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Background and Aims: Blood metabolite abnormalities have revealed an 
association with cholestatic liver diseases (CLDs), while the underlying metabolic 
mechanisms have remained sluggish yet. Accordingly, the present evaluation 
aims to investigate the causal relationship between blood metabolites and the 
risk of two major CLDs, including primary biliary cholangitis (PBC) and primary 
sclerosing cholangitis (PSC).

Methods: Univariable and multivariable Mendelian randomization (MR) 
approaches were employed to uncover potential causal associations between 
blood metabolites and 2 CLDs, including PBS and PSC, through extracting 
instrumental variables (IVs) for metabolites from genome-wide association 
studies (GWAS) conducted on European individuals. The GWAS summary data 
of PBC or PSC were sourced from two distinct datasets. The initial analysis 
employed inverse variance weighted (IVW) and an array of sensitivity analyses, 
followed by replication and meta-analysis utilizing FinnGen consortium data. 
Finally, a multivariable MR analysis was carried out to ascertain the independent 
effects of each metabolite. Furthermore, the web-based tool MetaboAnalyst 5.0 
was used to perform metabolic pathway examination.

Results: A genetic causality between 15 metabolites and CLDs was recognized 
after preliminary analysis and false discovery rate (FDR) correction. Subsequently, 
9 metabolites consistently represented an association through replication and 
meta-analysis. Additionally, the independent causal effects of 7 metabolites 
were corroborated by multivariable MR analysis. Specifically, the metabolites 
isovalerylcarnitine (odds ratio [OR] = 3.146, 95% confidence intervals [CI]: 1.471–
6.726, p = 0.003), valine (OR = 192.44, 95%CI: 4.949–7483.27, p = 0.005), and 
mannose (OR = 0.184, 95%CI: 0.068–0.499, p < 0.001) were found to have a causal 
relationship with the occurrence of PBC. Furthermore, erythrose (OR = 5.504, 
95%CI: 1.801–16.821, p = 0.003), 1-stearoylglycerophosphocholine (OR = 6.753, 
95%CI: 2.621–17.399, p = 7.64 × 10−5), X-11847 (OR = 0.478, 95%CI: 0.352–0.650, 
p = 2.28 × 10−6), and X-12405 (OR = 3.765, 95%CI: 1.771–8.005, p = 5.71 × 10−4) were 
independently associated with the occurrence of PSC. Furthermore, the analysis 
of metabolic pathways identified seven significant pathways in two CLDs.

Conclusion: The findings of the present study have unveiled robust causal 
relationships between 7 metabolites and 2 CLDs, thereby providing novel 
insights into the metabolic mechanisms and therapeutic strategies for these 
disorders.
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1 Introduction

Autoimmune cholestatic liver diseases (CLDs) are rare hepatic 
disorders characterized by progressive inflammatory destruction of 
the bile ducts. Primary biliary cholangitis and sclerosing cholangitis, 
known as PBC and PSC, are the most frequent CLDs, leading to a 
high rate of mortality and morbidity in patients with liver disorders. 
These conditions may progress to cirrhosis or hepatocellular 
carcinoma (1). Based on a report published in 2021, PBC and PSC 
cases are in the ranges from 1.91 to 40.2 and 0.78 to 31.7 patients per 
100,000 individuals in the Europe, North America, and the Asia-
Pacific regions, respectively (2). Despite their rarity, such diseases 
impose a disproportionately high clinical burden compared to their 

population-based incidence and prevalence rates. Accordingly, early 
diagnosis and therapy are required to lessen the stratification risk 
and promote follow-up treatment procedures. So far, however, there 
has been little discussion about the PBC and PSC etiology, mainly 
resulting from the complex interplay between environmental 
triggers and genetic susceptibility factors (3). The clinical 
progression of the mentioned conditions is influenced by several 
variables, making it challenging to design clinical trials. Therefore, 
it is crucial to identify modifiable risk factors and potential clinical 
interventions, capable of being implemented in the early stages of 
the diseases.

PBC is mainly denoted as a chronic condition, occurring when 
T-cells damage the biliary epithelium, leading to liver fibrosis and 
cirrhosis. The cause of PBC is not fully understood, but there are 
indications of a genetic component due to various immune function-
related gene loci and an increased risk among monozygotic twins. 
Environmental factors, chemical exposure, infections, aberrant immune 
responses, and molecular mimicry have also been declared as potential 
contributors to PBC development. Autoantibodies, which are serologic 
hallmarks of PBC, play a vital role in the diagnosis and prognosis of the 
condition. Meanwhile, PSC is an ailment caused by damaging the bile 
ducts, leading to scarring, narrowing, cholestasis, and progressive liver 
damage. Although the exact reason for PSC has not been examined yet, 

Abbreviations: CLDs, cholestatic liver diseases; IVs, instrumental variables; GWAS, 

genome-wide association studies; MR, Mendelian randomization; PBC, primary 

biliary cholangitis; PSC, primary sclerosing cholangitis; IVW, inverse variance 

weighted; FDR, false discovery rate; AIDs, autoimmune diseases; SNPs, single 

nucleotide polymorphisms; WM, weighted median; OR, odds ratio; CI, confidence 

intervals; IVC, isovalerylcarnitine; RCT, randomized controlled trial; TREG, regulatory 

T cells; UDCA, ursodeoxycholic; LPC, lysophosphatidylcholine; SMPDB, small 

molecule pathway database; KEGG, Kyoto encyclopedia of genes and genomes.
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its progress might be affected by the contribution of several factors, 
such as genetic risk loci in human leukocyte antigens, bacterial 
infection, gut microbiome changes, and environmental exposures (4).

