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Introduction: Tuberculosis (TB) stands as a paramount global health concern,

contributing significantly to worldwide mortality rates. E�ective containment

of TB requires deployment of cost-e�cient screening method with limited

resources. To enhance the precision of resource allocation in the global fight

against TB, this research proposed chest X-ray radiography (CXR) basedmachine

learning screening algorithms with optimization, benchmarking and tuning for

the best TB subclassification tasks for clinical application.

Methods: This investigation delves into the development and evaluation of

a robust ensemble deep learning framework, comprising 43 distinct models,

tailored for the identification of active TB cases and the categorization of

their clinical subtypes. The proposed framework is essentially an ensemble

model with multiple feature extractors and one of three fusion strategies-voting,

attention-based, or concatenation methods-in the fusion stage before a final

classification. The comprised de-identified dataset contains records of 915 active

TB patients alongside 1,276 healthy controls with subtype-specific information.

Thus, the realizations of our framework are capable for diagnosis with subclass

identification. The subclass tags include: secondary tuberculosis/tuberculous

pleurisy; non-cavity/cavity; secondary tuberculosis only/secondary tuberculosis

and tuberculous pleurisy; tuberculous pleurisy only/secondary tuberculosis and

tuberculous pleurisy.

Results: Based on the dataset andmodel selection and tuning, ensemblemodels

show their capability with self-correction capability of subclass identification

with rendering robust clinical predictions. The best double-CNN-extractor

model with concatenation/attention fusion strategies may potentially be the

successful model for subclass tasks in real application. With visualization

techniques, in-depth analysis of the ensemble model’s performance across

di�erent fusion strategies are verified.

Discussion: The findings underscore the potential of such ensemble approaches

in augmenting TB diagnostics with subclassification. Even with limited dataset,

the self-correctionwithin the ensemblemodels still guarantees the accuracies to

some level for potential clinical decision-making processes in TB management.

Ultimately, this study shows a direction for better TB screening in the future TB

response strategy.
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ensemble deep learning, tuberculosis, chest X-ray radiography, fusion models, clinical
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1 Introduction

Tuberculosis (TB) is one of the world’s leading infectious

disease killers. According to the Global TB Report 2023 released

by the World Health Organization, the number of tuberculosis

cases worldwide in 2022 was 10.6 million, and the number of

deaths was 1.3 million (1). TB remains the world’s second leading

cause of death from a single source of infection after novel

coronavirus infection, causing almost twice as many deaths as

human immunodeficiency virus (HIV). Though TB is a serious

public health issue, because of its preventable and curable nature,

it should be detected and controlled before spreading. Therefore,

early screening and diagnosis depend on the accurate identification

of TB. Of all the diagnostic methods, chest x-ray radiology (CXR)-

based diagnostics are potential candidates for screening TB due to

their low cost, fast process, and wide availability. However, CXR

image interpretation is limited by the experience and knowledge

of radiologists. This difficulty persisted until the advent of remote

diagnostics and the development of the Internet and artificial

intelligence (AI) in recent years. In current times, more and more

CXR images can be transmitted and identified at a low cost andwith

high accuracy.

The CXR image recognition model has been developed to

enrich CXR image datasets in recent decades. Earlier researchers

must have collected CXR images and labeled them manually. In

2000, Shiraishi et al. (2) collected 247 chest x-ray cases from 14

medical institutions and built a database to study the pulmonary

nodules. The database contains CXR images and associated labels

that are labeled by experienced radiologists. According to the

Digital Imaging and Communications in Medicine (DICOM)

standard introduced by the National Library of Medicine (3),

various radiograph images can be collected and distributed among

researchers. In 2017, Yu et al. (4) extracted three correlated datasets

for lung disease detection from the Japanese Society of Radiological

Technology (JSRT) dataset, and a deep learning model was trained

to label the “regions of interest” (ROIs) automatically. With the

emergence of the CheXpert dataset (5) in 2019, a platform with

a collection of numerous CXR images is available worldwide for

researchers to model CXR recognition models and algorithms.

In 2020, Liu et al. (6) used the TBX11K dataset (including four

categories of healthy TB, active TB, latent TB, and unhealthy but

non-TB) for image classification and TB region detection for the

first time. In 2021, Khatibi et al. (7) proposed a novel multi-instance

classification model based on convolutional neural networks and

stacked ensemble (CCNSE) using the Montgomery County (MC)

dataset and the Shenzhen dataset (SZ).

