores in clinical characteristics.

FCF1| chr14:75203040. The survival curves indicated that the
expression of the aforementioned seven RNA editing sites was
significantly different in ccRCC patients. After calculating risk
scores, prognostic models were built. The findings of unifactorial
and multifactorial independent prognostic analyses indicated that
risk scores could be used as independent prognostic factors. We
also constructed PFS survival curves, which showed that patients
at higher risk had a lower survival rate. Nomograms were used
to predict patient survival, and their accuracy was confirmed by
concordance, ROC, and decision curves.

This research constructed an internal validation model, applied
risk scores to the training and validation groups, plotted survival
curves and risk curves, and created heat maps of the expression

of RNA editing sites in the samples. The results aligned with
the risk model, with patients in the high-risk group having
a worse prognosis for survival, indicating that the model can
predict survival prognosis more accurately. Additionally, as the
risk scores increased, the number of deaths increased, aligning
with the model’s forecast. The results of the risk heat map
showed that OIP5-AS1| chr15:41590962 and GBP4| chr1:89649327
were protective factors, while CHD3| chr17:7815229, MYO19|
chr17:34853704, MRI1| chr19:13883962, APOL1| chr22:36662830,
and FCF1| chr14:75203040 were risk factors.

OIP5-AS1, a conserved lncRNA located on chromosome
15q15.1, is involved in a variety of biological and pathological
processes, several studies have suggested that OIP5-AS1 may act
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FIGURE 6

GSEAenrichment analysis and correlation analysis. (A,B) GSEAenrichment analysis. (C). Analysis of the correlation between the level of RNA editing
and the corresponding gene expression. (D) Analysis of the correlation between the expression in ADAR and the risk score.

as an oncogene for specific cancer types (38). Researcher found
that OIP5-AS1 expression was down-regulated in tissues affected
by multiple myeloma (MM), and in MM cells, overexpression of
OIP5-AS1 demonstrated anti-tumor potential (39). The GTPase
class including guanylate-binding proteins (GBP) is essential for
both host cell immunity and antimicrobial defense. They detect
infections and stop germs from growing by controlling cellular
pyroptosis and triggering inflammatory vesicles (40). GBP4 is
implicated in pathological processes such as tumorigenesis and
progression. Prognostic prediction models constructed with GBP4
were used to evaluate the prognosis of melanoma patients. High
expression of GPB4 has been associated with excellent overall
survival of more than 30 years in individuals with cutaneous
melanoma (41). The CHD3 gene is located at 17p13.1 and has
40 exons and 7356 bases. The CHD3 protein, a member of the
chromatin domain deconjugating enzyme DNA-binding protein
family, contains one ATP-binding deconjugate enzyme region, two

finger plant homology domains, and two chromatin domains (42).
One study used an integrated bioinformatics method to identify
CHD3 as a hub gene associated with the pathophysiology of
Alzheimer’s disease (43). MYO19 is a member of the class 19
subgroup of the myosin superfamily, sharing a conserved, plus
end-directed motor structural domain, a lever arm containing
three light chain-binding IQ motifs, and a unique tail region
known as the Myosin Mitochondrial Outer Membrane-Associated
(MOMA) structural domain. This domain directs MYO19 to
mitochondria and plays a key role in mitochondrial partitioning,
regulation of fission and fusion homeostasis (44, 45). Studies
have shown that dysregulation of MYO19 is associated with
gliomas and breast cancer (46, 47). One key amino acid in the
methionine recycling process is methionine, catalyzed by the
methyl thioredoxin-1-phosphate isomerase 1 (MRI1). Methionine
is essential for the growth of several malignancies, including
gliomas, bladder cancer, breast cancer, melanoma, and prostate
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FIGURE 7

qPCR results. (A) Seven RNA editing sites expressed in the ccRCC cell line A-498. (B) Seven RNA editing sites expressed in the ccRCC cell line 786-O.
(C) Seven RNA editing sites expressed in the ccRCC cell line Caki-2. Compared with control group, *P < 0.05; **P < 0.01; ***P < 0.001.