The PBC or PSC diagnosis requires a series of examinations, such 
as serum biochemistry, serological biomarkers, imaging, and in some 
cases, liver biopsy. In recent years, blood metabolites have been 
associated with autoimmune diseases due to their non-invasive, 
diverse nature (5). The advent of high-throughput sequencing 
technologies and the rise of metabolomics have facilitated the extensive 
investigation of metabolites as functional intermediates, shedding light 
on their biological significance, in tandem with their relationships with 
diseases. A growing body of evidence has suggested the association of 
numerous metabolic features with the risk of pancreatic inflammation, 
Alzheimer’s, and cardiovascular diseases (6–8). Nevertheless, the study 
of the genetic and causal relationships between blood metabolites and 
the risk of CLDs has remained constrained. Additionally, despite the 
differences between PBC and PSC autoimmune diseases, some patients 
exhibit overlapping features with autoimmune hepatitis (AIH), such as 
PBC-AIH or PSC-AIH overlap syndrome (OS).

Considering the significance of early and accurate PBC and PSC 
diagnosis, this study aims to evaluate the role of blood metabolites in 
the risk of PBC and PSC, benefitting from univariable and 
multivariable Mendelian randomization (MR) analysis methods. The 
MR technique has emerged as a powerful and robust approach toward 
the investigation of potential causal relationships, owing to its distinct 
advantages, such as limited susceptibility to reverse causation and 
confounding effects, as well as the proper capacity to simulate 
randomized controlled trials (9). Correspondingly, a genetic 
correlation scan is conducted to investigate the relationship between 
blood metabolites and two CLDs using large-scale genome-wide 

association study (GWAS) summary data for metabolites and PBC/
PSC. Based on the obtained results, this study might provide novel 
insights into the genetic mechanisms underlying PBC and PSC.

2 Materials and methods

2.1 Study design

Figure 1 represents the flow chart of the Mendelian randomized 
analysis employed in this study. We  postulated that 452 blood 
metabolites serve as exposures influencing susceptibility to CLDs. The 
GWAS data for the CLDs were obtained from two distinct GWAS 
consortia, showing the discovery cohort and replication sets, respectively.

Only metabolites with a significant causal relationship in the 
discovery cohort were included in the replication set for further 
analysis. A meta-analysis also combined the results from both sets. 
Finally, a multivariate MR analysis was carried out on the metabolites, 
representing causality in the meta-analysis, as well as identifying 
metabolites with independent causal associations with the two CLDs.

2.2 Summary statistics for metabolites and 
cholestatic liver diseases

The exposure data for metabolites comes from a 2014 
metabolomic genome-wide association study by Shin et al. (10), 
which involved 7,824 European adult participants from TwinsUK 
and KORA cohorts. According to rigorous quality control 
procedures, more than 2.1 million SNPs and 452 metabolites were 

FIGURE 1

Flow chart for the Mendelian randomized analysis.
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detected, comprising 275 and 177 individuals with known and 
unknown metabolites. The aggregated summary statistics for 
these metabolite GWAS results are publicly accessible with the ID 
of “met-a” on the MRBase website1.

The outcome dataset was collected from two separate GWAS 
cohorts, including the GWAS Catalog and the FinnGen consortium. 
The discovery set data for PBC came from the European GWAS, 
which included 2,764 cases and 10,475 controls (11). Additionally, the 
PSC data was obtained from a GWAS by the IPSCSG, involving 4,796 
European cases and 19,955 population controls. More details can 
be found in the original GWAS study (12).

Summary statistics for the replication dataset were exclusively 
drawn from the FinnGen Release 8 database (13). This database is part 
of the FinnGen consortium, which gathers and analyzes genetic and 
health data from around half a million participants in the Finnish 
Biobank. The data from the FinnGen Alliance can be accessed publicly 
at https://r8.finngen.fi/pheno/. Data from the FinnGen Alliance is 
publicly accessible on the (https://r8.finngen.fi/pheno/, accessed on 
March 8, 2023) website. Table 1 summarizes specific details regarding 
the employed datasets.

2.3 Mendelian randomization analysis

2.3.1 Primary MR analysis
In the first step, the valid single nucleotide polymorphisms (SNPs) 

were used as IVs, considering the limited number of genome-wide 
significant SNPs. A relaxed threshold of p < 1 × 10−5 was employed to 
identify the IV target, a commonly utilized method in prior MR 
studies (14, 15). Subsequently, the clumping function was applied to 
perform linkage disequilibrium screening on the selected IVs, using a 
threshold of 10,000 KB and R2 < 0.001. Additionally, the F-statistic is a 
statistical measure that quantifies both the magnitude and accuracy of 
the genetic impact on the trait. It can be calculated as F = R2 (N − 2)/
(1 − R2), where R2 represents the proportion of variance in the trait 
explained by the IVs, and N denotes the sample size of GWAS 
involving SNPs with the trait (16). SNPs were filtered with F-statistics 
exceeding 10 for further analysis, as it can significantly mitigate the 
risk of IV bias.