TB-targeted CXR recognition algorithms have been improved

over the past decade. In 2010, Rui et al. (8) proposed a Hybrid

Knowledge-Guided (HKG) diagnostic framework for pulmonary

TB. The framework contains a mean-shift clustering method of

adaptive threshold to detect the object in the ROI, a Gradient

Inverse Coefficient of Variation (GICOV) to extract features,

and a Bayesian classifier to classify the ROI. In 2015, Hogeweg

et al. (9) proposed a computer-aided detection method to identify

pulmonary TB based on fusing lung texture, lung shape, and focal

features. In 2016, Maduskar et al. (10) proposed an automatic

detection method for pleural effusion, which used chest wall

contour as a landmark structure to locate the costal diaphragm

region, then proposed a region descriptor based on the intensity

and shape information of the region around the coastal diaphragm

depression, and finally used a random forest classifier to classify the

left and right half thorax.

Since the great success of convolutional neural networks (CNN)

in the field of image recognition, CNN and its extended algorithms

have also been applied to CXR-based TB classifications. In 2017,

Lopes and Valiati (11) proposed an ensemble model with pre-

trained CNN as a feature extractor and a Support Vector Machine

(SVM) classifier. Similar ideas with Multiple Instance Learning

(12) as the classifier are reported. In 2017, Paras Lakhani et al.

(13) built a similar model that provides medical suggestions to

doctors. The CNN model is also used to predict the multi-drug

resistance of TB patients (14). In 2020, Ma et al. (15) used a U-

Net deep learning algorithm to automatically monitor tuberculosis

patients and achieve high accuracy. Feng et al. (16) studied the

differential diagnosis of TB granuloma and lung adenocarcinoma.

In 2021, Oloko-Oba and Viriri (17) found that five variants of

EfficientNets were fine-tuned and implemented on two well-known

public CXR datasets (MC and SZ), and EfficientNet-B4 achieved

the best accuracy of 92.33% and 94.35% on both datasets. In 2021,

Tasci et al. (18), a fine-tuned CNN model based on InceptionV3

and Xception, was used to apply weighted voting and probability

mean as combinatorial rules to a soft voting method for two

terabytes of CXR image datasets. In 2022, Peng et al. (19) proposed

an automatic Hybrid Segmentation Network (H-SegNet) for lung

segmentation on CXR. In 2023, Bista et al. (20) used CNNs and

YOLO models to detect the consolidation of cavitary patterns of

the lesions and their detection. In 2023, Iqbal et al. (21) introduced

a novel TB-UNet, which is based on a dilated fusion block (DF)

and an attention block (AB) for more accurate segmentation of

the lung regions. CNN, which is famous for its feature extraction

capability, can be used to extract lesion features and construct deep

learning signatures. By addressing biases in CXR recognition tasks

through different CNN architectures, ensemble approaches have

significantly enhanced the accuracy of image classification tasks.

However, the development of a TB classification model has

not yet met the actual needs. One of the problems is the

inconsistency/stability of the classification TB model, where a

particular model performs significantly better on one CXR dataset

than the others (5). Such dataset-targeted performance problems

may be linked to overfitting and should be resolved from two

aspects: the dataset and the algorithm sides. Another challenge

is that clinical diagnosis requires detailed information on the TB

subcategory. Therefore, in this study, we propose a new ensemble

CNN model that is based on a new training dataset collected

from Tianjin Haihe Hospital. In addition, the model incorporates

a subclassification algorithm that provides information on TB

subclasses. Ensemble CNN models with fine classification for

different TB subtypes can be a potential method for clinical

diagnostic applications with good consistency.

2 Models and dataset for detailed
diagnoses

2.1 Outline of the dataset

We retrospectively collected 2,191 CXR images (915 TB and

1,276 normal cases) from Tianjin Haihe Hospital, which can
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TABLE 1 Details of the datasets with extra information on subclasses.