cancer (48). Research has demonstrated that an increase in the
methionine metabolic pathway is linked to the metastasis and
development of ccRCC (49). The APOL1 gene product may lead
to mitochondrial dysfunction through numerous pathways. The
five-domain protein APOL1 has various intracellular roles, and
cellular stressors such as inflammatory signals, food restriction, and
hypoxia increase its production. The pH-dependent colistin-like
pore-forming structural domain of APOL1 can be incorporated
into lysosomes, cell membranes, or the mitochondrial phospholipid
bilayer. Pore formation is enabled by G1 and G2 mutations at
reduced APOL1 gene expression levels. Due to lysosomal and
autophagic flux abnormalities, APOL1 may cause direct or indirect
damage to mitochondria (50). It has been demonstrated that
APOL1 may function as an oncogene to stimulate proliferation

and block apoptosis by triggering the expression of the NOTCH1
signaling pathway in pancreatic cancer. As a result, it may offer
a potential therapeutic target for the disease (51). Although less
research has been done on FCF1, a ribosome biogenesis factor
with a PIN nucleic acid endonuclease structural domain, it is
particularly significant for RNA cleavage of eukaryotic early pro-
ribosomes (52).

The volcano plot showed the inclusion of 208 up-regulated
genes and 22 down-regulated genes. A GO enrichment analysis
was conducted to investigate the molecular processes and signaling
pathways of the differential genes. The results indicated that, in
terms of BP, the differential genes were primarily enriched in
immunoglobulin production, production of molecular mediators
of immune response, and kidney development. In terms of CC,
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the differential genes were mainly enriched in immunoglobulin
complex, blood microparticle, and apical part of the cell. In terms of
MF, the differential genes were mainly enriched in antigen binding,
sodium ion transmembrane transporter activity, and secondary
active transmembrane transporter activity. KEGG enrichment
analysis revealed that the differential genes were mainly enriched
in Neuroactive ligand-receptor interaction, PI3K-Akt signaling
pathway, and Cytokine-cytokine receptor interaction. GSEA
enrichment analysis showed significant activity of complement
and coagulation cascades, drug metabolism cytochrome P450, and
other pathways in the high-risk group, while pathways such as
endocytosis and neurotrophin signaling were significantly active in
the low-risk group.

ADAR-mediated RNA editing is crucial for mammalian
survival, and dysregulation can lead to the formation of lesions
(53). Studies have shown that ADAR-induced substitution of
Ser367gly at the locus of antitumor enzyme inhibitor 1 (AZIN1)
increases the binding affinity of AZIN1 and inhibits its ability
to inhibit ornithine decarboxylase, resulting in the development
of more tumorigenic characteristics in hepatocellular carcinoma
(54). There is a significant association between risk ratings and
ADAR gene expression, as found using correlation analysis.
Additionally, correlation analysis revealed a strong link between
the corresponding genes and the degree of RNA editing of
MYO19| chr17:34853704, OIP5-AS1| chr15:41590962, GBP4|
chr1:89649327, and APOL1| chr22:36662830.

Finally, using ccRCC cell lines A-498, 786-O, and Caki-2,
qPCR results from in vitro experiments showed that the mRNA
expression levels of CHD3, MYO19, MRI1, APOL1, and FCF1
were significantly up-regulated compared to the control group.
Additionally, the mRNA expression levels of OIP5-AS1 and GBP4
were significantly down-regulated compared to the control group.

5 Conclusion

To sum up, CHD3| chr17:7815229, MYO19| chr17:34853704,
OIP5-AS1| chr15:41590962, MRI1| chr19:13883962, GBP4|
chr1:89649327, APOL1| chr22:36662830, FCF1| chr14:75203040
represent seven RNA editing sites that were screened. These sites
are expected to serve as potential biomarkers for ccRCC. This
research will provide a new approach for personalized treatment
and prognosis evaluation for ccRCC patients.
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