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The Cancer of Unknown Primary (CUP) syndrome is characterized by identifiable 
metastases while the primary tumor remains hidden. In recent years, various data-
driven approaches have been suggested to predict the location of the primary 
tumor (LOP) in CUP patients promising improved diagnosis and outcome. These 
LOP prediction approaches use high-dimensional input data like images or 
genetic data. However, leveraging such data is challenging, resource-intensive 
and therefore a potential translational barrier. Instead of using high-dimensional 
data, we analyzed the LOP prediction performance of low-dimensional data from 
routine medical care. With our findings, we  show that such low-dimensional 
routine clinical information suffices as input data for tree-based LOP prediction 
models. The best model reached a mean Accuracy of 94% and a mean Matthews 
correlation coefficient (MCC) score of 0.92  in 10-fold nested cross-validation 
(NCV) when distinguishing four types of cancer. When considering eight types of 
cancer, this model achieved a mean Accuracy of 85% and a mean MCC score of 
0.81. This is comparable to the performance achieved by approaches using high-
dimensional input data. Additionally, the distribution pattern of metastases appears 
to be important information in predicting the LOP.
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1 Introduction

The “Cancer of Unknown Primary” syndrome (CUP) is diagnosed if only metastases but 
no primary tumor can be found (1). Extensive examination and molecular analyzes without 
the support of AI currently enable predicting the location of the primary tumor (LOP) for 
10–20% of CUP patients with an accuracy of 85–90% (2, 3). For these patients, an LOP-specific 
treatment can be chosen which significantly improves their prognosis.
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Historically, about 3–5% of all cancer cases were diagnosed as 
CUP (4). Due to advances in diagnostics, this rate could be reduced 
to 1–2% in general, but it is still higher for patients living in areas with 
rudimentary clinical care (1, 5, 6). Additionally, the CUP syndrome is 
still among the 10 most common reasons for cancer-related deaths 
globally (1). Thus, further advances in LOP prediction are needed to 
improve the prognosis for CUP patients.

AI-driven data analysis can be a key component in achieving this 
and some promising approaches have already been developed (1, 
7–14). They are described in Supplementary material. A major 
drawback of these related approaches is their dependency on high-
dimensional input data measuring the transcriptome, the mutation 
pattern, or epigenetic features of the metastases. This data is not 
generated for cancer patients by default. Hence, the approaches 
introduce additional costs representing a potential translational 
barrier for clinical practice. In 2021, Lu et al. (15) have shown that the 
additional costs to generate transcriptomic, genetic, or epigenetic data 
might not be needed for most CUP cases. Although only using the sex 
of the patient and whole slide images (WSI) from pathological 
examinations as input data, they achieve comparably high 
classification performance in LOP prediction with a convolutional 
neural network (CNN) approach (15).

Motivated by the success of Lu et al. (15), we examined whether 
LOP prediction also works for even lower-dimensional data, i.e., to 
dispense with image files and instead only use a small number of 
structured clinical features as input data. Since such data is far less 
dimensional than genome data or images, the complexity of the task 
is reduced and the decision-making process becomes 
more comprehensible.

In 10-fold nested cross-validation (NCV) we examined the LOP 
prediction performance of a random forest (RF) classifier and a 
gradient boosted trees (GBT) classifier on three different input feature 
sets compiled from oncological real-world data (RWD) of non-CUP 
patients at University Hospital Cologne (UHC). An extensive extract 
transform load (ETL) process accompanied by interdisciplinary 
decisions ensured highest possible data quality. Comparing our results 
to the LOP prediction performance achieved by high-dimensional 
approaches, shows that our tree-based approach on input features 
such as the age, sex, histological specifications, lab results, and the 
distribution pattern of metastases can achieve classification 
performances as high as the complex approaches while being more 
transparent, accessible, affordable, and explainable. Especially, the 
distribution pattern of metastases proved to be a valuable source of 
information for well-performing classification.

2 Materials and methods

2.1 Data curation

In total, we compiled six datasets from clinical systems of UHC as 
shown in Figure  1. We  included cancer cases of adult patients 
diagnosed with Lung, Pancreas, Kidney, Liver, Breast, Colorectal, 
Ears-Nose-Throat, or Upper GI cancer between 01.01.2000 and 
30.06.2021. Patients having several cancer diagnoses within 5 years 
were excluded from the dataset. For each included cancer case, 
we compiled the age at diagnosis, the sex, histological specification, 
lab results, and the metastatic burden according to RECIST v1.1 (16). 