Data (From Tianjin Haihe Hospital) Total

Task1 Normal 1,276 2,191

TB 915

Task2 + Non-cavity 479 Cavity 140 619

Task3 + Secondary tuberculosis 424 Tuberculous pleurisy 351 775

Task4 + Secondary tuberculosis only 479 Secondary tuberculosis and

tuberculous pleurisy

296 775

Task5 + Tuberculous pleurisy only 140 Secondary tuberculosis and

tuberculous pleurisy

296 436

Details can be used to train the machine learning algorithm for finer diagnoses.

FIGURE 1

Structure of an ensemble model with three di�erent fusion strategies: concatenation (C), voting (V), and attention (A). In practice, only one fusion

strategy is allowed in each model. The fusion layer combines the features extracted by the CNN extractors, which contained several pooling (POOL)

and convolution (CONV) layers.

enable machine learning models for fine classifications of TB.

The images in the dataset have significant characteristics that an

experienced doctor can identify. Such manual filtering ensures

the quality of images and their tags. Four subsets featuring

different characters are constructed, as summarized in Table 1,

and the associated statistical profile of the patients can be found

in Supplementary Table 1. Thus, there are five classification tasks:

normal/TB; secondary tuberculosis/tuberculous pleurisy; non-

cavity/cavity; secondary tuberculosis only/secondary tuberculosis

and tuberculous pleurisy; and tuberculous pleurisy only/secondary

tuberculosis and tuberculous pleurisy. In addition, two public

datasets, the SZ and MC CXR datasets, are adopted for consistency

testing purposes without subclassification. The results indicate the

robustness of both datasets and machine learning models.

2.2 Model

The models we trained in this study take a single-view CXR

image as input and output five classification results. The ensemble

CNN model structure is shown in Figure 1, which contains one or

more feature extractors and a fusion strategy.

2.2.1 Feature extractors
Each feature extractor in this study has been obtained by

combining multiple CNN models. The building blocks of a

feature extractor are well-performed CNNs that focus on different

aspects of images. These CNNs include six classical networks

[AlexNet, DenseNet (22), EfficientNet, GoogleNet, MobileNet, and

VGGNet (23)]and two brief networks (MtbCNN and MtbNet).

In particular, DenseNet121 and DenseNet161 in DenseNet,

EfficientNet-es, EfficientNet-b0, EfficientNet-b3, and EfficientNet-

b5 in EfficientNet, and VGG11 and VGG13 in VGGNet are

selected.MtbCNN andMtbNet refer to a 3-layer and a 5-layer CNN

network, which can be easily implemented and trained.

The integration of two compact networks, MtbNet and

MtbCNN, enhances the robustness of recognizing simple patterns.

Utilizing these models in an ensemble, with one of each type,

provides a baseline that demonstrates the effectiveness of classical
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TABLE 2 Abbreviations of the fusion strategies and the CNN names.

Fusion strategies

Abbreviations Con Att Vot Sig

Full names Concatenation Attention Voting Single model without fusion

CNN models

Abbreviations Alx Den Eff Ggl Mbl Vgg Mtn Mtc

Full names AlexNet DenseNet EfficientNet GoogleNet MobileNet VGGNet MtbNet MtbCNN

Parameters 121, 161∗ es, b0, b3, b5∗∗ 11, 13∗∗∗

∗121 and 161 are the number of layers in DenseNet. ∗∗es is the lightweight EfficientNet for Google Tensor Processing Unit. b0, b3, and b5 are the compound scaled versions, and the number

denotes the scale. ∗∗∗11 and 13 are the years of release of the VGGNet. Hyperparameters can be downloaded as packed pre-trained models in the Pytorch distribution (https://pytorch.org/

vision/master/models.html).

TABLE 3 Models with the best performance on datasets.

