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Background: Asthma is a chronic respiratory condition affecting populations 
worldwide, with prevalence ranging from 1–18% across different nations. 
Gender differences in asthma prevalence have attracted much attention.

Purpose: The aim of this study was to investigate biomarkers of gender 
differences in asthma prevalence based on machine learning.

Method: The data came from the gene expression omnibus database (GSE69683, 
GSE76262, and GSE41863), which involved in a number of 575 individuals, 
including 240 males and 335 females. Theses samples were divided into male 
group and female group, respectively. Grid search and cross-validation were 
employed to adjust model parameters for support vector machine, random 
forest, decision tree and logistic regression model. Accuracy, precision, recall, 
and F1 score were used to evaluate the performance of the models during 
the training process. After model optimization, four machine learning models 
were utilized to predict biomarkers of sex differences in asthma. In order to 
validate the accuracy of our results, we performed Wilcoxon tests on the genes 
expression.

Result: In datasets GSE76262 and GSE69683, support vector machine, random 
forest, logistic regression, and decision tree all achieve 100% accuracy, precision, 
recall, and F1 score. Our findings reveal that XIST serves as a common biomarker 
among the three samples, comprising a total of 575 individuals, with higher 
expression levels in females compared to males (p  <  0.01).

Conclusion: XIST serves as a genetic biomarker for gender differences in the 
prevalence of asthma.
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1 Introduction

Asthma is a chronic respiratory condition affecting populations 
worldwide, with prevalence ranging from 1–18% across different nations 
(1). This ailment is characterized by diverse respiratory symptoms and 
variable airflow limitation. Asthma represents a complex interplay 
between genetic and environmental factors, giving rise to a heterogeneous 
spectrum of clinical manifestations, airway inflammation, and 
remodeling (2). Presently, there is compelling evidence linking asthma 
to various inflammatory pathways (3), suggesting that this condition is 
not solely a straightforward, monocausal disease but rather a multifaceted 
and diverse syndrome with an array of inflammatory mechanisms (4).

The overall prevalence of asthma was estimated to be 4.2% (95% 
CI: 3.1–5.6) in a sample of 45.7 million Chinese adults. Among 
children, boys exhibit a higher asthma prevalence compared to girls; 
however, in women, the prevalence is approximately 20% higher than 
in men (5). Notably, this discrepancy may change during puberty. The 
higher prevalence in boys compared to younger girls can be partially 
attributed to the relatively smaller size of their airways in comparison 
to their lungs. A prospective study involving 19-year-old children 
revealed that 21% of those diagnosed with asthma at the age of 7 
experienced resolution, 38% had recurrent asthma, and 41% had 
persistent asthma. Remission was more frequent among boys, but less 
noticeable in girls and patients with severe asthma or sensitivity to fur 
animals (6).

Despite the crucial role played by environmental factors in asthma 
development, genetic factors have also been identified as key 
contributors. Studies investigating the heritability of asthma (the 
extent of population phenotypic variation attributed to genetic 
variation among individuals within the population) have estimated it 
to range from 35 to 95% (7). Dogs and cats are the most prevalent 
domestic pets, and individuals with anaphylactic responses may 
experience significant asthma-related morbidity due to exposure to 
allergens from these animals (8). Approximately 25 to 65% of children 
with persistent asthma display sensitivity to these allergens (9, 10).

Research has confirmed that the severity of asthma and its diverse 
clinical phenotypes may be linked to specific pathogenic moleculars, 
identified as the asthma biomarkers (11). Elevated levels of type 2 
cytokines such as IL-5, IL-4, IL-13, IL-25, IL-33, periostin, dipeptidyl 
peptidase-4, osteopontin, fractional exhaled nitric oxide, 
bromotyrosine, prostaglandin D2 and leukotriene E4, and thymic 
stromal lymphopoietin (TSLP) are emblematic biomarkers for the 
detection and diagnosis of T2-high asthma; conversely, for the 
diagnosis and monitoring of low T2 type asthma, only a limited 
number of available biomarkers are mediated by Th1 and Th17 cells, 
including TNF-α, IL-1β, IL-6, IL-8, IL-17, folliculin, S100A9, 
myeloperoxidase, neutrophil elastase, and brain-derived neutrophil 

factor (12). Moreover, asthma biomarkers are often closely associated 
with genetic factors, encompassing genetics, epigenetics, and 
transcriptomic studies (13). In light of these factors, the application of 
machine learning and artificial intelligence technologies will enhance 
the precision in identifying biomarkers for different 
asthma phenotypes.