1 https://www.mrbase.org/

In the second phase, SNPs were extracted from the consistent data 
with the exposure. Proxy variants with an R2 > 80% were sought in the 
European reference ancestral population from the 1,000 Genomes 
Project in the SNPs’ absence cases in the outcome (17). Simultaneously, 
the following two SNP types, including missing IVs in the outcome 
and lacking corresponding proxy SNPs, as well as palindromic SNPs 
were discarded. All available IVs are shown in Supplementary Table S1. 
In the MR analysis, the random-effects model was employed within 
the inverse variance weighted (IVW) method as the primary approach 
to estimate the blood metabolite impacts on PBC and PSC. This 
method operates under the assumption that all genetic variations 
serve as valid instruments (18), allowing for robust causal estimations 
without being influenced by directional pleiotropy. Additionally, the 
false discovery rate (FDR) correction was applied to ensure the 
reliability of our findings. If the adjusted p-value was less than 0.05 
after the Benjamini–Hochberg correction for the causal effect of a 
specific metabolite, it was considered to have a statistically significant 
association. Conversely, an original p-value <0.05 was interpreted with 
a corrected p-value >0.05 as a potential correlation.

In the third section, a series of sensitivity examinations were 
conducted on the initially identified metabolites of interest to ensure 
the robustness of the findings. Among them, weighted median (WM) 
(19) and MR-Egger (20) were utilized as Supplementary methods. 
Metabolites displaying consistent directional effects across IVW, 
MR-Egger, and WM techniques were further investigated in sensitivity 
evaluation. Cochran’s Q test (21) and Egger intercept (20) were also 
employed to figure out heterogeneity and horizontal pleiotropy, 
respectively. In the presence of pleiotropy, the MR-PRESSO test was 
applied to identify and exclude outliers (22), followed by a subsequent 
MR analysis round. The MR Steiger test was performed to assess the 
direction of observed causal relationships for the metabolites of interest 
and eliminate those potentially indicative of reverse causality (23). 
These sensitivity analyses refined the list of candidate metabolites, 
minimizing potential issues.

2.3.2 Confounding assessments
The phenoscannerV2 website2 was employed to enhance the MR 

hypothesis. The main goal was to examine the probable association of 
the IVs for the metabolites with potential confounding factors, like 

2 http://www.phenoscanner.medschl.cam.ac.uk/

TABLE 1 Source of outcome GWAS summary data.

Trait Source PMID Cases Control GWAS ID/
Phenocode

Population

Metabolites
IEU open GWAS 

project
24,816,252 7,824 NA met-a-(303 to 754) European

PBC

GWAS Catalog 26,394,269 2,764 10,475 GCST003129 European

FinnGen Mrach 

2023 Release
497 257,081 CHIRBIL_PRIM_R8 European

PSC

IPSCSG 27,992,413 4,796 19,955 GCST004030 European

FinnGen Mrach 

2023 Release
1,491 301,383 K11_CHOLANGI European

GWAS, genome-wide association study; PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; IPSCSG, International PSC Study Group.

https://doi.org/10.3389/fmed.2024.1395526
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://r8.finngen.fi/pheno/
https://r8.finngen.fi/pheno/
https://www.mrbase.org/
http://www.phenoscanner.medschl.cam.ac.uk/


Wei et al. 10.3389/fmed.2024.1395526

Frontiers in Medicine 05 frontiersin.org

BMI (24), cholesterol, and triglycerides (25). Following this, 
potentially confounded SNPs were excluded and the IVW analysis was 
re-executed.

2.3.3 Replication and meta-analysis
Replication investigations were carried out using two 

additional independent GWAS datasets for PBC and PSC from the 
FinnGen consortium to affirm the reliability of our candidate 
metabolites. Correspondingly, meta-analysis was employed to 
combine the outcomes from these datasets and identify the 
final candidates.

2.3.4 Multivariate and reverse MR analysis
The study also employed multivariate MR analysis to 

investigate the effect of multiple metabolites on the same outcome. 
Then, reverse IVW analysis was performed for those candidate 
metabolites identified as independently affecting the outcome in 
the multivariate MR analysis. This involved considering PBC or 
PSC as exposures and the metabolites as outcomes to explore 
whether there is a reverse causality to determine the disease’s 
impact on metabolites. The IVs for PBC and PSC underwent a 
selection process similar to the prescribed one, with a genome-
wide significance threshold set at 5 × 10−8.

2.3.5 Metabolic pathway analysis
Finally, the MetaboAnalyst 5.03 online tool was used to perform 

an extensive metabolic pathway analysis of the identified 
metabolites with potential associations to the two CLDs. We used 
the Small Molecule Pathway Database (SMPDB) containing 99 
metabolite sets, in tandem with 84 metabolite groups from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) database, to 
find potential metabolic pathways for PBC or PSC 
biological processes.

2.4 Statistical analysis

Statistical analysis was performed using R software (version 4.2.3). 
Regarding univariable MR analysis, the “TwoSampleMR” package was 
employed, while the “Mendelian Randomization” and “MVMR” 
packages were utilized in R for multivariable MR analysis. METAL 
(23) (version 2011-03-25) was used to examine the meta-analyses of 
the obtained outcomes. Additionally, FDR correction was applied to 
mitigate the risk of false positives in multiple tests. A causal effect of a 
specific metabolite was deemed statistically significant when the 
associated FDR estimate was less than 0.05.