Task ACC AUC F1 Sens Spec

1 Best model VotDen121Effb0 VotDen121Effb0 VotDen121Effb0 VotDen121Effb0 ConAlxDen121

1 1 1 1 1

Voting-13 1 1 1 1 1

2 Best model ConDen161Effb5 AttEffesGgl AttDen161Effb5 VotAlxDen161 ConEffb0Vgg13

0.761 0.743 0.698 0.922 1

Voting-13 0.742 0.712 0.627 0.531 0.89

3 Best model AttDen161Effb3 AttDen161Effb3 AttDen161Effb3 AttDen161Effb3 ConDen161Vgg13

0.976 0.984 0.949 1 1

Voting-13 0.867 0.723 0.619 0.464 0.989

4 Best model ConAlxDen121 ConAlxDen121 ConAlxDen121 ConDen161Effb3 AttMtnVgg11

0.865 0.846 0.804 0.8 1

Voting-13 0.761 0.737 0.661 0.655 0.82

5 Best model AttDen161Effb5 AttDen161Effb5 ConDen121Effb5Ggl AttMtnVgg13 AttAlxDen161Effb5

0.805 0.805 0.862 1 0.84

Voting-13 0.747 0.655 0.831 0.871 0.44

The performance of the voting-13 model is provided as a benchmark. The performance indicates that the number of feature extractors must be limited for the fusion to take effect.

networks in improving performance. As shall be demonstrated in

the “Results” section, only several MtbNet/MtbCNN-containing

models have won. The remaining convolution layers are packed

into a CNN model to extract features by removing full connection

layers in each of the structures. A feature extractor contains 1-3

CNN model(s), which run in parallel and produce features for the

next stage. With the 13 basic structures, 142 feature extractors are

constructed, including 13 single-CNN extractors, 57 double-CNN

extractors, and 72 triple-CNN extractors.

2.2.2 Fusion strategies
Each feature extractor is followed by a fusion phase that

merges the extracted features. The feature is collected and merged

in the fusion phase based on the high-level feature information

obtained from extractors. The fusion strategies that we considered

in this research are concatenation, attention, and voting. The

concatenation strategy is to pool, flatten, and stack the extracted

features into a one-dimensional vector that is passed to the fully

connected layer and the softmax layer for classification. The

attention strategy calculates only the weighted average of the pooled

features and passes the average to the intact connectivity layer

for classification. The voting strategy consists of an independent,

fully connected layer that acts as a classifier to process each set

of extracted features and then averages the predicted output as

the final output. The voting strategy considered in this study is

essentially a soft voting strategy.

2.2.3 Nomenclature
For simplicity, each model has a unique name, which is

defined as

〈

fusion abbreviations
〉

〈CNN1〉
[

parameter1
]

[CNN2] [parameter2]

[CNN3 ] [parameter3].

The abbreviations of fusion strategies and CNNs are

summarized in Table 2.
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TABLE 4 The accuracy of the proposed method in comparing the existing studies to classify normal vs. TB.

Approaches Authors Classes Accuracy % References

ResNet50 Wang et al. Normal vs. TB 82.2 (24)

EfficientNet Tan and Le Normal vs. TB 83.3 (25)

FuseNet Abdar et al. Normal vs. TB 91.6 (26)

MAG-SD Wang et al. Normal vs. TB 96.1 (27)

CoroNet Khan et al. Normal vs. TB 93.6 (28)

TBXNet Ahmed et al. Normal vs. TB 98.9 (29)

Ensemble CNN Proposed method Normal vs. TB 100.0 (SZ:98.2 MC:99.3)∗ This work

Detailed classification performances from previous reports are not available. ∗The accuracy values are not validated across different datasets.

TABLE 5 The best model in single-, double-, and triple-CNN-extractor model sets.

Task ACC AUC F1 Sens Spec

1 Single SinEffb0 SinEffb0 SinEffb0 SinEffb0 SinEffb161

Double VotDen121Effb0 VotDen121Effb0 VotDen121Effb0 VotDen121Effb0 ConAlxDen121

Triple VotDen121Effb0Vgg13 VotDen121Effb0Vgg13 VotDen121Effb0Vgg13 VotDen121Effb0Vgg13 ConAlxDen121Effb0

2 Single SinDen121 SinDen121 SinDen161 SinDen161 SinAlx

Double ConDen161Effb5 AttEffesGgl AttDen161Effb5 VotAlxDen161 ConEffb0Vgg13

Triple ConDen161Effb0Ggl VotMblDen161Effb0 VotMblDen161Effb0 VotAexnetDen161Effb0 AttAlxDen161Effb3

3 Single SinDen161 SinDen161 SinDen161 SinDen161 SinAlx

Double AttDen161Effb3 AttDen161Effb3 AttDen161Effb3 AttDen161Effb3 ConDen161Vgg13