Machine learning is a crucial branch of artificial intelligence, with 
its core focus on enabling algorithms to self-optimize through training 
datasets, thereby making predictions or decisions on unseen data (14). 
Machine learning and artificial intelligence have been widely applied 
in the medical field, such as in image recognition, intelligent 
diagnostics, healthcare, and biomarker prediction (15, 16). Ding et al. 
(17) explored asthma-related lipid metabolism-associated biomarkers 
in mouse samples through five types of machine learning models, 
ultimately identifying cholesterol 25-hydroxylase (CH25H) as a 
central lipid metabolic gene in asthma. Lin et  al. (18) based on 
weighted gene co-expression network analysis and machine learning, 
found 11 hub genes from the GSE135192 data set that could serve as 
novel diagnostic markers and therapeutic targets for pediatric asthma. 
Camiolo et  al. (19) performed machine learning classification of 
bronchial epithelial cell gene expression data and found that L18R1 
(IL-18 receptor 1) was inversely associated with lung function and was 
highly expressed in the most severely asthmatic population.

Gender differences are another reason for asthma attacks. Asthma 
prevalence rises in boys during childhood. In contrast, the prevalence 
and severity of asthma increases as women become older. Gender 
differences in asthma prevalence have attracted widespread attention. 
In this study, we used machine learning to explore potential biomarkers.

2 Method

The process of this study is depicted in Figure  1. Firstly, 
we  selectively extract three samples (GSE69683, GSE76262, and 
GSE41863) from the gene expression omnibus (GEO) database and 
categorize them into male and female groups based on gender. The 
data came from the gene expression omnibus database1 (20), which is 
a gene expression public database created in 2000 and contains high-
throughput gene expression data around the world (21). Subsequently, 
we  optimized the parameters of four machine learning models: 
support vector machine, random forest, logistic regression, and 
decision tree. We  then input the optimized parameters into the 
machine learning models to predict biomarkers of gender-specific 
difference associated with asthma prevalence. Lastly, we validate our 
findings through the Wilcoxon test.

2.1 Data source

Data were obtained from three samples including No. GSE69683 
(22), No. GSE76262 (23), and No. GSE41863 (24), in which we divided 
asthma patients into male group and female groups, involving a 
number of 575 individuals, including 240 males and 335 females 
(Table 1). Data set about GSE41863, GSE69683, and GSE76262 was 

1 https://www.ncbi.nlm.nih.gov/geo/

Abbreviations: CI, Confidence interval; GEO, Gene expression omnibus; TP, True 

positive; TN, True negative; FP, False positive; FN, False negative; XIST, X-inactive 

specific transcript; TSIX, TSIX transcript XIST antisense RNA; TXLNGY, Taxilin gamma 

Y-linked; USP9Y, Ubiquitin specific peptidase 9 Y-linked; ZFY, Zinc finger protein 

Y-linked; TTTY10, Testis expressed transcript, Y-linked 10; TTTY14, Testis expressed 

transcript, Y-linked 14; TTTY15, Testis expressed transcript, Y-linked 15; UTY, 

Ubiquitously transcribed tetratricopeptide repeat containing, Y-linked; DDX3Y, 

DEAD-box helicase 3 Y-linked; EIF1AY, Eukaryotic translation initiation factor 1A 

Y-linked; KDM5D, Lysine demethylase 5D; RPS4Y1, Ribosomal protein S4 Y-linked 1.
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obtained from sputum cells, blood sample and induces sputum, 
respectively. Subjects in GSE69683 were divided into severe, moderate, 
and healthy group according to grade of severity. Severe and moderate 
asthma subjects were merged, and divided into male and female group.

2.2 Machine learning

Grid search and cross-validation were used to adjust model 
parameters for support vector machine, random forest, decision tree 
and logistic regression model. Parameter settings are shown in Table 2. 
For support vector machine model, kernel was setting as linear, and 
penalty coefficient was setting from 0.0005 to 100. N_estimators and 
Max_depth of random forest were from 10 to 500, and from 1 to 70, 
respectively. As for logistic regression model, C was setting from 0.001 
to 11. Accuracy, precision, recall, and F1 score were used to evaluate 
the classification performance of the models during the machine 
learning process. As depicted in Table 3, TP represents the number of 
correctly classified positive samples, TN represents the number of 
correctly classified negative samples, FP represents the number of 
samples falsely classified as negative, and FN represents the number 
of positive samples incorrectly classified. All the aforementioned 
operations were carried out in Python3.7 software.

