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Background: The field of machine learning has been evolving and applied in 
medical applications. We utilised a public dataset, MIMIC-III, to develop compact 
models that can accurately predict the outcome of mechanically ventilated 
patients in the first 24  h of first-time hospital admission.

Methods: 67 predictive features, grouped into 6 categories, were selected for the 
classification and prediction task. 4 tree-based algorithms (Decision Tree, Bagging, 
eXtreme Gradient Boosting and Random Forest), and 5 non-tree-based algorithms 
(Logistic Regression, K-Nearest Neighbour, Linear Discriminant Analysis, Support 
Vector Machine and Naïve Bayes), were employed to predict the outcome of 
18,883 mechanically ventilated patients. 5 scenarios were crafted to mirror the 
target population as per existing literature. S1.1 reflected an imbalanced situation, 
with significantly fewer mortality cases than survival ones, and both the training 
and test sets played similar target class distributions. S1.2 and S2.2 featured 
balanced classes; however, instances from the majority class were removed from 
the test set and/or the training set. S1.3 and S 2.3 generated additional instances of 
the minority class via the Synthetic Minority Over-sampling Technique. Standard 
evaluation metrics were used to determine the best-performing models for each 
scenario. With the best performers, Autofeat, an automated feature engineering 
library, was used to eliminate less important features per scenario.

Results: Tree-based models generally outperformed the non-tree-based ones. 
Moreover, XGB consistently yielded the highest AUC score (between 0.91 
and 0.97), while exhibiting relatively high Sensitivity (between 0.58 and 0.88) 
on 4 scenarios (1.2, 2.2, 1.3, and 2.3). After reducing a significant number of 
predictors, the selected calibrated ML models were still able to achieve similar 
AUC and MCC scores across those scenarios. The calibration curves of the XGB 
and BG models, both prior to and post dimension reduction in Scenario 2.2, 
showed better alignment to the perfect calibration line than curves produced 
from other algorithms.

Conclusion: This study demonstrated that dimension-reduced models can 
perform well and are able to retain the important features for the classification 
tasks. Deploying a compact machine learning model into production helps 
reduce costs in terms of computational resources and monitoring changes in 
input data over time.
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1 Introduction

Accurate survival prediction for mechanically ventilated patients 
in intensive care units (ICUs) remain a medically challenging feat (1, 2). 
To this end, various studies attempted to leverage complex machine 
learning (ML) algorithms trained on large databases combining 
clinical facts and involving thousands of patients. One example is the 
classification paradigms where supervised ML algorithms were used 
in developing predictive models, such as Decision Tree (DT), Bagging 
(BG), or eXtreme Gradient Boosting (XGB). Ruan et al. (3) analysed 
162,200 episodes of respiratory failure, included in the Taiwanese 
National Health Insurance database, to study how the prognosis of 
mechanically ventilated patients changed with each additional day 
required for treatment. Another study conducted by Li et  al. (4) 
utilised 4,530 patients’ records, along with medical facts, to predict 
hospital mortality in patients with congestive heart failure, and where 
mechanical ventilation was deployed, by leveraging 11 ML algorithms.

The issue of providing accurate prognostic estimations is also 
important for both patients and their decision-makers since the 
number of patients requiring prolonged mechanical ventilation has 
increased during the last decade (5). This has also been particularly 
underscored as a result of the Covid-19 pandemic. By employing 
various ML algorithms to predict the outcomes of mechanically 
ventilated patients, clinicians can expedite the decision-making 
process (6). Zhu et al. (7) used seven ML methods on 25,659 ICU 
adults to estimate the survival of mechanically ventilated patients. The 
highest Area Under the Curve (AUC) score attained from the testing 
set was 0.821 for the XGB classifier, and the calibration curve was 
closely aligned with the perfect predicted probability line. In the study, 
the dataset used for the training and testing tasks was balanced, with 
the non-surviving group of patients accounting for 45.5%. However, 
it should be noted that there is great location-dependent variability 
pertaining to mortality. For example, the mortality rate of ICU 
patients who needed mechanical ventilation in Brazil was over 50% 
(8), while in Saudi Arabia the adult mortality rate of mechanically 
ventilated patients was 29% (9). Therefore, our study aimed at 
conducting its analyses using various scenarios drawn out of the real 
world, including balanced and imbalanced class distributions that 
reflect a target population.