Triple ConDen161Effb3Ggl ConDen161Effb3Ggl ConDen161Effb3Ggl ConDen161Effb3Ggl AttDen161Effb3Vgg13

4 Single SinDen161 SinDen161 SinDen161 SinDen161 SinVgg13

Double ConAlxDen121 ConAlxDen121 ConAlxDen121 ConDen161Effb3 AttMtnVgg11

Triple ConDen121Effb5Ggl ConDen121Effb5Ggl ConDen121Effb5Ggl ConDen121Effb5Ggl ConMtcMtnVgg13

5 Single SinDen161 SinGgl SinDen161 SinDen161 SinGgl

Double AttDen161Effb5 AttDen161Effb5 AttDen161Effb5 AttMtnVgg13 AttDen161Effb5

Triple ConDen121Effb5Ggl ConDen161Effb3Ggl ConDen121Effb5Ggl ConMtcMtnVgg13 AttDen121Effb3Ggl

2.2.4 Model evaluation
The dataset has been split into training and test sets. A total

of 96 CXR images (4%) from the dataset have been reserved

for testing in Task1. For the classification of Task2–5, 20%

of the CXR images have been retained for testing purposes.

Multiple evaluation methods, including accuracy, the area under

the Receiver Operating Characteristic (ROC) curve (AUC), the F1

score, sensitivity (sens), and specificity (spec), have been calculated

for performance evaluation. For benchmarking purposes, the

abovementioned 13 basic structures have also been combined into

a hard voting model (voting-13 model) without parameter tuning

or other modifications.

2.2.5 Training procedure
Considering the small dataset, we have used a pre-trained

model when training the feature extractor for the first time, and a

total of 13 different convolutional neural networkmodels have been

trained. The ensemble models are trained with the Adam optimizer,

cross-entropy loss function, and cosine annealing learning rate

adjustment strategy. The batch size and rounds of training are set to

32 and 120. In the training process, the 5-fold cross-validation (CV)

method allows parameter tuning with 20% of randomly selected

training data. Training for each model is terminated when the

score on the CV set does not improve for more than 20 rounds.

Then, the model with the best score on the CV set is selected as

a feature extractor. Considering that CNNs already have strong

feature extraction ability, only fine-tuning of the parameters is

allowed by limiting their learning rate to 1/10 of that of the full

connection layer. All models have been developed using servers

equipped with the NVIDIA GeForce P40 GPU, the Ubuntu system,

and Pytorch, a widely used deep-learning framework.

3 Results and discussion

3.1 Performance of the best ensemble CNN
models

The performance results of the best models are summarized in

Table 3, with the voting-13 benchmark provided.
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FIGURE 2

Statistical data of di�erent ensemble models. The single-, double- and triple-CNN model sets correspond to the blue, cyan, and yellow bars. The top

and bottom of each bar correspond to the maximum and minimum values. A red line across each bar denotes the median value. The central black

dot with an error line in each bar shows the mean value and the standard deviation.

Task1, TB identification is the easiest classification test. The

hard voting-13 algorithm and many ensemble models can achieve

the best performance. The dataset with a total of 2,191 CXR images

is sufficient to train CNN models, and the pathological features

of CXR in TB patients are prominent. In addition, according

to the Vapnik-Chervonenko-dimension theory (VC dimension

theory), a simpler machine learning system is always preferred to

a complicated one to avoid over-fitting issues. Therefore, simpler

CNNs such as Efficientb0 or Efficientb3 are the best ones to provide

the desired accuracy for Task1.

Task2–5 are more difficult than Task1 because of the smaller

sample sizes and ambiguity in the CXR images. In Task2, the

best ensemble models outperform the benchmarks by only a small

amount. Since cavities are similar to small bubbles, which are

commonly observed in lung images, misclassification may happen

when CNNs extract small bubbles as cavities. Ensemble model
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TABLE 6 Independent validation results of the best single- and double-CNN-extractor models trained with the Haihe, SZ, and MC TB datasets.

The best double-CNN-extractor model The best single-CNN-extractor model

Haihe SZ MC Haihe SZ MC

Haihe 1 0.651 0.5 Haihe 1 0.556 0.58

SZ 0.625 0.982 0.623 SZ 0.573 0.977 0.616

MC 0.698 0.711 0.993 MC 0.594 0.687 0.971

The best double-CNN-extractor model performs significantly better than the best single-CNN-extractor model. The first cell of each row represents the dataset used to train the model. Bold

values represent that the models are trained and tested with the same dataset.