2.3 Statistical analysis

In order to validate the accuracy of our results, we performed 
Wilcoxon test on the genes from the GSE69683, GSE76262, 

and GSE41863. The Wilcoxon test was operated in the website 
https://www.home-for-researchers.com/#/.

3 Result

3.1 Model training

The parameter optimization results for support vector machine, 
random forest, logistic regression, and decision tree using the grid 
search-cross validation method are shown in Table 4. For all three 
samples, the optimal parameters for support vector machine are 
C = 0.005, Gamma = 100, and kernel = linear. For sample GSE69683, 
the optimal parameters for random forest are Max_depth = 2 and N_
estimators = 150. For sample GSE76262, the optimal parameters are 
Max_depth = 4 and N_estimators = 300. Lastly, for sample GSE41863, 
the optimal parameters are Max_depth = 90 and N_estimators = 20.

The performance of each model with the optimal parameters 
obtained during training is shown in Figure 2. In datasets GSE76262 
and GSE69683, support vector machine, random forest, logistic 
regression, and decision tree all achieve 100% accuracy, precision, 
recall, and F1 score, described in Figures 2A,B. However, in the dataset 
GSE41863, the random forest achieved an accuracy of 88%, a recall 
rate of 75%, an F1 score of 76%, and a precision of 80% (Figure 2C).

3.2 Biomarker prediction

Table 5 presents the intersection of the top 20 important genes in 
the feature ranking among four models when the model reaches its 
optimum. During blood sample GSE69683, support vector machine, 
random forest, logistic regression, and decision tree all ranked 
X-inactive specific transcript (XIST) among the top 20 genes. The 
intersection of support vector machine, random forest, and logistic 
regression models comprises TSIX, TTTY10, TTTY14, TTTY15, 
TXLNGY, USP9Y, UTY, and ZFY genes (Table  6) in blood 
sample GSE69683.

TABLE 1 Gender distribution in the sample.

Datasets Female Male Age

GSE69683 243 170 ≥27

GSE76262 70 47 —

GSE41863 22 23 —

FIGURE 1

The flowchart of the research.

TABLE 2 Parameter settings based on grid search for model optimization.

Model Parameters Setting

Support vector 

machine

Kernel Linear

C 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 

1, 5, 10, 20, 100

Gamma 100, 50, 40, 30, 20, 15, 11, 9, 5, 7, 3, 1, 

0.1, 0.01, 0.001

Random forest N_estimators 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 

150, 200, 300, 400, 500

Max_depth 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 

35, 40, 45, 50, 55, 60, 70, 80, 90, 100

Logistics 

regression

C 0.001, 0.003, 0.005, 0.007, 0.009, 0.1, 

0.3, 0.5, 0.7, 0.9, 1, 3, 5, 7, 9, 11

Decision tree Criterion Gini, Entropy

Max_depth 1, 3, 5, 7, 9, 15, 20, 25, 30, 35, 40, 50, 

100, 200

Max_leaf_nodes 1, 3, 5, 7, 9, 11, 15, 20, 30, 40, 50, 100
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The intersection of support vector machine, random forest, 
decision tree, and logistic regression models induces sputum sample 
GSE76262 are TSIX and XIST. The intersection of support vector 
machine, random forest, and logistic regression models consists of 
DDX3Y, EIF1AY, KDM5D, and RPS4Y1 genes in GSE76262.

In sputum cell sample GSE41863, the intersecting genes ranked 
among the top 20 by all four models are TXLNGY, USP9Y, UTY, XIST, 
and ZFY. The intersection of support vector machine, random forests, 
and logistic regression models includes TSIXT and TTY15.