Searching a large space of hyper-parameters can be  time-
consuming and computationally costly, hindering the optimisation 
process. For example, the time complexity computed for an unpruned 
decision tree is O p nlog n. ( )( ) , where p is the number of features and 
n is the number of observations (10). Zhu et al. (7) used all available 
predictors and observations for the prediction tasks. This means the 
computational time during the training phase could be significant since 
the number of node evaluations could be in the range of millions. While 
Zhu et al. (7) used the Random Forest (RF) algorithm in their study, 
Louppe (11) and Do et al. (12) noted that the efficiency and performance 
of RF models may decrease as the number of features increases. This 
presents visible limitations when high-dimensional data and numerous 
observations are required for re-training ML models during the 
deployment and monitoring of ML applications, including (1) timely 
delivery of results while ingesting various data sources into ML models, 
(2) cost to monitor changes in input data, as it can deviate from the 
training dataset over time, so called data drift, and for quality control of 
model updates (13). Hence, this study proposes a method to automate 
feature selection tasks, aiming to reduce the number of predictors while 

endeavouring to achieve a better, or at least similar, classification 
accuracy (AUC score), compared to the one reported by Zhu et al. (7).

In the context of this study, a set of assumptions was outlined:

 • Three main test sets were employed to reflect different real-world 
scenarios: 1 test set with imbalanced classes, and 2 test sets with 
balanced classes achieved through under-sampling to remove 
instances of the majority (survival) class and SMOTe over-
sampling to increase instances of the minority (mortality) class.

 • The mortality class was a minority in the final dataset that 
we extracted from MIMIC-III. Therefore, it was considered as a 
positive class when we evaluated various metrics in relation to the 
ML models’ performance. Conversely, the survival class was the 
majority, or negative, class or value.

 • True positive or true negative is categorised if a mechanically 
ventilated patient was predicted correctly as dead or alive, 
respectively. False positive and false negative occurred in 
misdiagnosed cases.

 • We assumed in this study that the consequences of overlooking 
mortality cases far outweigh the harms of unnecessary treatment; 
the prognosis for ML models with a higher Sensitivity or Recall 
were favoured.

2 Materials and methods

2.1 Data source

Data for this study was collected from the Medical Information 
Mart for Intensive Care III (MIMIC-III) database, which is publicly 
available. After de-identifying their records, it consisted of 46,520 
patients who stayed in the critical care unit of Boston’s Beth Israel 
Deaconess Medical Centre between 2001 and 2012. The predictive 
models of this study were trained and validated using the 
retrospectively extracted data therein. It should also be noted that this 
study was performed based on the analysis of Zhu et al.’s study (7) and 
Johnson et al.’s report (14).

2.2 Inclusion criteria of study population

In this paper, the study population along with its target variable 
and predictors were extracted from the MIMIC-III database using a 
Structured Language Query (SQL) script. The data selection criteria 
follow the process presented by Zhu et al. (7). There were 6 distinct 
groups of predictors, namely, demographic characteristics, medical 
history, disease severity, diagnosis, vital signs and laboratory results. 
The criteria for each group are described below:

 • Demographic characteristics: the subject IDs and ICU admission 
times were used to identify distinct adult patients and their first 
ICU admission. Initially, we extracted patients who were 16 years 
or older. Age was calculated using the difference between the date 
of birth and the date of hospital admission.

 • ICD-9 code provided by MIMIC-III was used to define the 
medical history features. The rationale of using ICD-9, and not 
ICD-11 is due to the design of the MIMIC-III.
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 • In the disease severity group features, we extracted the SAP II, 
SOFA and OASIS scores.

 • In the diagnostic features group, diagnosis of sepsis, any organ 
failure and/or organ dysfunction were used to select the 
population. Also, diagnosis of severe clinical issues, such as 
respiratory, coagulation, liver, cardiovascular, central nervous 
system or renal failure, were identified if the SOFA score of the 
respective organ or system reached 4.

 • In the vital signs and laboratory results groups, only values taken 
in the first 24 h of a patients’ presentation were taken 
into consideration.

 • For the ventilation duration group, we used the official scripts 
provided by MIMIC-III for data filtering.