The histological specifications comprised the tumor grading as well as 
indicators for infestation of lymph nodes (N-value), lymph vessels 
(L-value) and veins (V-value). The lab results comprised the amount 
of leukocytes, C-reactive protein (CRP), Hemoglobin (HB), 
Carbohydrate Antigen 19–9 (CA 19–9), and Carcinoembryonic 
Antigen (CEA) in the blood. CA 19–9 and CEA are tumor markers 
(TM), i.e., proteins whose abundance can indicate certain types of 
tumors. The RECIST evaluations were translated to organ-specific 
Tumor Burden Scores (TBS) spanning from 0 (no infestation) to 4 
(significant infestation). All TBS taken together represent the 
metastatic distribution pattern by indicating the tumor burden in 
individual organs. Based on the frequency of missing values for the 
individual features we created three feature sets:

 1 “Core features” containing the age, the sex, histological 
specifications, leukocytes, CRP, and HB (frequency of missing 
values below 35%)

 2 “Core features and TM” containing the core features and the 
TM CA 19–9 and CEA (frequency of missing values 77 and 
69%, respectively).

 3 “All features” containing the core features, the TM, and the 
organ-specific TBS, which indicate the distribution pattern of 
metastases (frequency of missing values 98%).

Due to the low availability of the TBS, we only included those 
cases in the “all features” dataset for which the TBS were available. As 
a result, four of the eight LOP classes were underrepresented, so 
we  decided to create a four-class version of each dataset only 
containing the classes that were still well represented: Lung, Upper GI, 
Pancreas, and Liver. This resulted in a total of six datasets. Missing 
values were imputed in all six datasets using the R package “mice” in 
version 3.15.0 for Multiple Imputation by Chained Equations (MICE) 
(17–20). Eventually, the datasets were anonymized using the software 
tool ARX, which can anonymize structured data according to a variety 
of data privacy models (21). In particular, we  deleted identifying 
features and established 5-anonymity with respect to the quasi-
identifying features age and sex. This means that we generalized the 
age to age groups such that at least five patients share the same 
combination of age and sex. Additionally, ARX suppressed too specific 
cancer cases that would require huge age groups to achieve 
5-anonymity. The sizes of the resulting datasets are depicted in Table 1. 
More details on the data curation process can be  found in 
Supplementary material.

2.2 LOP prediction

We implemented LOP prediction by classifying the patients 
according to their type of cancer using a supervised ML approach. In 
particular, we applied a RF classifier and a GBT classifier on each of 
the six compiled datasets resulting in 12 classification runs in total. RF 
and GBT are tree-based ML methods, which have shown good 
performance in LOP prediction in related work (7–12). An additional 
advantage of these methods is their inherent explainability, which is a 
key requirement for AI-based decision support in medical contexts 
(22, 23). As supervised ML methods, both RF and GBT need class 
labels throughout model training. In our case, these class labels is the 
LOP. Therefore, we  trained and evaluated the models on medical 
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RWD of cancer patients with known cancer types, i.e., on data of 
non-CUP patients.

We comprehensively evaluated the performance of the classifiers 
considering several performance metrics: accuracy, Precision, 
Recall, F1-score, and MCC score. This performance estimation was 
combined with 10-fold NCV to decrease the influence of 
randomness and to determine optimal hyperparameter values for 
the classifiers from a pre-defined parameter grid. For the RF, the 
parameter grid contained the values 5, 10, 20, 35, and 50 for the 
number of decision trees (DTs), the values 3, 5, 7, and 10 for the 
maximal depth of the DTs, the two entropy measures Gini-Index 
and Cross-Entropy, as well as training with and without 
bootstrapping. The parameter grid of the GBT contained the values 

0.1, 0.2, and 0.5 for the learning rates and the values 3, 5, 7, and 10 
for the maximal depth of the DTs in the GBT sequence. The optimal 
set of hyperparameter values was chosen by a grid search approach 
maximizing the MCC score of the classification. We have opted for 
an optimization according to MCC score due to the high class-
imbalance in our datasets and the low sensitivity of the MCC score 
for such class-imbalances (24). The 10-fold NCV was stratified in 
order to maintain the class distribution in the test and training 
dataset. Eventually, we determined the importance of each input 
feature for LOP prediction based on the average decrease in class 
entropy over all splits in which the respective feature was the 
separating feature (25, 26). To enable a systematic comparison of 
individual features, we determined four groups of features according 

FIGURE 1

Dataset compilation process. Six datasets (nested boxes) were created which differ in the number of features (width of the boxes) and the number of 
cases (height of the boxes). The features always contain the core features listed above and optionally tumor markers (TM) as well as organ-specific 
Tumor Burden Scores (TBS). The number of cases is partly restricted by requiring the case to have an entry in the radiological study system (RSS) or the 
location of the primary tumor (LOP) to either be Lung, Upper GI, Pancreas, or Liver.