3 Results

3.1 Primary MR analyses

After completing the initial tool variable selection, several 
metabolite IV counts were observed, ranging from 3 to 172 with a 

3 https://www.metaboanalyst.ca/

median of 15. Subsequently, the selected IVs were used to conduct 
an initial univariate MR analysis toward exploring potential causal 
relationships between the metabolites and PBC and PSC. Using the 
MR-IVW analysis method, 54 potential associations were 
preliminarily identified, involving 53 different metabolites (p < 0.05) 
(see Supplementary Table S2). Specifically, metabolites associated 
with PBC included fifteen known and nine unknown metabolites, 
respectively. Meanwhile, the ones associated with PSC contained 
eighteen known metabolites and twelve unknown metabolites, 
along with one metabolite named erythrose, representing potential 
associations with both PBC and PSC. It is worth noting that only six 
and one known and unknown metabolites were, respectively, 
associated with PBC (FDR < 0.05) after several testing corrections. 
Additionally, PSC was significantly linked with three known and 
five unknown metabolites (FDR < 0.05), as is displayed in Figure 2. 
It is essential to emphasize that no metabolites were found to 
be  significantly related with both of the 2 CLDs, after multiple 
corrections. To be  specific, seven metabolite cases have been 
recognized to establish causal links with PBC, including valine 
(odds ratio [OR] = 385.583, 95% confidence intervals [CI]: 4.359–
34104.030, FDR = 0.046), creatine (OR = 0.280, 95%CI: 0.103–0.759, 
FDR = 0.031), isovalerylcarnitine (IVC) (OR = 3.979, 95%CI: 1.766–
8.963, FDR = 0.004), mannose (OR = 0.175, 95%CI: 0.043–0.713, 
FDR = 0.025), malate (OR = 8.153, 95%CI: 1.736–38.308, 
FDR = 0.039), leucylalanine (OR = 0.284, 95%CI: 
0.147–0.551, FDR < 0.001), and X-12038 (OR = 6.142, 95%CI: 
1.949–19.354, FDR = 0.010). Moreover, casual associations were 
examined between eight metabolites and PSC, containing erythrose 
(OR = 12.010, 95%CI: 2.041–70.678, FDR = 0.024), pantothenate 
(OR = 0.256, 95%CI: 0.100–0.656, FDR = 0.023), 
1-stearoylglycerophosphocholine (OR = 4.607, 95%CI: 1.457–
14.568, FDR = 0.047), X-11529 (OR = 0.615, 95%CI: 0.478–0.790, 
FDR < 0.001), X-11538 (OR = 0.394, 95%CI: 0.233–0.667, 
FDR = 0.003), X-11847 (OR = 0.468, 95%CI: 0.306–0.714, 
FDR = 0.002), X-12405 (OR = 3.765, 95%CI: 1.426–9.947, 
FDR = 0.037), and X-13429 (OR = 0.422, 95%CI: 0.283–0.629, 
FDR < 0.001).

For the preliminary screening of candidate metabolites, a series 
of sensitivity examinations was carried out to enhance the 
robustness of the MR primary investigation. As is observable in 
Supplementary Table S3 and Supplementary Figure S1, nine known 
and six unknown metabolites exhibited steady direction and 
amplitude in IVW, MR-Egger, and weighted median analysis, 
corroborating the consistency of assessments across various testing 
methods for the mentioned metabolites. Subsequently, the results 
were subjected to pleiotropy and heterogeneity scrutiny, where all 
Cochran’s Q heterogeneity test p-values were greater than 0.05, 
indicating the absence of significant heterogeneity. Moreover, the 
small intercepts and p-values in MR-Egger suggested the negligible 
impact of horizontal pleiotropy. Also, the p-values obtained from 
the MR PRESSO-outlier test were greater than 0.05, supporting a 
very low probability of horizontal pleiotropy and the presence of 
outliers (Supplementary Table S3). The attained result tied well with 
the leave-one-out analysis presented in Supplementary Figure S2. 
Furthermore, Steiger directional tests were performed to validate 
the direction of influence from metabolites to the considered CLDs, 
exhibiting extremely minimal likelihood of statistical bias from 
reverse causation (Table 2).
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3.2 Confounding assessment

Although a series of sensitivity examinations revealed no biases 
with ineffective MR estimations, potential confounding factors related 
to the metabolite instrument variables, such as BMI, cholesterol, and 
triglycerides, were proactively investigated. Through a search on the 
Phenoscanner, one SNP (rs1260326) was identified to associate with 
triglycerides for the mannose metabolite. After excluding this SNP, the 
MR-IVW analysis was conducted again, and the results continued to 
demonstrate a significant causal relationship between mannose and 
the PBC risk (IVW OR = 0.739, 95% CI: 0.547–0.994, FDR = 0.045).

3.3 Replication and meta-analysis

A replication analysis using two comparable GWAS summary 
datasets sourced from the FinnGen consortium was embarked on for 
further substantiation of the causal link between the identified 
metabolites and the risk of two CLDs, including PBC and PSC. The 
results unveiled a consistent pattern in the relationship between 
certain metabolites and the susceptibility to PBC and PSC. Specifically, 
out of the seven metabolites initially associated with PBC, three cases 
demonstrated a congruent trend in the replication analysis, 
encompassing valine, isovalerylcarnitine, and mannose. Additionally, 
among the eight metabolites linked to PSC, five showcased trends in 
concordance with the initial findings. As is depicted in Figures 3, 4, a 
meta-analysis of the findings from these two datasets further solidified 
several outcomes. First, valine (OR = 136.2889, 95%CI: 4.310–
4309.143, p  =  0.005) and isovalerylcarnitine (OR = 3.019, 95%CI: 
1.461–6.237, p = 0.003) were causally associated with an increased risk 

of PBC at the genetic level, whereas mannose (OR = 0.267, 95%CI: 
0.084–0.844, p = 0.02) was causally linked with a decreased risk of 
PBC. In addition, erythrose (OR = 6.837, 95%CI: 1.739–26.882, 
p  =  0.006), 1-stearoylglycerophosphocholine (OR = 2.620, 95%CI: 
1.026–6.691, p = 0.04), and X-12405 (OR = 3.326, 95%CI: 1.534–7.214, 
p  =  0.002) were identified as PSC risk factors. Moreover, three 
undisclosed metabolites, specifically X-11529 (OR = 0.704, 95%CI: 
0.573–0.866, p < 0.001), X-11538 (OR = 0.525, 95%CI: 0.341–0.809, 
p = 0.003), and X-11847 (OR = 0.583, 95%CI: 0.415–0.819, p = 0.002) 
exhibited a protective effect against PSC development.