Once all the criteria were established, filtering was applied to limit 
the patient pool to those within 18–90 years old who were on 
mechanical ventilation. As a result, we eliminated 2,074 ICU patients 
who were outside the prescribed age range, and we also excluded 
17,635 patients who were not subjected to mechanical ventilation. 
Several other irrelevant features were dropped, which ultimately 
resulted in a dataset consisting of 18,883 patients and 67 predictors. 
The target variable for the predictive modelling process was 
hospital mortality.

2.3 Data exploration and pre-processing

Missing values, outliers and valid value ranges were processed 
prior to getting a final dataset. Outliers were not removed since they 
might carry important information. At the same time, inclusion of 
outliers might affect the robustness of the models. To lessen possible 
impacts, the data was validated against acceptable ranges for all 
numerical variables (vital signs and laboratory results) to ensure that 
exceptionally egregious values were excluded from the modelling 
process. For example, outlier detection was conducted using a range 
of 3 standard deviations, preserving the integrity of the data and its 
representation of real-world measurements. The valid ranges of all 
features are provided, along with the feature descriptions, in 
Supplementary material S1.

Median imputation by outcome class was employed to handle 
missing values, including Max Lactate, Min Lactate and Mean Lactate 
since each has about 27% missing in this study. This imputation aimed 
to minimise bias resulting from outliers and to maintain uniformity 
within the classes. Moreover, Zhu et al.’s approach (7), which set the 
threshold for missing value removal at 30%, solidified the decision to 
impute missing values rather than remove any features.

Inconsistencies were observed in the ICD-9 codes used for 
broader medical terms such as malignancy and stroke across multiple 
publications, posing challenges for reliable disease classification. To 
ensure consistency and reproducibility, the same codes used in the 
publication by Feng et al. (15) for malignancy and stroke were adopted.

2.4 Data sampling

The total size of the final dataset for analyses included 18,883 
patients and a set of 67 features. Although the case of classes, where 
the number of deaths is considered as a minority, this was not 

considered in Zhu et al.’s study (7). To deal with this issue, as well as 
the possibility of data drift when deploying the ML models, we created 
5 different scenarios to compare the results of the predictive models 
using random under-sampling and Synthetic Minority Over-sampling 
Technique (SMOTe). First, we randomly split the data (N = 18,883) 
using a ratio of 70:30. The rationale of using this train-test split is 
based on the study conducted by Singh et al. (16) who reported that 
using 70:30 ratio gives the highest AUC scores among different split 
ratios, across various ML models, including Logistic Regression (LR), 
Linear Discriminant Analysis (LDA), Random Forest (RF), and Naïve 
Bayes (NB). Using this initial split also ensured that all instances in the 
test set were not presented to all ML models while training. Next, 
we applied random sampling and SMOTe to either under- or over-
sample the training and the test sets separately (Figure 1).

The first situation, including scenario 1.1 (S1.1), 1.2 (S1.2), and 1.3 
(S1.3), aimed at keeping the test set (N  = 5,665) unaltered, while 
different sampling techniques were applied on the training set to 
achieve better learning for the minority class. This created a situation 
where the size of the test set was larger than the training set (S1.2). The 
sampling techniques adopted in this study comprised random under-
sampling and SMOTe. The second situation, which comprised 
scenario 2.2 (S2.2) and 2.3 (S2.3) used the same sampling techniques 
to create balanced classes for both the training and test sets. Table 1 
gives the details of the sizes of different samples.

2.5 Dimension reduction Autofeat tool

The second objective of this study was to explore the possibility of 
automating the feature engineering process by reducing the 67 
independent variables to a significantly smaller number of features, 
while achieving a similar performance.

We identified 2 existing packages on automating features, namely, 
Deep Feature Synthesis (DFS) and Autofeat. First, an experiment was 
conducted using DFS, which was to automatically generate new 
features based on relationships between the variables in a dataset. 
However, many manual steps were still required, such as manually 
selecting aggregative/transformative features on finding optimal 
combination of primitives. Note that in this package, feature primitives 
are refined as building blocks for creating features. Moreover, another 
limitation of DFS was that the package conducts feature selections 
within the memory of one machine. This was deemed to be very time 
consuming, and therefore, was decided not to use DFS for 
this objective.