TABLE 1 Number of cancer cases in the three datasets “core features,” “core features and TM,” and “all features” before (blue) and after (green) 
anonymization when including all eight classes vs. only including four classes Lung, Upper GI, Pancreas, and Liver.

Number 
of classes

Cases in “core features” dataset 
(nine features)

Cases in “core features and TM” 
dataset (11 features)

Cases in “all features” dataset 
(30 features)

Before 
anonymization

After 
anonymization

Before 
anonymization

After 
anonymization

Before 
anonymization

After 
anonymization

8 13,861 13,764 13,861 13,712 336 328

4 4,295 4,271 4,295 4,271 299 297
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to their feature importance (FI) for each classification setting, 
individually: low, medium low, medium high and high FI. The 
groups were defined based on the quartiles of the FI. More details 
on the methods and their implementation can be  found in 
Supplementary material.

3 Results

3.1 LOP prediction performance

We applied 10-fold NCV to evaluate the classification 
performance of the tree-based ML algorithms on the six datasets. 
Figure 2 shows the mean performance values across the 10 NCV 
iterations for all examined classification settings, i.e., combinations 
of algorithm and dataset. In terms of average Accuracy, the 
performance spanned from 55.8 to 84.5% in the eight-class 
classification task and from 57.2 to 93.6% in the four-class 
classification task. The average MCC scores ranged from 0.42 to 
0.81 when distinguishing eight LOP classes and from 0.34 to 0.92 
when assigning the cancer cases to one of four LOP classes. The 
achieved performance values were stable across the 10 NCV 
iterations, which can be seen from the small standard deviations.

For both classification tasks (four and eight LOP classes), 
we observed that the values of all performance metrics increased with 
increasing numbers of features. The provision of the TBS (“all 
features”) led to a particular increase in performance for both ML 
methods. Moreover, the GBT algorithm exhibited slightly higher 
performance scores than the RF in almost all combinations of metric 
and dataset. The only exceptions were the MCC score of the RF on the 
eight-class “all features” dataset and the Precision of the RF on the 
“core features” and “core features and TM” datasets. In these settings, 
the scores were slightly higher for the RF than for the GBT. Another 
striking observation was that Precision is usually higher than Recall 
in all classification runs. The only exceptions were the two classifiers 
trained to discriminate eight LOP classes based on “all features.” These 
classifiers exhibited a slightly higher Recall than Precision. In general, 
including the TBS in the input dataset increased both Precision and 
Recall while decreasing their difference. Thus, including the TBS 
resulted in a more balanced decision making.

Considering individual combinations of datasets and ML 
algorithms, we observed that the Accuracy, Precision, Recall, and 
F1-score are higher in four-class classification than in the eight-class 
setting. The difference is particularly high on “all features,” i.e., when 
the TBS are provided. In contrast to the simpler metrics, the MCC 
score is usually higher in the eight-class classification setting. Only the 
classification runs on “all features” achieve a higher MCC score when 
distinguishing between four instead of eight classes.

3.2 Feature importance

For each classification run, i.e., combination of feature set and ML 
algorithm, we determined the FI of individual features in every NCV 
iteration. The means of the FI values across NCV iterations are 
visualized in Figure 3 per feature and classification run.

Particularly striking is the overall decreased importance of the 
feature sex when not considering the LOP classes Breast, 

Colorectal, ENT, and Kidney. In this four-class setting, the FI is 
transferred from sex to all other features having a decent to high 
importance in the eight-class setting. The gain in FI is particularly 
high for the features CRP, leukocytes and the N-value. A medium 
gain can be observed for the other features contained in the feature 
set “core and TM.” The highest increase in FI among the TBS, 
which indicate the distribution pattern of metastases, can be seen 
for the TBS of Pancreas, Lung, Esophagus, and Liver. These TBS 
features already had a rather high FI in the eight-class setting. The 
TBS for Brain, Stomach, Bones, and the group of Other Organs 
were subject to a medium increase in FI.