3.4 Multivariate and reverse MR analysis

The results of our meta-analysis have illuminated causal 
relationships between several metabolites and PBC or PSC, thereby, a 
multivariate MR analysis was employed to investigate the independent 
effects of each metabolite. Accordingly, seven out of nine metabolites 
exhibited independent impacts. It is worth noting that the multivariate 
MR of the three linked metabolites to PBC aligns harmoniously in 
both direction and magnitude with the unadjusted outcomes obtained 
from univariate MR analysis (see Table  3). Remarkably, three 
metabolites represented independent causal effects on PBC 
susceptibility, including isovalerylcarnitine (OR = 3.146, 95%CI: 
1.471–6.726, p = 0.003), valine (OR = 192.44, 95%CI: 4.949–7483.27, 
p = 0.005), and mannose (OR = 0.184, 95%CI: 0.068–0.499, p < 0.001). 
Among six associated metabolites with PSC, the causal influence of 
two unidentified metabolites (X-11529 and X-11538) showed a 
weakening effect on PSC after multivariate MR analysis. Meanwhile, 
multivariate MR analysis further substantiated the independent causal 

FIGURE 2

Forest plot for the causal effect of identified metabolites on the risk of PBC and PSC cholestatic liver diseases derived from inverse variance weighted 
(IVW).
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effects of the other four metabolites on PSC, containing erythrose 
(OR = 5.504, 95%CI: 1.801–16.821, p  =  0.003), 
1-stearoylglycerophosphocholine (OR = 6.753, 95%CI: 2.621–17.399, 
p  =  7.64  × 10−5), X-11847 (OR = 0.478, 95%CI: 0.352–0.650, 
p  =  2.28  × 10−6), and X-12405 (OR = 3.765, 95%CI: 1.771–8.005, 
p = 5.71 × 10−4).

Subsequently, additional reverse MR investigations were 
embarked on using instrumental variables for PBC and PSC. In the 
considered reversed causal investigation, PBC and PSC played the role 
of exposures, while the seven metabolites with independent impacts 
served as outcomes. Independent SNPs were selected as instrumental 
variables with a significance level of p  < 5 × 10−8 and conducted 
IVW-MR estimation, as is detailed in Supplementary Table S4. Based 
on the findings, a scarcity of substantial evidence supporting reverse 
causal relationships is suggested between these metabolites and either 
PSC or PBC, aligning with the earlier Steiger results.

Furthermore, we conducted additional analysis to examine the 
causal relationships between the 7 metabolites and the outcomes at a 
stricter threshold (p < 5 × 10−6) (see Supplementary Table S5). Our 
analysis under stricter threshold conditions using the IVW method 
reveals that the results for six metabolites are consistent with the initial 
analysis direction, with four of these showing a significant causal effect 
on the outcomes (p < 0.05). However, the metabolite Erythrose, which 
is supported by only one valid SNP, demonstrates a disappearance of 
the causal relationship with PSC. This may be attributed to bias arising 
from the insufficient number of SNPs.

3.5 Metabolic pathway analysis

To provide a clearer and more comprehensive understanding of 
all the enriched metabolic pathways, we  have compiled all the 

TABLE 2 Sensitivity analysis for the causal association between blood metabolites and cholestatic liver diseases.