We employed the Autofeat Python package to automatically 
reduce features. The advantage of using Autofeat is the interpretability 
after reducing dimensions. The Autofeat package is an automated 
feature engineering and selection tool developed for use in scientific 
use cases where measurements are stored in a single table (17). It 
provides the AutofeatRegressor and AutofeatClassifier classes, which 
automatically generate non-linear forms of the input variables in the 
original data prior to selecting the most relevant features and fitting 
them to a linear prediction model. A third class, called FeatureSelector, 
is also present as part of the library which provides only the feature 
generation and selection part without the modelling step. The 
FeatureSelector class works by first generating a non-linear set of 
features from the original set of features by alternating multiple times 
between steps of applying non-linear transformation like log, square 
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root, inverse, square, cube, trigonometric transformations, etc., to the 
variables and combining pairs of these features through calculating 
their sum, difference and product. This leads to an exponentially 
growing feature space, with, for example, 3 original features growing 
to 4,000 features by the third step. In addition to this, the Pint Python 
library was also used to generate dimensionless features from the 
original ones by applying the Buckingham π-theorem. This ensured 
that only valid features were generated, and no feature – for example 
the difference between a feature depicting a time measure and another 
depicting temperature – was generated. Memory management in the 

non-linear feature generation step can be accomplished by initially 
sub-sampling the data points.

The goal was to only select these features from the thousands 
generated that made a meaningful contribution when added as input 
to a linear model. To achieve this, firstly features that were highly 
correlated to the original features, or with simpler features, were 
removed prior to using a multi-step selection process on the remaining 
features. Instead of dropping features that did not contribute any 
information by themselves, or might seem redundant, a Lasso LARS 
regression model and an L1-regularised LR model were used for noise 

FIGURE 1

Data selection and scenarios creation.

https://doi.org/10.3389/fmed.2024.1398565
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Nguyen et al. 10.3389/fmed.2024.1398565

Frontiers in Medicine 05 frontiersin.org

filtering in which a model was trained on the original features as well 
as noise features generated by shuffling data or random sampling from 
a normal distribution. Only features with model coefficients greater 
than the largest coefficient of the noise features were kept. To avoid the 
problem faced when modelling using a large, interrelated feature space 
on a smaller number of data points, an L1-regularised model was first 
trained on all features, and those with the largest absolute coefficients 
were selected. The remaining features were then divided into equal 
chunks of size smaller than half of the total number of features, and a 
model was fitted to each chunk to determine which features to add. 
The subset of features thus obtained was merged before fitting a final 
model to determine the final set of features. This selection process was 
performed multiple times with different sub-samples of the data to 
obtain a more robust feature set. The feature results of these runs were 
merged before highly correlated features were filtered out again and a 
model was fitted on the remaining set to identify the final selected 
predictors. The number of features for different sample methods are 
shown in Table 2.

2.6 Machine learning models for predictive 
modelling

In this study, models were developed to predict mortality in the 
first 24 h of ICU admission for mechanically ventilated patients using 
4 different tree-based techniques including DT, BG, XGB and RF, 
along with 5 other non-tree-based algorithms – LR, K-Nearest 
Neighbour (KNN), LDA, Support Vector Machine (SVM) and NB.

To enhance the model performance, both the grid search strategy, 
which considers all viable combinations of hyper-parameters, and its 
implementation in Scikit-learn, namely GridSearchCV, were used to 
identify the optimum parameter values. The parameters to tune were 
“estimator,” “param grid” and “cv.” The main objective for this tuning 
process was to improve the Recall score. Some of the tree-based 
algorithms, such as XGB, or non-tree based, namely, SVM, use 

resources extensively. Hence, we  only limited 5 K-fold 
cross-validation.

Additionally, all the selected ML models in this study were also 
fed into calibrated classifiers to improve the reliability of their 
predicted probabilities, and subsequently utilised the grid search 
strategies to identify the best parameters.

2.7 Model assessment

In terms of discrimination capability, the confusion matrix 
metrics of accuracy, including Precision, Recall and F1-score, and the 
AUC score were used to assess the best performance models. Based 
on the prediction probabilities, the Receiver Operating Characteristic 
(ROC) curves were developed. Then, the model with the best 
predictive performance was identified by comparing the AUC values 
of the models in the testing sets, while F1-score, Precision and Recall 
were used to understand the behaviours of the ML models towards the 
discrimination ability.