To enable a more systematic comparison of the FI in the different 
classification runs, we assigned the features to one of four groups: low, 
medium low, medium high and high FI. This grouping is based on the 
first, second, and third quartile of the mean FI value for each 
classification run and depicted in Table 2.

CRP, leukocytes, HB, the N-value and the age exhibited a high 
or medium high importance in the majority of classification runs. 
The feature sex was categorized diversely. When the TBS were not 
provided, the eight-class classification runs assigned a high 
importance to the sex while it was of low or medium low importance 
for almost all four-class classification runs. All approaches on the 
“all features” dataset categorized the sex to have a medium low 
importance. The grading had a medium high FI in the RF-based 
classification runs on the “all features” datasets. All other 
classification runs assigned a lower importance to it (medium low 
or low). The L- and the V-value both are categorized to have rather 
low FI. The TM CA 19–9 and CEA were assigned a rather high 
importance. Out of eight classification runs using the TM as input 
features, six categorized CEA to have a medium high and CA 19–9 
to have high or medium high FI. The two eight-class runs on the 
“core and TM” dataset considered CA 19–9 to have a medium low 
importance and CEA to have a medium low or low importance. In 
general, CA 19–9 received higher FI scores than CEA.

The TBS were only provided as input features in four out of 10 
classifications. In these four classifications, the group of highly 
important features mainly consists of TBS features. In particular, 
the TBS for Lymphnodes, Esophagus, Pancreas, Lung and Liver 
were assigned a high importance for LOP prediction. Only four 
non-TBS features were categorized as high importance features in 
a classification run on “all features”: the N-value, CA 19–9, CRP, 
and the age.

A rather high importance was assigned to the TBS for Brain 
and Stomach while the TBS for Bladder received diverse 
categorizations. In the four-class classification runs, the TBS 
Bladder exhibited low importance for the LOP prediction while it 
had a medium high FI in the eight-class setting. The TBS for 
Kidney, Adrenal Gland, and Other Organs were assigned low or 
medium low FI in all four runs on “all features.” The TBS for 
Intestine exhibited a medium low importance once. In all other 
classification runs, it had low importance. In two classifications it 
even achieved a mean FI of not more than 0. The TBS for Heart, 
Omentum, Skin, Spleen, Mamma, and Thyroid Gland belong to 
the features with low importance in all classification runs on “all 
features.” It is noticeable that, with the exception of TBS Spleen, 
all these TBS have an average FI value of 0 in all four classifications. 
This means that the values of these TBS were not considered in 
any classification.
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4 Discussion

4.1 LOP prediction performance on 
low-dimensional data

We observed a generally higher LOP prediction performance 
when considering four instead of eight LOP classes. This was 

particularly true for the rather simple performance metrics 
Accuracy, Precision, Recall, and F1-Score. For these metrics, the 
baseline performance value of a predictor assigning classes randomly 
is higher with fewer classes. So, we explain the lower values of these 
metrics in the eight-class setting by the larger number of classes. The 
MCC score of the LOP prediction is slightly higher in the eight-class 
setting if the prediction model is provided with the “core features” 

FIGURE 2

Performance of the two applied machine learning methods random forest (RF) and gradient boosted trees (GBT) on the three feature sets “core 
features,” “core features and TM” and “all features” in predicting the location of the primary tumor (LOP). (A) Average classification performance of the 
six classifiers across the 10 iterations of the nested cross validation (NCV), measured by Accuracy, macro-averaged Precision, macro-averaged Recall, 
and macro-averaged F1-score all spanning from 0 to 1 (B) Legend displaying assignment of colors to classification settings. (C) Average classification 
performance across the 10 iterations of the NCV measured in terms of the Matthews correlation coefficient (MCC) spanning from −1 to 1. Sections (A1) 
and (C1) depict the performance in the eight-class classification task (Breast, Colorectal, ENT, Kidney, Liver, Lung, Pancreas, Upper GI). Sections (A2) 
and (C2) depict the performance in the four-class classification task (Lung, Upper GI, Pancreas, Liver).
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or the “core features and TM.” Since the difference in MCC scores in 
the two settings is very small, we  consider this to be  a random 
phenomenon. It is made possible by the restricted information 
content of the “core features” and the “core features and TM” feature 
sets. On the feature set “all features,” the MCC score follows the same 
pattern as the other metrics, i.e., exhibits higher values in the four-
class setting. Strikingly, the performance boost achieved by reducing 
to four classes was especially high on “all features.” This can 
be  explained by the fact that the eight-class version of the “all 
features” dataset contains four underrepresented classes that 
significantly degrade performance. This hypothesis is strengthened 
by the clinical observation, that the four cancer entities that are not 
included in the four-class setting (Kidney, Breast, Colorectal, ENT) 
do substantially differ from each other and the other four entities. 
This would mean that LOP prediction is clinically easier in our 
eight-class setting. Breast cancer is nearly exclusively seen in women 
and kidney cancer has a very different behavior. Therefore, the 
reduced performance in the eight-class setting will be mainly due to 
the mentioned class imbalance.