TABLE 7 Independent validation results of the best single- and double-CNN-extractor models trained with the Haihe, SZ, and MC TB datasets.

Haihe SZ MC

Haihe 0.901, 0.427, 0.958, 1.0 0.494, 0.382, 0.508, 0.556 0.439, 0.42, 0.42, 0.58

0.945, 0.771, 0.969, 1.0 0.5, 0.361, 0.506, 0.651 0.424, 0.391, 0.42, 0.5

0.924, 0.771, 0.969, 1.0 0.481, 0.361, 0.505, 0.529 0.423, 0.413, 0.42, 0.435

0.941, 0.823, 0.958, 1.0 0.518, 0.403, 0.508, 0.651 0.428, 0.391, 0.42, 0.5

0.97, 0.906, 0.969, 1.0 0.5, 0.453, 0.503, 0.562 0.421, 0.42, 0.42, 0.428

SZ 0.49, 0.333, 0.49, 0.573 0.888, 0.508, 0.956, 0.977 0.529, 0.42, 0.543, 0.616

0.453, 0.292, 0.448, 0.625 0.901, 0.802, 0.881, 0.982 0.554, 0.399, 0.565, 0.623

0.439, 0.354, 0.427, 0.542 0.871, 0.811, 0.869, 0.964 0.547, 0.399, 0.565, 0.58

0.43, 0.292, 0.427, 0.625 0.864, 0.802, 0.869, 0.964 0.536, 0.42, 0.551, 0.58

0.489, 0.406, 0.479, 0.583 0.968, 0.94, 0.97, 0.982 0.578, 0.522, 0.587, 0.623

MC 0.506, 0.333, 0.521, 0.594 0.517, 0.376, 0.508, 0.687 0.861, 0.58, 0.942, 0.971

0.54, 0.406, 0.552, 0.698 0.531, 0.423, 0.518, 0.711 0.889, 0.42, 0.949, 0.993

0.535, 0.427, 0.531, 0.656 0.51, 0.458, 0.506, 0.588 0.902, 0.58, 0.964, 0.993

0.55, 0.427, 0.552, 0.698 0.531, 0.423, 0.518, 0.711 0.823, 0.42, 0.935, 0.986

0.536, 0.406, 0.562, 0.573 0.534, 0.498, 0.517, 0.687 0.942, 0.891, 0.949, 0.978

There are five rows in each cell (validation). The five rows are statistics of single-CNN-extractor models, all double-CNN-extractor models, double-CNN-extractor models with concatenation

fusion, double-CNN-extractor models with attention fusion, and double-CNN-extractor models with voting fusion. The four values in each cell’s row are the mean, the minimum, the median,

and the maximum. The hanging cell in each row represents the dataset used to train the model.

ConDen161Effb5 achieves the best ACC (0.761), while ensemble

model AttEffesGgl achieves the best AUC (0.743). Task3–5 are

easier for the ensemble models, and performance improvements

are significant. Ensemble models achieve ACC = 0.976 and AUC

= 0.984 in Task3, ACC= 0.865 and AUC= 0.846 in Task4, ACC=

0.805 and AUC= 0.805 in Task5, respectively.

In practice, specificity is the most important index

in medical applications and should be used for model

evaluation purposes. Since specificity is defined as the

ratio of the true negative and the total recognized negative

to be used for medical screening to exclude negative

samples, in this context, the best models for Task1–5

are ConAlxDen121, ConEffb0Vgg13, ConDen161Vgg13,

AttMtnVgg11, and AttAlxDen161Effb5.

We have compared the best-performing methods in Task1–5

with those already used in some of the current studies. Table 4

shows this study’s efficiency by collecting the selected study’s

accuracy and then comparing it to the accuracy of this study.