Log Loss and Brier Score were employed to select the best models 
that have the highest accurate prediction probabilities. Brier Score 
comprises 2 elements of measures, calibration and discrimination. The 
term “discrimination” in the Brier Score decomposition is more about 
the spread or variability of predicted probabilities across instances of 
different classes, whereas ROC curves entail how well a model 
separates two classes, regardless of the threshold value. In other words, 
AUC explicitly focuses on the ability of a model to discriminate 
between positive and negative classes based on rank ordering, while 
discrimination of the Brier Score indicates the variability of predicted 
probabilities across instances of different classes. In addition, the 
calibrated curve, or reliability graph, was used to evaluate how well 
calibrated a model could be. According to Assel et al. (18), “a well-
calibrated model has a better Brier score than a miscalibrated model 
with similar discrimination.” However, “the Brier score does not 
perform well in several common situations. Specially, the Brier score 
will favour a test with high specificity where the clinical context 
requires high Sensitivity if it is the case that prevalence is low.” Hence, 
our study would use the Brier Score to only make overall observations.

ML algorithms generally expect balanced class distributions with 
equal cost for classification problems. As such, these algorithms are 
not efficient in handling complicated imbalanced data sets (19). In 
addition, ML algorithms contribute more towards performing higher 
quality classification of the majority class samples, which are assumed 
as more significant. As such, learning algorithms exhibit bias towards 
classes containing more samples. However, in the medical field, cases 
of imbalanced class distribution are predominant. This may create a 
situation where a ML classifier might perform worse in production 

TABLE 1 Binary class distribution per scenario.

Scenario Class Training sets 
(%)

Testing sets 
(%)

S1.1
Survival 11,116 (84.1%) 4,750 (83.85%)

Mortality 2,102 (15.9%) 915 (16.15%)

Total 18,883 13,218 5,665

S1.2
Survival 2,102 (50%) 4,750 (83.85%)

Mortality 2,102 (50%) 915 (16.15%)

Total 9,869 4,204 5,665

S1.3
Survival 11,116 (50%) 4,750 (83.85%)

Mortality 11,116 (50%) 915 (16.15%)

Total 27,897 22,232 5,665

S2.2
Survival 2,102 (50%) 915 (50%)

Mortality 2,102 (50%) 915 (50%)

Total 6,034 4,204 1,830

S2.3
Survival 11,116 (50%) 4,750 (50%)

Mortality 11,116 (50%) 4,750 (50%)

Total 31,732 22,232 9,500

TABLE 2 A breakdown of the total number of predictors post dimension 
reduction.

Scenario Total number of predictors

Prior to 
Autofeat

Post 
Autofeat

S1.1 – Imbalanced 67 29

S1.2 and 2.2 – Under-sampled 67 22

S1.3 and 2.3 – Over-sampled 67 40
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systems than in the development environment. Hence, it is important 
to identify a ML algorithm that has a stable performance in both 
situations, imbalanced and balanced class distribution. In this study, 
we assumed that the imbalanced test set with the prevalence of an 
event (mortality) of nearly 20% was similar to the future data in 
production environments. In this case, S1.1, S1.2 and S1.3 used such 
imbalanced test set. S2.2 and S2.3 were simulated to reflect a real-life 
situation where the mortality and survival groups had similar 
distributions (approximately 50%). In details, S2.2 randomly removed 
instances from the majority class (to survival class) while S2.3 used 
SMOTe to increase instances from the minority class (mortality group).

All models were calibrated, and the results presented in this study 
are based on the output of the best parameters using GridSearchCV 
of calibrated models. Moreover, we  present Matthew Correlation 
Coefficients (MCC) in the situation where we endeavour to see the 
changes in prediction performance prior and post dimension 
reduction. Sensitivity is one of the metrics to be used to select the best 
performer when models have similar AUC scores.