Regarding the ML methods used, we  observed that the GBT 
method outperforms the RF. On one of the six datasets all measured 
performance values are higher for the GBT method (four-class “all 
features”). On the other five datasets, the majority of measured 
performance metrics is higher for the GBT method. This observation 
coincides with findings in ML research. These findings attribute a 
higher performance to the GBT method, in general, while the 
performance of the RF can be similarly high or even higher (27, 28).

Overall, we  see that the LOP prediction performance on 
low-dimensional data is at the same level as the performance of related 
approaches using high-dimensional data (7–15). In our setting, this 
high performance (Accuracy: 93.6%, MCC: 0.917) was achieved with 
a GBT classifier on “all features,” i.e., on the dataset containing the 
TBS. Including the TBS significantly increased the prediction 
performance although it has not reached the top performance of high-
dimensional approaches (9, 11–14). Their LOP predictors achieved 
Accuracy values of 95–97%. We assume that the performance of our 
low-dimensional approach can be  optimized further. This 
optimization could be  achieved by including other or additional 

FIGURE 3

Mean feature importance (FI) for individual input features in 10-fold nested Cross-Validation (NCV). The FI values were determined in every NCV 
iteration for each combination of machine learning method [random forest (RF) or gradient boosted trees (GBT)] and feature set [“core features” (only 
first 9 features), “core features and TM” (only first 11 features), or “all features”]. This barplot visualizes the mean FI value of the individual features across 
10 NCV iterations. (A) Importance of individual features in the eight-class classification task of assigning cancer cases to one of eight LOP classes 
(Breast, Colorectal, ENT, Kidney, Liver, Lung, Pancreas, Upper GI). (B) Importance of individual features in the four-class classification task of assigning 
cancer cases to one of four LOP classes (Lung, Upper GI, Pancreas, Liver).
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TABLE 2 Features grouped by their importance for the LOP prediction.

Classification 
run

Low 
importance

1st 
quartile 

of FI

Medium low 
importance

2nd 
quartile 

of FI

Medium high 
importance

3rd 
quartile 

of FI

High 
importance

RF on core features 

(eight LOPs)

Grading (0.043),

V (0.022),

L (0.019)

0.043 N (0.096) 0.098 Leukocytes (0.107),

Age (0.100)

0.110 Sex (0.371),

HB (0.130),

CRP (0.112)

GBT on core features 

(eight LOPs)

Grading (0.039),

V (0.018),

L (0.011)

0.039 Age (0.061) 0.070 CRP (0.091),

Leukocytes (0.078)

0.096 Sex (0.477),

HB (0.123),

N (0.102)

RF on core features 

and TM (eight LOPs)

Grading (0.034),

V (0.022),

L (0.016)

0.040 CA 19–9 (0.049),

CEA (0.046)

0.066 N (0.087),

Leukocytes (0.085),

Age (0.083)

0.087 Sex (0.377),

HB (0.113),

CRP (0.088)

GBT on core features 

and TM (eight LOPs)

CEA (0.024),

V (0.019),

L (0.009)

0.028 Grading (0.037),

CA 19–9 (0.032)

0.046 CRP (0.081),

Leukocytes (0.069),

Age (0.055)

0.081 Sex (0.462),

HB (0.119),

N (0.094)

RF on all features 

(eight LOPs)

TBS Kidney (0.003),

TBS Intestine (0.001),

TBS Thyroid Gland 

(0.000),

TBS Mamma (0.000),

TBS Spleen (0.000),

TBS Skin (0.000),

TBS Omentum 

(0.000),

TBS Heart (0.000)

0.004 TBS Brain (0.022),

Sex (0.018),

TBS Other Organs 

(0.016),

L (0.012),

TBS Stomach 

(0.010),

V (0.006),

TBS Adrenal Gland 

(0.005)