3.2 Best-performing models and their
characteristics

When the best model is selected (Table 4), the double-

CNN-extractor models dominate the set of best models. Since

soft voting considers the extracted features in a single vector

representation before the average, one can consider voting as a

simpler fusion. In contrast, concatenation can be considered as

a “static complex” fusion, whereas attention can be considered

as a “dynamic complex” fusion. As shown in Table 5, a soft

fusion may be the best approach in Task1 when there is no

high requirement for specificity. In contrast, complex fusion

strategies appear more frequently than voting in cases with

low data supply since combining extracted features with a

non-linear algorithm may be a better choice than a single-

valued vote. However, when the data are sufficiently large, CNN

models should be evaluated independently before the fusion step

is taken.
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FIGURE 3

Demonstration of self-correction in the fusion layer for (A) Task2 with the ACC champion, ConDen161E�b5, and (B) Task4 with the sens champion,

ConDen161E�b3.

3.3 Self-correction in the ensemble
framework

The power of the ensemble framework relies on the self-

correction in the fusion part, which allows the misclassified features

to be adjusted by another extractor(s). To represent the “self-

correction” impacts of the ensemble framework, statistics with

respect to the model variant (single, double, and triple CNN

structures) are focused, as shown in Figure 2. Based on the statistics

across models of a set of 13 single-CNN extractors, a set of 57

double-CNN extractors, and a set of 72 triple-CNN extractors, the

medians andmeans are improved as the number of CNN extractors

increases in all evaluation aspects, including ACC, AUC, F1, sens,

and spec, despite few exceptions. The results show the emergence

of self-correction in most indexes of all five classification tasks. For

example, regarding the AUC and ACC statistics, the medians (red

lines) and the means (black dots) are generally improved with the

increase of extractor numbers.

Besides the improvement of medians and means, models’

performances are polarized, which can be associated with large

standard deviations in some cases. Concretely, the self-correction

improves the F1 score on average, but it also gives the models

a much larger standard deviation in some cases, such as Task4.

The only reduction in sensitivity is noticed in Task2, where more

CNN extractors worsen the results. In tasks where high sensitivity

is needed, a detailed evaluation must be considered. As a result, a

good model must be selected with careful evaluation. The results

suggest that the marginal gain from increasing the number of CNN

extractors drops significantly. Thus, limiting the ensemble model to

double-CNN-extractor models may be the best practice.

In addition, the double- and triple-CNN model error bars are

comparable in most cases. The statistical data also points out the

skewness of the model sets. Most model sets show skewness to

the high score side, which indicates that most models can capture

the features correctly. The performance is further enhanced when

multiple CNN extractors are allowed in one model. In the ACC

scores of Task2–5, the skewness to the low score side in these

model sets can be improved by adding 1 or 2 CNN extractors.

Multiple CNN extractors can correct some misbehavior of a single

CNN extractor. Even in Task2, which has a low data supply, the

improvement in the skewness can still be observed.

3.4 Independent validation of public CXR
datasets

Independent validation tests are performedwith the SZ andMC

CXR image datasets. Based on the previous discussions, double-

CNN-extractor models are focused, and single-CNN-extractor

models are used as benchmark models. After 19 experiments,

the results indicate that the best double-CNN-extractor model

performs better than the best single-CNN-extractor model, as

shown in Table 6. The double-CNN-extractor model shows its

potential across various datasets. The best double-CNN-extractor

model improves the ACC score by 1%−10%. Such dataset

dependency may be improved by incorporating a larger dataset in

the future.

Table 7 shows the detailed statistics of independent tests. The

models appear to be dataset dependent, showing low scores when

validations are performed across the dataset. The first row of data in

each cell represents the test results of a single model, and the second

row represents the statistics among all double-CNN-extractor

models. The 3–5 rows of data are the results of concatenation,

attention, and voting strategies, respectively. The poor performance

of non-diagonal cells represents the limitations of datasets. This

limitation could be traced to the divergence of datasets, which may

have originated from the year gaps, the equipment differences, or
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FIGURE 4

Task2: Voting-13 model with feature visualization of the 13 basic CNN extractors and the voting layer. Four panels from left to right correspond to an

extremely strong, a strong, a weak, and an extremely weak case of prediction. Negative predictions are marked by red boxes. When reading

columnwise, one can see the voting procedure for the ensemble model.
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other factors. However, based on the current datasets, one can

achieve a fair-to-good performance by selecting the MC dataset as

the training set with the attention fusion strategy and double-CNN-

extractors. After careful benchmarking, a maximum ACC of 0.698

can be expected. Such an approach may have the best chance of

targeting TB diagnosis in a new environment. As a result, merging

different datasets into a single model may not be an appropriate

approach because of the inner bias in every dataset.