2.8 Statistical analysis

The statistical characteristics of the survival and mortality cohorts 
were compared. The comparison results are demonstrated in 
Supplementary material S1. Binary features were expressed in count 
and percentage, while numerical features were expressed in median 
and interquartile range (IQR). Except for Uncomplicated 
Hypertension, Uncomplicated Diabetes, Complicated Diabetes, 
Peripheral Vascular Disease and Hypothyroidism, the mortality 
cohort tended to have a higher count, or median value, than the 
survival cohort. There were also more male patients in the survival 
cohort. Features that had a large difference in percentage or IQR (> 10) 
between the 2 groups were: Hematologic Disease, Liver Disease, 
Sepsis, Any Organ Failure, Severe Cardiovascular Failure, Severe 
Renal Failure, Respiratory Dysfunction, Cardiovascular Dysfunction, 
Renal Dysfunction, Hematologic Dysfunction, Metabolic 
Dysfunction, Max Glucose, Min Glucose, Mean Glucose, Max BUN, 
Min BUN and Mean BUN.

The D’Agostino K-squared test, recognised for effectively assessing 
data distribution characteristics as demonstrated by Yoshida et al. (20), 
was utilised to identify numerical features that did not follow a normal 
distribution, and the results are included in Supplementary material S2. 
To ensure that the use of median imputation to fill missing values does 
not change the original distribution of the 67 features, Kullback–Leibler 
(KL) divergence, which is a measure (in “nats”) of the disparity between 
a probability distribution and a reference probability distribution, was 
used. Following the procedure set by Cover and Thomas (21) for KL 
divergence test, it was observed that the KL divergence results for all 67 
variables were very low. All binary and Age variables had a divergence 
of 0 nats; among all the numeric variables, Max Lactate, Mean Lactate 
and Min Lactate had the top three divergences of 0.052 nats, 0.050 nats 
and 0.049 nats, respectively. This was expected due to the large 
percentage of missing values in these variables. Nonetheless, these 
values were deemed to be  very low and indicated that median 
imputation did not adversely affect the distributions of the features.

KL divergence was also utilised to compare the distribution pre- and 
post-application of a sampling method on the training sets. The 
divergence score was calculated for each feature and compared between 

the imbalanced training set and sampled training sets to study the effects 
of sampling on the feature distributions. It was observed that in the case 
of over-sampled data, all features had very low KL divergence metrics, 
with SAPS II having the highest score of 0.04 nats. In the case of under-
sampled data, all variables had very low divergence metrics, except for 
Min Temperature with 0.76 nats and Max Diastolic Pressure with 0.27 
nats. The high KL divergence score might be attributed to the difference 
in the minimum and maximum values related to the original and post-
sampling distributions. A closer examination in the histograms shows 
that the distributions are very similar in terms of shapes (Figure 2). The 
results of comparison are attached in Supplementary material S3.

3 Results

This study aims to develop a compact-predictive model that can 
discriminate binary classes for mechanically ventilated patients and 
generate accurate predicted probability of outcomes. The approach 
that we took was first to identify the ML models that best perform 
across different scenarios, using all 67 features. Once the best 
performers were established, Autofeat was utilised to select the most 
important features for all scenarios (Table 2). We then constructed and 
trained those identified models on the selected features and tested 
their respective performances.

3.1 Prior to dimension reductions

3.1.1 Scenario-based analysis
Since we aim to maximise the correct prediction on the minority 

class, models that have high values of Sensitivity would be considered 
among other metrics. In cases of balanced classes, Macro Average is 
the same as weight average, and for imbalanced classes, we assessed 
performance using Weighted Average of Recall, Precision and 
F1-score. Hence in this sub-section we used Weighted Average metrics 
to access the performance of those models.

3.1.1.1 Scenario 1.1 – Imbalanced class | similar class 
distribution between the training and test sets | no 
sampling technique

RF, BG and XGB were the only 2 out of 3 models that have a 
Sensitivity higher than 50%. Other models yielded Sensitivity below 
50%. RF has the highest Sensitivity (54%) and the second highest of AUC 
(92%), with relatively low Log Loss and low Brier score. Additionally, the 
highest Weighted Average Recall and F1-score values of 0.9 and 0.89, 
respectively, resulted from RF. In terms of accurate predicted probability, 
the calibration curve entailed that the RF model was the most closely 
aligned with the perfect line. However, the curve showed that this model 
was consistently under-predicting the mortality group.