Metabolites

Diseases

Subcategory

Heterogeneity 
test Pleiotropy test

FDRIVW

Steiger test

IVW MR-Egger Correct 
causal 
direction Steiger_pvalQ (I2) Q_pval Intercept SE p

Mannose
PBC

Carbohydrate
12.871 

(37.85%) 0.116 −0.012 0.035 0.743
0.025

TRUE 3.0309 × 10−73

Malate
PBC

Energy
15.514 

(16.20%) 0.276 0.015 0.060 0.813
0.039

TRUE 3.37241 × 10−36

Valine
PBC

Amino acid
0.500 

(0.00%) 0.919 −0.013 0.037 0.758
0.046

TRUE 2.61682 × 10−21

Creatine
PBC

Amino acid
3.620 

(0.00%) 0.605 0.024 0.036 0.544
0.031

TRUE 1.2098 × 10−34

X-12038
PBC

Unknown
41.465 

(1.12%) 0.450 0.010 0.032 0.742
0.010

TRUE 1.13 × 10−115

Isovalerylcarnitine
PBC

Amino acid
8.442 

(0.00%) 0.935 0.012 0.022 0.600
0.004

TRUE 9.53331 × 10−96

leucylalanine
PBC

Peptide
4.567 

(0.00%) 0.600 −0.057 0.064 0.414
0.001

TRUE 2.27609 × 10−34

Pantothenate
PSC

Cofactors and 

vitamins

14.693 

(0.00%) 0.875 −0.007 0.018 0.700
0.023

TRUE 1.03623 × 10−98

Erythrose
PSC

Carbohydrate
7.650 

(34.64%) 0.177 −0.056 0.107 0.628
0.024

TRUE 1.39181 × 10−11

X-11529
PSC

Unknown
8.406 

(0.00%) 0.494 0.020 0.017 0.276
0.000

TRUE 6.6887 × 10−176

X-11538
PSC

Unknown
4.533 

(0.00%) 0.952 0.017 0.022 0.465
0.003

TRUE 1.0065 × 10−100

X-11847
PSC

Unknown
3.489 

(0.00%) 0.942 −0.018 0.033 0.610
0.002

TRUE 6.79813 × 10−25

X-12405
PSC

Unknown
3.219 

(0.00%) 0.781 −0.014 0.050 0.797
0.037

TRUE 4.1679 × 10−33

1-stearoyl 

glycerophosphocholine PSC
Lipid

3.792 

(0.00%) 0.956 −0.005 0.029 0.858
0.047

TRUE 6.28367 × 10−44

X-13429
PSC

Unknown
4.824 

(0.00%) 0.567 0.020 0.038 0.628
0.000

TRUE 3.50935 × 10−73

IVW, inverse variance weighted; MR, Mendelian randomization; FDR, false discovery rate; PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis.
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FIGURE 3

Meta-analysis of the causal associations between metabolites and primary biliary cholangitis (PBC).

FIGURE 4

Meta-analysis of the causal associations between metabolites and primary sclerosing cholangitis (PSC).
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enriched pathways into Supplementary Table S6. Table 4 summarizes 
the results significantly enriched (p < 0.05) after metabolic pathway 
analysis, highlighting seven important pathways found in two CLDs. 
According to the findings, “Valine, leucine, and isoleucine 
biosynthesis” (p = 0.021), “Malate–Aspartate Shuttle” (p = 0.034), and 
“Pantothenate and CoA biosynthesis” (p = 0.048) pathways were 
linked to the PBC pathogenesis. Simultaneously, “Valine, leucine, and 
isoleucine biosynthesis” (p = 0.015), “Linoleic acid metabolism” 
(p  = 0.016), “Arginine biosynthesis” (p  = 0.027), and “Bile Acid 
Biosynthesis” (p = 0.043) pathways were considered relevant to PSC. It 
is intriguing to note that PBC and PSC share a common metabolic 
pathway, namely, “Valine, leucine, and isoleucine biosynthesis.” 
Correspondingly, the obtained discoveries provided further insights 
into the metabolic mechanisms underlying CLDs.

4 Discussion

The current MR study delves into the promising associations 
between two CLDs and metabolites. Based on the conducted analysis, 
seven metabolites revealed statistical significance even after multiple 
testing corrections, encompassing two previously unidentified 
compounds. Additionally, reverse causation exclusion was carried out, 
affirming that the severe candidate metabolites were indeed causative 

factors for the two CLDs, rather than outcomes. Also, seven significant 
metabolic pathways were associated with the PBC and PSC, including 
one shared pathway. Accordingly, the study represented a 
comprehensive and systematic evaluation of the causal effects of blood 
metabolites and metabolic pathways on CLDs using MR analysis. In 
addition, the reliability and consistency of the findings were ensured 
by conducting replication analysis across various databases. Therefore, 
fresh insights were offered into the role of gene–environment 
interactions in the pathogenesis of CLDs, providing potential 
inspiration for further mechanistic exploration.

Based upon the results, mannose was the initial metabolite playing 
as a protective factor against the occurrence of PBC. Few previous studies 
have focused on the correlation of PBC with blood metabolite mannose 
levels. In 2021, Franssen et al. demonstrated that mannose effectively 
prevents urinary tract infections via a randomized controlled trial (26). 
Gonzalez et al. also declared mannose’s ability to inhibit tumor growth 
by suppressing glucose metabolism using in vitro examinations (27). As 
is shown in the Zhang et al. study, mannose also exhibits a positive 
impact in immunotherapy (28) and influences the glycosylation of 
PD-L1, promoting its degradation and thereby enhancing the efficacy of 
immunotherapy in Triple-negative breast cancer. These findings align 
well with the obtained results in the current investigation, providing 
indirect support for mannose’s potential protective role in AIDs. At a 
genetic level, elevated mannose levels may contribute to reducing the 

TABLE 3 Estimated causal effects of metabolites on cholestatic liver diseases by the multivariable MR analysis.

Metabolite Diseases Nsnp Multivariable MR

OR (95% CI) p

Mannose PBC 32 0.184 (0.068–0.499) 8.807 × 10−4

Valine PBC 32 192.442 (4.949–7483.270) 4.859 × 10−3

Isovalerylcarnitine PBC 32 3.146 (1.471–6.726) 3.114 × 10−3

Erythrose PSC 54 5.504 (1.801–16.821) 2.772 × 10−3

X-11529 PSC 54 0.812 (0.572–1.153) 2.442 × 10−1

X-11538 PSC 54 0.582 (0.267–1.269) 1.738 × 10−1

X-11847 PSC 54 0.478 (0.352–0.650) 2.280 × 10−6

X-12405 PSC 54 3.765 (1.771–8.005) 5.715 × 10−4

1-stearoyl glycerophosphocholine PSC 54 6.753 (2.621–17.399) 7.640 × 10−5

MR, Mendelian randomization; OR, odds ratio; CI, confidence interval; PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis.