In order to validate the accuracy of our results, we performed 
Wilcoxon tests on the genes from the GSE69683 (XIST), GSE76262 
(TSIX and XIST) and GSE41863 (TXLNGY, USP9Y, UTY, XIST, and 
ZFY). As depicted in Figure 3, within the GSE 76262 dataset, there 
were 47 males (represented by the blue color) and 70 females 
(represented by the red color). TSIX and XIST exhibited higher 
expression in females and lower expression in males, with statistical 
significance (p < 0.001). The same result about XIST is observed in the 
GSE69683 and GSE41863 data sets, as illustrated in Figures 4, 5E. As 
shown in Figure 5, the expression of TXLNGY, USP9Y, UTY, and ZFY 
is significantly higher in males compared to females, with statistical 
significance (p < 0.001).

4 Discussion

Asthma is a common chronic inflammatory disease of the airways, 
characterized by variable and recurrent symptoms, reversible airflow 
obstruction, and bronchospasm (25). The etiology of asthma is 
complex and likely involves the interaction between genetic factors 
and environmental factors that are not fully understood yet. This 
study, based on machine learning, was purposed to investigate the 
genetic biomarkers that caused sex differences in asthma.

The gender disparity in the incidence of asthma has attracted 
considerable attention among scholars. The physiological variances in 
pulmonary development and structure may contribute to this 
phenomenon. Sex differences in lung development between males and 
females begin as early as weeks 16–24 of gestation (26). Female fetuses 
have smaller airways and a lower number of respiratory bronchioles 
compared to males; however, they exhibit a faster rate of maturation 
(27). Upon reaching adulthood, males and females are exposed to 
potentially distinct occupational and familial triggering factors that 
may influence asthma. Females have a greater opportunity to utilize 
cleaning agents within their domestic environment compared to males 
(28). Certain chemical substances present in these cleaning agents 
have the potential to induce respiratory allergic reactions or 
inflammation, subsequently leading to the onset of asthma.

The number of genes associated with the X chromosome was 
thought to influence the immune response and the development of 
autoimmune diseases, such as asthma. Taking toll-like receptor (an 
X-linked gene involved in innate immunity) as an example, TLR7-
mediated HLADR + CD3–CD19-cell production of IFN-α was 
significantly upregulated in healthy women compared to healthy 
men. This suggests that the presence of two X chromosomes plays 
an important role in enhancing innate and adaptive immune 
responses (29). TLR7 could be capable of escaping X-chromosome 
inactivation in female immune cells, similar to TLR8, which also 
could evade X-chromosome inactivation in human monocytes and 
CD4 T cells. The co-dependent transcription of the active X 
chromosome and the escape from X-chromosome inactivation 
(XCI) both lead to higher protein abundance of TLR8 in female 
cells, which may impact the response to viruses and bacteria, as well 
as influence the risk of developing inflammation and autoimmune 
diseases (30).

The X-inactive-specific transcript (XIST) gene serves as a 
primary regulatory factor for X chromosome inactivation in 
mammals. In this study whether it’s a blood sample, an induced 
sputum sample, or a sputum cell sample, XIST ranked at the top of 
all four machine learning models in our predictions. XIST produces 
a long non-coding (lnc) RNA that accumulates throughout the 
entire length of the transcribed chromosome, recruiting factors to 
modify the potential chromatin and silence X-linked genes in cis. 
Previous studies have established a significant correlation between 
XIST and lung pathologies. In the context of lung cancer, Li et al. 
(31) discovered that XIST in metastatic non-small cell lung cancer 
(NSCLC) tissues facilitates TGF-β-induced EMT, as well as cell 
invasion and metastasis, through modulation of the miR-367/
miR-141-ZEB2 axis. Additionally, XIST expression is elevated in 
response to the nicotine derivative nitrosamine ketone (NNK) in 
lung injury, influencing the aberrant expression of miR-328-3p (32). 

TABLE 4 The optimal parameters for the four models.

Model Support vector machine Random forests Decision tree Logistic 
regression

C Gamma Kernel Max_
depth

N_
estimators

Criterion Max_
depth

Max_leaf_
nodes

C

GSE69683 0.0005 100 Linear 2 150 Gini 1 3 0.001

GSE76262 0.0005 100 Linear 4 300 Gini 1 3 0.1

GSE41863 0.0005 100 Linear 90 20 Gini 5 20 0.003

TABLE 3 Evaluating indicators.