3.1.1.2 Scenario 1.2 – Imbalanced class | dissimilar class 
distribution between the training and test sets | 
under-sampling method on the training set

While the XGB and BG models produced the highest scores of 
AUC, Weighted Average Recall and F1-score, these models exhibited 
a 5% lower Sensitivity score than those produced by both the RF and 
LR models. In terms of Log Loss and Brier Score values, the XGB and 
BG models had values below the mean values, while the RF and LR 
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scores were higher than the means. The calibration curves showed 
that RF and LR were consistently and severely over-predicted the 
mortality group, while the XGB and BG models did not. This finding 
was reflected by the means of calibration curves. While the Sensitivity 
margin difference between the XGB/BG and RF/LR models was 
approximately 5%, the gap between Weight Average Recall and 
F1-score was 20%, hence, XGB and BG would be performed more 
accurately in this scenario.

3.1.1.3 Scenario 1.3 – Imbalanced class | dissimilar class 
distribution between the training and test sets | 
over-sampling method on the training set

XGB had the highest weighted Recall, F1-scores, and AUC value 
among all algorithms. Also, Brier score and Log Loss of XGB were way 

below the mean values. However, the Sensitivity score was at the low 
end (0.58). LR had the highest Sensitivity score and relatively high 
AUC (0.827), but the Log Loss was much higher than the Log Loss of 
XGB. The calibration curve showed that LR highly overestimated 
while XGB underestimated the mortality group. Therefore, both 
models were selected for this scenario.

3.1.1.4 Scenario 2.2 – Balanced class | similar class 
distribution between the training and test sets | 
under-sampling method on the training and test sets

BG and XGB had relatively high Sensitivity scores, 0.890 and 
0.884, respectively, and the highest respective AUC of 0.921 and 0.928. 
The Brier scores for both models were below the mean and median. 
The same applied to Log Loss. Weighted Average Recall and F1-score 

FIGURE 2

Histogram comparing distribution of (A) Min Temperature and (B) Max Diastolic Pressure in imbalanced and under-sampled training set.
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of these 2 algorithms were the highest. The calibration curve projected 
that both models slightly overestimated the mortality group.

3.1.1.5 Scenario 2.3 – Balanced class | similar class 
distribution between the training and test sets and 
over-sampling method on the training and test sets

XGB had the highest AUC, Weighted Recall and F1-score. Log 
Loss and Brier score were below the mean while the Sensitivity was 
relatively high.

Table  3 shows all evaluation metrics of the best models per 
scenario. These algorithms will eventually be selected in Table 4 to 
perform dimension reduction.

3.1.2 Analysis of balanced classes in test sets and 
similar distribution between the training and test 
set

The Recall scores for the mortality class were higher than their 
counterpart (survival group) in relation to S2.2, where the majority 
class (survival group) was under-sampled across all 4 tree-based 
algorithms. The opposite trend was seen in S2.3, where the minority 
class was over-sampled to be  balanced (Figure  3). This had some 
impacts on the F1-score, where the tree-based algorithms gave higher 
scores for the mortality class, in S2.2, than the survival group. The 
opposite trend was found in S2.3, where F1-score for the survival 
groups were slightly higher than the mortality group (Figure 3).

The non-tree-based algorithms yielded a mixture of Recall and 
F1-score for both classes in both S2.2 and S2.3. For example, the Recall 
and F1-score for the mortality class were higher than their counterpart, 
except for NB if looking at S2.2. However, with regards to S2.3, the 2 
non-tree-based models depicted a slightly different pattern than tree-
based models (higher Recall scores for the mortality group), except 
KNN, LDA and NB. This led to a mixture of F1-score for both groups 
and for all models in S2.3.

To achieve higher level of interpretation, the Weighted Average of 
Precision, Recall and F1-score were considered. Table 5 shows that all 
tree-based models gave higher Weighted Average Precision, Recall 
and F1-score when performing on S2.3 compared to S2.2. Among the 
tree-based models, DT generated the lowest weighted Precision 
(0.799), Recall (0.798) and F1-score (0.798) score with regards to S2.2. 
Among the non-tree-based models, LR resulted in the highest 
weighted Recall score (0.789) and F1-score (0.788) with regards to 
S2.2. The same pattern could be depicted for S2.3. This finding could 
lead to an initial conclusion that that the tree-based models, overall, 
performed better that the non-tree-based models in terms of the 

classification and prediction the binary outcome (class discrimination) 
when the target population had a balanced distribution class situation.