TABLE 4 Significant metabolic pathways involved in the 2 cholestatic liver diseases.

Traits Metabolites pathway Involved metabolites Total p value Database

PBC
Valine, leucine, and isoleucine 

biosynthesis
Valine 8 0.021 KEGG

PBC Malate-Aspartate Shuttle Malate 7 0.034 SMPDB

PBC
Pantothenate and CoA 

biosynthesis
Valine 19 0.048 KEGG

PSC
Valine, leucine, and isoleucine 

biosynthesis
Leucine 8 0.015 KEGG

PSC Linoleic acid metabolism Linoleate (18:2n6) 5 0.016 KEGG

PSC Arginine biosynthesis Urea 14 0.027 KEGG

PSC Bile Acid Biosynthesis Palmitate (16:0), Deoxycholate 59 0.043 SMPDB

PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; KEGG, Kyoto encyclopedia of genes and genomes; SMPDB, small molecule pathway database.
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PBC risk. Furthermore, another in vitro experiment has identified a 
possible mechanism, wherein mannose activates TGF-β to increase the 
production of regulatory T cells (Treg), subsequently suppressing AIDs 
(29). This suggests that mannose may maintain immune system balance 
by promoting PD-L1 degradation, regulating Treg expansion, and 
diminishing attacks on self-tissues, ultimately reducing the risk of PBC 
development. Nevertheless, the specific mechanisms and signaling 
pathways bridging mannose to PBC onset require further in-depth 
investigation. This discovery offers valuable leads for future research 
and treatments.

Another remarkable finding gained in this evaluation was the 
association of two genetic-level risk factors with PBC, IVC, and valine. 
IVC is a carnitine substrate for isovaleryl-CoA dehydrogenase, which 
represents a specific acylcarnitine involved in early-stage cellular 
immunity, enhancing phagocytosis and cytotoxicity (30). Acylcarnitines 
are involved in fatty acid β-oxidation and the branched-chain amino acid 
metabolism, including valine, leucine, and isoleucine, associated with the 
progression of AIDs (31, 32). Observational research has established a 
positive correlation between blood acylcarnitine levels and peripheral 
neuropathy in type 2 diabetes patients (33). It is also suggested that IVC 
may accelerate the progression of rheumatoid arthritis (4). Another study 
by Jewell et al. also offered a potential explanation for this phenomenon, 
as IVC is involved in the degradation of leucine and fatty acids. Leucine 
is an essential amino acid that regulates cell proliferation and metabolism 
through the mTORC1 complex, thereby influencing disease development 
(34). PBC is characterized primarily by autoimmune factors, leading to 
hepatocyte and/or bile duct injury, in tandem with disruptions to 
metabolic balance within the body (35). Based on the findings attained 
from the current evaluation, IVC exerts a promotional effect on PBC 
occurrence at the genetic level as a circulating blood metabolite. This 
effect may be associated with IVC’s involvement in cellular immunity, 
enhancing phagocytosis and cytotoxicity.

As an essential amino acid, valine has been the subject of 
observational studies. Meanwhile, few research cases have explored the 
correlation between valine and the onset and PBC progression. In a study 
carried out in 2019, White et al. indicated a positive association between 
elevated levels of branched-chain amino acids in the blood with insulin 
resistance, as well as diabetes (5). Gu et al. also found that blood valine 
serves as an independent risk factor for non-alcoholic fatty liver disease 
(36). Accordingly, valine might have adverse implications for disease 
development, which is consistent with the findings obtained from the 
MR evaluation. Therefore, it is highly recommended that valine could 
be  a potential therapeutic target, providing valuable leads toward 
deploying novel approaches for PBC treatment after further clinical 
examinations. It is crucial to emphasize that ursodeoxycholic acid 
(UDCA) did not exhibit a genetic-level association with the disease in 
the metabolomic screening, while it has been widely recognized as a 
frontline treatment for PBC. This discrepancy might be attributed to the 
fact that UDCA primarily addresses the bile stasis-induced hepatic 
injury critical to disease progression, rather than being linked to the 
genetic determinants of disease risk.

As another outcome of the present investigation, three genetic 
factors associated with PSC were recognized, including erythrose, 
1-stearoylglycerophosphocholine, and an unidentified metabolite, 
X-12405. According to the literature, the correlation between erythrose 
and PSC is currently incomplete. Nonetheless, some studies have 
indicated that aldose metabolism facilitates the transition from liver 
fibrosis to liver cancer (37), and erythrose falls under the category of 

aldoses, implying its potential involvement in PSC onset. 
1-stearoylglycerophosphocholine is a subtype of lysophosphatidylcholine 
(LPC), which is predominantly secreted by the liver (38). LPC levels can 
increase during inflammatory conditions and exhibit diverse effects 
depending on the environment. Conflicting results have been reported 
yet by the observational studies, in which some cases have recommended 
the ability of LPC upregulation to modulate immune checkpoint 
regulation, linking to enhanced survival rates in patients with acute liver 
failure (39). Conversely, other studies have proposed a contrary 
perspective, indicating that LPC exacerbates allergic reactions through 
promoting neutrophil infiltration and inclining IL17 expression (40), 
which implies its pro-inflammatory role. Based on the MR study 
findings, genetically elevated levels of 1-stearoylglycerophosphocholine 
promote PSC development, which aligns with its role in promoting 
inflammation and provides a new direction for early PSC prevention 
and treatment.