0.022 CEA (0.038),

Leukocytes (0.036),

HB (0.034),

Age (0.032),

TBS Bladder 

(0.028),

TBS Bones (0.025),

Grading (0.024)

0.040 TBS Pancreas 

(0.153),

TBS Lung (0.115),

TBS Liver (0.102),

TBS Esophagus 

(0.101),

TBS Lymphnodes 

(0.064),

N (0.057),

CA 19–9 (0.052),

CRP (0.045)

GBT on all features 

(eight LOPs)

V (0.002),

TBS Thyroid Gland 

(0.000),

TBS Mamma (0.000),

TBS Spleen (0.000),

TBS Skin (0.000),

TBS Omentum 

(0.000),

TBS Heart (0.000),

TBS Adrenal Gland 

(0.000)

0.002 TBS Bones (0.013),

L (0.007),

TBS Other Organs 

(0.006),

Sex (0.006),

TBS Kidney (0.005),

Grading (0.005),

TBS Intestine 

(0.003)

0.013 TBS Bladder 

(0.030),

CRP (0.027),

CA 19–9 (0.021),

Leukocytes (0.019),

CEA (0.018),

HB (0.016),

N (0.016)

0.030 TBS Pancreas 

(0.223),

TBS Esophagus 

(0.158),

TBS Lung (0.149),

TBS Liver (0.092),

TBS Lymphnodes 

(0.081),

TBS Stomach 

(0.038),

TBS Brain (0.034),

Age (0.031)

RF on core features 

(four LOPs)

Sex (0.043),

L (0.030),

V (0.028)

0.043 Grading (0.050) 0.080 N (0.134),

Age (0.110)

0.146 CRP (0.247),

Leukocyte (0.199),

HB (0.158)

GBT on core features 

(four LOPs)

Grading (0.043),

V (0.027),

L (0.027)

0.043 Age (0.048) 0.054 HB (0.122),

Sex (0.060)

0.152 CRP (0.291),

N (0.198),

Leukocyte (0.183)

RF on core features 

and TM (four LOPs)

Sex (0.035),

L (0.02),

V (0.018)

0.038 Age (0.071),

Grading (0.04)

0.083 N (0.114),

HB (0.110),

CEA (0.095)

0.114 CRP (0.193),

CA 19–9 (0.158),

Leukocytes (0.145)

GBT on core features 

and TM (four LOPs)

Age (0.033),

V (0.018),

L (0.016)

0.039 Sex (0.05),

Grading (0.045)

0.055 Leukocytes (0.138),

HB (0.093),

CEA (0.06)

0.138 CRP (0.237),

N (0.16),

CA 19–9 (0.15)

(Continued)
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routine clinical data. Moreover, other ML methods could be tested for 
their LOP prediction performance.

4.2 The predictive power of our feature 
sets

The LOP prediction performance on the feature sets “core 
features” and “core features and TM” was solid, but not remarkable. 
This is consistent with the conclusion from the previous paragraph 
that these feature sets are limited in their information content. This 
limitation reduces their predictive power in LOP prediction. By 
adding the TBS, i.e., the distribution pattern of metastases, to the 
dataset (“all features”), the LOP prediction performance increased 
significantly. Moreover, the TM and TBS received a large share of the 
overall FI when they were introduced to the dataset. As a consequence, 
the quartiles of the FI values decreased with increasing number of 
considered features. From these observations, we conclude that the 
TM and, in particular, the TBS add valuable information for LOP 
prediction to the dataset. This is a striking result considering that their 
limited availability makes the classification itself more difficult. 
Including the TM made the missing value imputation less stable due 
to the low availability of CEA and CA 19–9. Including the TBS 
reduced the dataset size significantly, because their extremely low 
availability required us to dispense with most cancer cases. 
Nevertheless, the TBS contributed to a remarkable increase in 

prediction performance. Furthermore, they led to a more balanced 
decision making which can be concluded from the reduced difference 
between Precision and Recall on “all features” compared to the other 
two feature sets. Reasoning on the predictive performance of 
individual features can be  found in Supplementary material. A 
particularly striking observation was the decreased importance of the 
feature sex when not considering the LOP classes Breast, Colorectal, 
ENT, and Kidney anymore. This drop in FI for the sex could be due to 
the high number of female patients in the breast cancer group, while 
the ratio between men and women in the other entities is much 
more balanced.