3.5 The impact of di�erent fusion strategies

Finally, the self-correction can be further displayed with

Gradient-weighted Class Activation Mapping (GradCAM) (30)

visualizations. GradCAM is a visualization technique that utilizes

the backpropagation gradient information of a convolutional

neural network to highlight the regions in the input image that

contribute the most to the prediction of a particular class. Based

on the extracted features and back-propagated gradients, the two

visualization algorithms can highlight critical regions of CXR

images for model reasoning. The fusing in the ensemble model

provides further resolution and correction to the images.

As demonstrated in the statistical data, the self-correction

should be observed as the win of a good feature extractor at the

fusing stage. Taking Task2 as an example, the prediction effect of

the fused double CNNmodels Den161 and Effb5 has achieved good

results in ACC (0.761) and F1 (0.698), as shown in Figure 3A. In

this case, Dens161 corrects Effb5 with its correct focus on the left

side of the lung. In addition, as demonstrated in Figure 3B, Den161

corrects Effb3 by enlarging the focus of the left lung. Such behavior

explains the origin of the high sensitivity, which can be linked to

the full coverage of TB regions. Such correct behavior is the key for

such an algorithm to win the sensitivity of double-CNN-extractor

models in Task4.

To obtain insights into the 13 basic CNN structures and how

hard voting works, the results of the voting-13 models for Task2 are

shown in Figure 4. Moreover, four typical examples are selected to

represent extremely strong positive (only 3 negative votes), strong

positive (5 negative votes), weak positive (9 negative votes), and

extremely weak positive (12 negative votes) cases. The correction

of voting is not just voting in common sense but a further process

by a fully connected layer. Therefore, a more positive count does

not mean that the fused result turns positive. The fully connected

layer may selectively synthesize results with weights. However,

such fusion may easily bring more bias to the fusion. Thus, the

overall performance of the voting-13 model in Task2 is poorer

than its performance in Task1. When a few CNN extractors extract

key features correctly, wrong predictions are usually made. Thus,

it is critical to control the scale of the feature extractor to a

small number.

In the best double-CNN-extractor models, statistical results

indicate that the results obtained by the fusion strategy are

better than those obtained by hard voting. In these ensemble

models, the fusion strategy can effectively utilize the key

features obtained by the feature extractor. Whether the model

can distinguish the key positive and negative features is

particularly important.

4 Summary

In this study, ensemblemodels with CNN-extractors and fusion

layers are proposed and applied to the Haihe TB CXR image dataset

for five classification tasks. With the extracted features from CNN

extractors, three fusion strategies are explored: concatenation,

voting, and attention.With the limitations of the data, the ensemble

models can improve the accuracy of TB classification tasks. The

performance of single-, double-, and triple-CNN-extractor models

is extensively discussed and compared. Double-CNN-extractor

models can be promising model candidates in multi-purpose CXR

image classifications with a smaller risk of overfitting. The best

double-CNN-extractor models are ConAlxDen121 (for Task1),

AttDen161Effb3 (for Task2), AttAlxDen161Effb5 (for Task3),

ConDen161Effb3 (for Task4), andConDen121Effb5Ggl (for Task5).

Besides, using voting as a fusion is a simple but effective approach.

If one limits the number of feature extractors to a small number, it is

suitable for simple tasks, and attention and concatenation strategies

are more reliable when the task is complex. An attention strategy

is more suitable for double CNN models due to its weighting

characteristics, and the concatenation strategy is more suitable

for fused triple CNN models with complex and fine tasks due to

its characteristics of retaining information integrity. For different

types of medical imaging tasks, choosing the appropriatemodel and

fusion strategy can improve the prediction effect, compensate for

the shortcomings of a single model to a certain extent, and provide

more reliable support for medical imaging diagnosis.

However, there are still some challenges in classifying cavities,

particularly because small cavities and bubbles in CXR images often

appear very similar, especially given the low resolution of these

images. This similarity can lead CNN extractors to misidentify

features, resulting in incorrect predictions. Future research should

concentrate on refining model behavior to address these issues

more accurately.
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