Evaluation index Function definition

Recall TPRecall 100%
TP FN

= ∗
+

Specificity TNSpecificity 100%
TN FP

= ∗
+

Precision TPPrecision
TP FP

=
+

F1-score Precision RecallF score 2
Precision Recall1

∗
=

+

Accuracy TP TNAccuracy 100%
TP TN FP FN

+
= ∗

+ + +
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Furthermore, XIST plays a role in acute lung injury (ALI), Li et al. 
(33) observed upregulation of XIST in a lipopolysaccharide (LPS)-
ALI mouse model and in lung endothelial cells; knockdown of XIST 
inhibited the LPS-induced inflammatory response and apoptosis in 
these cells. While numerous studies have substantiated the 
association between XIST and various lung diseases, its relationship 
with asthma has been less explored. In the present study, 
we elucidate the connection between XIST and asthma, and propose 
its potential as a biomarker for gender disparities in asthma 

prevalence. Fagerberg et al. (34) utilized next-generation sequencing 
to analyze the transcriptomes of 95 different human organs and 
tissues based on a total of 27 individuals’ samples. They discovered 
the expression of the XIST gene in human lung tissue. In our 

FIGURE 2

The performance of the machine learning model on the dataset (A, GSE76262; B, GSE69683; C, GSE41863).

TABLE 5 Intersection of the top 20 genes ranked by feature importance 
among four models.

Model GSE69683 GSE76262 GSE41863

Support 

vector 

machine

Random 

forests

Decision tree

Logistic 

regression

XIST TSIX

XIST

TXLNGY

USP9Y

UTY

XIST

ZFY

TABLE 6 Intersection of the top 20 genes ranked by feature importance 
among three models.

Model GSE76262 GSE69683 GSE41863

Support 

vector 

machine

Random 

forests

Logistic 

regression

DDX3Y

EIF1AY

KDM5D

RPS4Y1

TSIX

TTTY10

TTTY14

TTTY15

TXLNGY

USP9Y

UTY

ZFY

TSIXT

TTY15

Random 

forests

Decision tree

Logistic 

regression

TXLNGY

USP9Y

Support vector 

machine

Random forests

Decision tree

ZNF107

ZNF471

https://doi.org/10.3389/fmed.2024.1397746
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chen et al. 10.3389/fmed.2024.1397746

Frontiers in Medicine 06 frontiersin.org

FIGURE 3

Results of Wilcoxon tests on GSE76262 (A, XIST; B, TSIX).

analysis of three samples from a cohort of 575 individuals, 
we observed elevated expression of XIST exclusively in females. 
Currently, there is a lack of reports regarding the gender differences 
in XIST expression in the context of asthma. However, the high 
expression of XIST has been shown to be associated with primary 
biliary cholangitis in females, XIST can stimulate the proliferation 
and differentiation of initial CD4+ T cells, which considered to 
be  the reason for the high incidence of PBC in females (35). In 
addition, Yu et al. (36) confirmed that dysregulation of XIST may 
bias the differentiation selection of this immune cell, with 

dysregulation of XISL evident in CD11c + atypical B cells in female 
patients but not in male patients. These results indicate that XIST 
may affect gender differences in asthma by targeting the 
proliferation and differentiation of immune cells.

Asthma is associated with sex hormone levels and obesity, and 
some published researches revealed that XIST is involved in regulating 
these biological processes. XIST is associated with the expression of 
sex hormones. Armoskus et  al. (37) employed gene expression 
microarrays to identify 90 potential genes that were differentially 
expressed in male and female mice’s neocortex/hippocampus, and 
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PCR reverse transcription revealed dimorphic expression of the XIST 
gene. XIST is implicated in androgen/estrogen signaling pathways, 
protein modification, and cell proliferation/death, all of which are 
linked to differences in neurodevelopment, cognitive function, and 
neurological illness between sexes. Wang et al. (38) discovered that the 
lncRNA XIST was down-regulated in late-onset hypogonadism, and 
that XIST siRNA increased cell apoptosis, increased caspase3 activity, 
and decreased testosterone levels. XIST also regulates obesity-related 
processes. XIST may assist regulate intramuscular fat metabolism, 
according to Yang et al. (39), who used bioinformatics analysis and 
machine learning to uncover potential tissue-specific indicators of 
swine fat accumulation. Wu et al. (40) discovered that XIST expression 
was substantially higher in female than male persons in human 
adipose tissue. XIST expression increased considerably in vitro during 
brown fat cell development. Brown preadipocyte development was 
impeded by XIST knockdown, but XIST overexpression facilitated full 
differentiation. Yao et al. (41) used lncrNA-mirNA-mrna networks to 
identify possible functional lncRNAs in metabolic syndrome 
(including abdominal obesity), and discovered that XIST was the most 
relevant lncRNA.