4.3 The benefits of low-dimensional data 
for LOP prediction

When providing “all features” to the ML methods we achieved 
very high LOP prediction performance on low-dimensional data 
almost reaching the performance of high-dimensional approaches. 
Due to their slightly better performance, the high-dimensional 
approaches might appear more suitable for clinical LOP prediction. 
However, performance alone is not suitable for determining the 
quality of an LOP prediction system for clinical practice. This is 
because the performance only indicates how often the class predicted 
to be most probable was correct. Instead, it must be considered that 
the ML algorithm supports the oncologist in his decision; it does not 

TABLE 2 (Continued)

Classification 
run

Low 
importance

1st 
quartile 

of FI

Medium low 
importance

2nd 
quartile 

of FI

Medium high 
importance

3rd 
quartile 

of FI

High 
importance

RF on all features (four 

LOPs)

TBS Spleen (0.001),

TBS Thyroid Gland 

(0.0),

TBS Intestine (0.0),

TBS Mamma (0.0),

TBS Skin (0.0),

TBS Omentum (0.0),

TBS Heart (0.0),

TBS Bladder (0.0)

0.001 TBS Other Organs 

(0.013),

TBS Stomach 

(0.011),

Sex (0.011),

L (0.009),

TBS Adrenal Gland 

(0.005),

V (0.005),

TBS Kidney (0.002)

0.013 Leukocytes (0.032),

HB (0.031),

CEA (0.029),

TBS Bones (0.025),

TBS Brain (0.023),

Grading (0.018),

Age (0.016)

0.034 TBS Pancreas 

(0.201),

TBS Lung (0.136),

TBS Liver (0.115),

TBS Esophagus 

(0.1),

TBS Lymphnodes 

(0.072),

N (0.057),

CA 19–9 (0.047),

CRP (0.041)

GBT on all features 

(four LOPs)

TBS Thyroid Gland 

(0.0),

TBS Intestine (0.0),

TBS Mamma (0.0),

TBS Spleen (0.0),

TBS Skin (0.0),

TBS Omentum (0.0),

TBS Heart (0.0),

TBS Bladder (0.0),

TBS Adrenal Gland 

(0.0)

0.000 TBS Other Organs 

(0.005),

TBS Kidney (0.005),

TBS Bones (0.004),

L (0.004),

Grading (0.004),

V (0.002),

Sex (0.002)

0.005 CA 19–9 (0.018),

HB (0.014),

CEA (0.013),

CRP (0.013),

Leukocytes (0.011),

Age (0.011)

0.019 TBS Pancreas 

(0.257),

TBS Lung (0.18),

TBS Esophagus 

(0.171),

TBS Lymphnodes 

(0.096),

TBS Liver (0.086),

TBS Stomach 

(0.043),

TBS Brain (0.038),

N (0.022)

For each classification run, i.e., combination of dataset and ML algorithm, we created four groups of features according to their individual mean feature importance (FI) for the respective 
classification in 10-fold NCV. The groups were determined based on the first, second and third quartile of the FI among all features in the respective dataset for the respective classification 
setting: features with a FI at most 1st quartile (low importance), features with a FI above 1st quartile and at most 2nd quartile (medium low importance), features with a FI above 2nd quartile 
and at most 3rd quartile (medium high importance) and features with a FI above 3rd quartile (high importance). All values shown in this table are rounded to three decimal places.
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make the decision for him. It could therefore also output LOP 
probabilities instead of the most probable class alone. Based on such 
a probabilistic overview, the oncologist could make their decision 
including their own prior knowledge. Thus, eventually the output of 
the LOP prediction system would enhance the oncologist’s knowledge 
in a data-driven manner instead of replacing it. The performance of 
the LOP prediction system alone cannot measure the quality of such 
a decision. We  therefore believe that the small reduction in 
performance is justifiable; especially when one considers the clear 
advantages our low dimensional approach has in a practical setting. 
Our approach only needs routine clinical data, i.e., features readily 
available from a diverse patient population without specialized 
examinations. This restriction enables a cost-effective, user-friendly, 
and explainable LOP prediction for CUP patients which could 
be  implemented by a clinical decision support system. The 
explainability is introduced by the chosen ML methods. While high-
dimensional input data requires the application of artificial neural 
networks, which lack explainability, our low-dimensional approach 
allows the use of explainable tree-based methods like RF and 
GBT. Further decision support could be achieved by using probabilistic 
models such as Gaussian Process Models additionally to or instead of 
tree-based methods. Using such models would require some 
preprocessing of categorical variables but, on the other hand, add a 
statistically sound basis to the explainability of the LOP prediction. 
Moreover, as a future vision, our low-dimensional approach could 
enable a continuously learning LOP prediction system. Automated 
ETL processes could be used to update such a system with new patient 
data on an ongoing basis. These regular updates could improve the 
LOP prediction performance continuously. However, the data 
preparation process is currently still too complex and time-consuming 
for an automated ETL process (29). Overall, we consider the benefits 
of low-dimensional data for LOP prediction to outweigh the minor 
reductions in performance.