Moreover, the performed MR Analysis corroborated a causal 
relationship between two unknown metabolites and the PSC occurrence. 
Specifically, X-12405 was found to be linked with a higher risk of PSC, 
while X-11847 played a protective role in PSC development. However, it 
was challenging to extract further significant insights, resulting from a 
lack of information regarding the structure and function of these 
metabolites. It is worth noting that the successful identification of these 
unknown metabolites will greatly advance the discovery of biomarkers 
and research into cholestatic liver diseases.

According to the results gained through the present investigation, 
seven causal metabolic pathways were identified associated with the 
development of two CLDs. Interestingly, it was discovered that PBC and 
PSC share one crucial metabolic pathway, namely, valine, leucine, and 
isoleucine biosynthesis, playing pivotal roles in the disease progression. 
In an animal model study by Bandt et al., a close association was revealed 
between valine, leucine, and isoleucine biosynthesis with abnormalities 
in glucose and lipid metabolism, potentially inducing insulin resistance 
(41). The induction of autophagy by reducing TORC1 activity could be a 
possible mechanism for this occurrence (42). Furthermore, the 
enrichment of the pantothenate and CoA biosynthesis pathway has been 
linked significantly to colorectal cancer (43). Considering the essential 
roles, the observed imbalances in these pathways, regarding both PBC 
and PSC, suggest a significant disruption in material and energy 
metabolism. Regulating these metabolic pathways may offer potential 
strategies for preventing or treating the development of CLDs, such as 
PBC and PSC.

Overall, several bright sides were observed through the present 
evaluation. First, seven out of 452 metabolites were identified, exhibiting 
a causal relationship with the risk of developing either PBC or PSC. The 
considered MR analysis employed a diverse range of analytical methods 
to eliminate the potential for reverse causality, as well as confounding 
factors. Second, a meta-analysis of results was conducted from various 
databases, mitigating disparities stemming from distinct data sources, 
thus bolstering the credibility of our inferences regarding the causal links 
between metabolites and PBC or PSC. Third, potential therapeutic 
targets for cholestatic liver diseases were represented. The identified 
metabolites and pathways could serve as valuable circulating metabolic 
biomarkers for clinical screening and prevention of PBC and 
PSC. Fourth, the attained findings might contribute to enhancing 
healthcare professionals’ awareness of the significance of diet and lifestyle 
in liver disease prevention. Increasing understanding regarding the roles 
of specific metabolites, such as valine and mannose, in disease 
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development can encourage high-risk individuals to opt for healthier 
dietary choices and lifestyle modifications.

It is worth noting that the present study has faced some limitations, 
recommended to be  addressed in future investigations. First, it 
predominantly relied on data from random populations, which may 
potentially hinder the generalizability of the study findings. Future 
research is recommended to contemplate the inclusion of more diverse 
population samples to enhance the external validity of the results. 
Second, the reliance on a limited number of SNPs reaching genome-wide 
significance might introduce bias into the analysis. To address this 
concern, the threshold was declined, and the F statistic for each SNP 
exceeded 10. Additionally, the true direction derived from the Steiger test 
also supported the validity of SNPS with more relaxed p-values. Third, 
while MR methodology excels in causal inference, it is essential to 
remember that the findings from this MR study should undergo further 
validation through randomized controlled trials involving larger and 
more diverse populations.

5 Conclusion

In summary, the present study conducted a preliminary analysis and 
FDR correction to identify a genetic causality between 15 metabolites 
and two CLDs, including PBS and PSC. Subsequently, nine metabolites 
were identified with consistent association through replication and meta-
analysis. Among the recognized metabolites, mannose emerged as a 
protective factor against the PBS occurrence. Mannose exhibited the 
potential to regulate Treg expansion, promote PD-L1 degradation, and 
reduce attacks on self-tissues, ultimately reducing the risk of PBC 
development. Additionally, two genetic-level risk factors were detected 
in the association with PBC. The circulating blood metabolite IVC 
exerted a promotional effect on the occurrence of PBC at the genetic 
level, which may be linked with cellular immunity. Besides, this study 
employed bidirectional and multivariate MR analyses to determine the 
independent causal impacts of seven metabolites in disease progress. 
Accordingly, the MR investigation revealed potential causal links 
between blood metabolites and PSC. It was found that genetically 
elevated levels of 1-stearoyl glycerophosphocholine (a subtype of LPC) 
promote PSC development, aligning with its role in promoting 
inflammation, which offers a new direction for early prevention and 
treatment of PSC. Moreover, two unknown metabolites have been 
confirmed by the MR Analysis to have a causal relationship with the PSC 
occurrence. Specifically, X-12405 was found to be causally associated 
with a higher risk of PSC, while X-11847 played a protective role in the 
development of PSC. Briefly, metabolic pathway analysis pinpointed 
seven significant metabolic pathways. These findings provide novel 
directions for clinical screening, preventive strategies, and 
precision therapeutics.

By developing a deeper understanding of the complex mechanisms 
underlying the onset and progression of cholestasis and leveraging 
powerful analytical methods, such as MR analysis, the opportunity arises 
to enable earlier detection and treatment of the disease for future 
generations. Meanwhile, further investigations are required to elucidate 
the specific mechanisms and signaling pathways that link mannose to 
the PBC onset. The identification of these mechanisms and pathways is 
essential for the development of targeted therapies and interventions 
aimed at preventing or delaying the onset of PBC and mitigating its 
associated morbidity and mortality. As such, continued research in this 

area is of paramount importance for advancing our understanding of 
cholestasis and improving patient outcomes.
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