Abnormal proliferation and activation of immune cells are 
considered to be the key to the pathogenesis of asthma. TH2 cell 
was generally considered to be the main immune cell responsible 
for asthma, but increasing evidence shows that asthma was related 
to B cells (42, 43). Previous research has demonstrated the crucial 
role of B cells in regulating lung function and airway remodeling in 
mouse models of asthma (44). Mechanistic investigations have 
revealed that B cells contribute to the asthmatic process by initiating 
and sustaining T helper (Th) cell-mediated immune responses (45). 
A recent study highlighted the connection between the initiation of 
the Th response and innate lymphoid cells type 2 (ILC2s). ILC2s 
reside on mucosal surfaces, including the lungs, and are capable of 

producing type 2 cytokines such as interleukin-5 (IL-5) and 
interleukin-13 (IL-13), which are pivotal in the pathogenesis of 
allergic disorders and asthma (46). Notably, IL-13 can induce B cell 
class switching and the production of immunoglobulin E (IgE), 
collectively exacerbating the progression of asthma (47). Habener 
et  al. (48) found that IgA + memory B cells were significantly 
increased in peripheral blood mononuclear cells of asthmatic 
patients, especially in asthmatic patients with small airway 
dysfunction. Wypych et  al. (45) also confirmed that B cells 
participate in the pathogenesis of asthma mouse models by 
amplifying Th cell effects. What is exciting is that the latest study 
confirmed that XIST was required to maintain the homeostasis of 
B cells. On the one hand, XIST prevents the escape of x-linked 
genes with DNA hypomethylation promoters in B cells. On the 
other hand, XIST maintains X inactivation through sustained 
deacetylation of H3K27ac, revealing the regulatory role of XIST in 
B cells (36). Interestingly, XIST dysregulation was found in 
infiltrating B cells of rheumatoid arthritis joint tissues, which is a 
chronic inflammatory condition in the same family as asthma (36), 
suggesting the potential of XIST in the treatment of chronic 
inflammation, which indirectly justifies the conclusion of the 
present study that XIST can be  used as a therapeutic target for 
asthma. The study conducted by Zhou et al. (49) provides additional 
support for our findings. They obtained peripheral blood samples 
from 137 pediatric asthma patients and 59 healthy children. 
Through bioinformatics analysis, it was revealed that XIST is 
significantly upregulated in pediatric asthma patients.

Jiang et al. (50) employed bioinformatics approaches to analyze 
the hub genes and signaling pathways involved in severe asthma. 
Through protein–protein interaction network analysis and module 
analysis, they identified 11 hub genes within key modules. Jiang’s 
study also involved the GSE76226 dataset, yet it yielded no overlapping 

FIGURE 4

Results of Wilcoxon tests on GSE69683.
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FIGURE 5

Results of Wilcoxon tests on GSE41863 (A, ZFY; B, TXLNGY; C, USP9Y; D, UTY; E, XIST).

results with our predicted genes. We  speculate that the probable 
reason lies in the different methodologies employed: this study utilized 
machine learning models with parameter optimization techniques to 
screen for potential genes, whereas Jiang et al. analyzed the top 5,000 
genes from three datasets.

We must acknowledge the limitations of this study. Firstly, it is 
based on predictive analysis of existing databases to identify gender-
specific differences in asthma prevalence genes, suggesting XIST as a 
potential biomarker. However, experimental validation is lacking, and 
we plan to address this in future experiments. Secondly, our analysis 
utilized three datasets, with one dataset including age information 
(over 18 years old), as our preliminary literature review revealed a 
reversal in asthma prevalence between males and females 
during adolescence.

5 Conclusion

The study, based on machine learning, found genetic biomarkers 
that caused sex differences in asthma rates around puberty, which has 
attracted widespread attention. Grid search was used to train and adjust 
parameters of support vector machine, decision tree, logistic regression 
and random forest. Results revealed that XIST was a potential genetic 
biomarker associated with gender differences in asthma prevalence.
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