4.4 Limitations of our work

Our results show that low-dimensional data are well suited for 
LOP prediction, but our work has a few limitations beyond that. 
Firstly, our results do not reveal whether the performance 
improvements through adding the TM and TBS to the input data 
result specifically from these features. An alternative hypothesis is that 
the improved performance results merely from the ML method 
receiving more clinical information. Moreover, the significant 
performance gain through adding the TBS could be  a result of a 
documentation bias. The radiologists knew the LOP when creating the 
RECIST evaluations of the cancer cases, based on which we created 
the TBS. The choice of documented target and non-target lesions 
might have been influenced by prior knowledge on the LOP. On the 
other hand, the RECIST guideline ensured the best possible objectivity. 
To improve the objectivity further, researchers could use different 
representations of the distribution of metastases. At UHC the 
documentation according to RECIST criteria was the only structured 
documentation representing the distribution of metastases.

Another limitation of our work is the restriction to eight rather 
broad LOP classes. Related works have considered more classes and 
sometimes even subclasses, which made their classification setting 
more difficult. Thus, for them, it was more difficult to achieve a high 

classification performance. We restricted to LOP classes that CUP 
patients have been assigned to post-mortem. So, we  argue that 
many of the LOP classes considered by related work will not 
be relevant for deciding the treatment for CUP patients in practice. 
Additionally, some related works exceeded the capabilities of our 
approach by predicting the cancer subtype. Such an advanced 
prediction can further support treatment decisions. Moreover, some 
subtypes differ significantly in characteristics such as the 
distribution pattern of metastases. These significant differences may 
make differentiation of sybtypes easier than differentiation of 
higher-level cancer types. However, our results show that our RF- 
and GBT-based models can classify the different patterns that 
emerge in the subtypes into common cancer classes very well. 
Regarding the potential clinical disadvantage of not predicting the 
subtype, we argue that the subtype can be determined by entity-
specific examinations once the LOP has been detected. What 
remains as a limitation is that we could not sufficiently test the 
feature set “all features” in the eight-class setting. When only 
considering four instead of eight classes, the FI of the feature sex 
dropped significantly. This clear reduction in FI shows that the 
eight-class classification task differs significantly from the four-class 
task. Due to the underrepresentation of the classes “Breast,” 
“Colorectal,” “ENT,” and “Kidney” in the eight-class version of the 
“all features” dataset, we  did not obtain a reliable performance 
measurement of the LOP prediction based on the TBS in the eight-
class setting. This limitation could be mitigated by repeating the 
experiments on a more balanced dataset. The class balance could 
be  increased by including data from further cancer centers also 
documenting their study progress according to RECIST v1.1. 
Another step remaining as future work is the clinical or external 
validation of our results. Such a validation should include 
examining the effects of our data compilation decisions on the 
LOP prediction.

4.5 Conclusion and future work

All in all, the robust classification performance on all datasets 
serves as a proof-of-concept that LOP prediction on low-dimensional 
clinical information works well. We achieved remarkable classification 
performance in particular when the prediction models were given the 
distribution pattern of metastases. The low dimensionality of our 
prediction approach increases its practical applicability in data-driven 
LOP prediction significantly. Future work could now aim for 
optimizing the classification results by using more or different clinical 
routine data as input values. Additional optimization is possible by 
increasing the number of cancer cases in the datasets through 
collaboration with further clinics. This would address the issues of the 
small dataset sizes and the biases possibly introduced by including the 
TBS. Moreover, other ML methods such as probabilistic models as 
well as ensembles of ML algorithms could be tested for their LOP 
prediction performance on low-dimensional clinical information. 
Above all, however, it is key to investigate whether our approach 
delivers reliable LOP predictions for CUP patients. Externally or 
clinically validating the reliability of our low-dimensional LOP 
prediction approach is crucial before deploying it in clinical practice. 
With its focus on practical applicability, our approach could optimize 
the prognosis of CUP patients effectively.
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