3.1.3 Analysis of imbalanced classes and dissimilar 
distribution between the training and test set

The Recall scores produced by the tree-based models for the 
mortality class on in S1.2 were higher than those for the survival 
group. Note that in this scenario, the random under sampling method 
was utilised on the training set, while the test set remained imbalanced. 
This finding is similar to the pattern that was found in S2.2. In S1.3, 
the Recall scores for the survival group were higher than those for the 
mortality group for all the tree-based algorithms, except RF. This 
finding was, again, similar to that of S2.3. With regard to S1.3, if using 
the non-tree based algorithms, namely LR, KNN and LDA, the Recall 
scores were higher for the mortality group, although the size of the 
mortality group was increased using SMOTe to match the size of the 
survival group during the training process (Figure 4). The case of S1.1, 
where there were imbalanced classes in both training and test sets, the 
Recall and F1-score of the survival group were much higher.

In the case of imbalance in the test set, all classifiers resulted in the 
best values of Weighted Average Recall and F1-score in S1.1, except 
NB (Figure  5). F1-score confirmed that the tree-based classifiers 
outperformed the non-tree-based.

3.1.4 Analysis of AUC, Log Loss and Brier score in 
all scenarios

Generally, the tree-based models performed better than non-tree-
based ones across all 5 scenarios from the AUCs metric perspective 
(Figure 6). Among non-tree-based algorithms, only the LDA classifiers 
achieved AUC scores that were higher than 90% for S2.3.

The AUC results of XGB and BG models yielded the highest 
scores of 97 and 96%, respectively in S2.3, in which the training and 
testing sets were both over-sampled. In the under-sampling situations 
(S1.2 and S2.2), the BG classifier attained AUCs over 90%. Similar 
results were acquired in the case of XGB, where the AUC for both S1.2 
and S2.2 were 92.6 and 92.8%, respectively. Looking deeper, among 
S1.2 and S2.2, we  found out that BG models resulted in similar 
evaluation scores (Sensitivity, Specificity, Brier score and Log Loss). 
The same applied to the XGB model (Table 6). This led to an additional 
finding that the BG and XGB classifiers yield a similar performance 
when the models endeavour to predict the positive (mortality) 
outcome when performing a random under-sampling method, 
regardless of whether the training and the testing distributions of the 
target class are similar. In other words, the XGB and BG classifiers are 

TABLE 3 Best models per scenario.

Scenario Model Precision Recall F1-score Sensitivity Specificity AUC Brier score Log Loss

S1.1 RF 0.894 0.900 0.893 0.540 0.970 0.922 0.020 0.105

S1.2 BG 0.889 0.806 0.828 0.890 0.790 0.920 0.053 0.200

S1.2 XGB 0.891 0.817 0.837 0.884 0.805 0.926 0.050 0.193

S2.2 BG 0.847 0.844 0.844 0.884 0.803 0.927 0.053 0.205

S2.2 XGB 0.846 0.844 0.843 0.861 0.801 0.914 0.058 0.223

S2.3 XGB 0.899 0.896 0.895 0.851 0.941 0.969 0.017 0.092

S1.3 XGB 0.878 0.883 0.880 0.583 0.941 0.905 0.017 0.093

S1.3 LR 0.853 0.613 0.662 0.889 0.560 0.827 0.075 0.290
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TABLE 4 MCC score prior to and post Autofeat.

Scenario Model MCC AUC [95% CI]

Prior to Autofeat Post Autofeat Prior to Autofeat Post Autofeat

S1.1 RF 0.561 0.536↓ 0.92 [0.91–0.93] 0.91 [0.90–0.92]

S1.2 BG 0.537 0.507↓ 0.92 [0.91–0.93] 0.91 [0.90–0.92]

S1.2 XGB 0.550 0.506↓ 0.93 [0.92–0.93] 0.91 [0.90–0.92]

S1.3 XGB 0.548 0.556↑ 0.90 [0.90–0.91] 0.90 [0.89–0.91]

S1.3 LR 0.409 0.429↑ 0.84 [0.83–0.86] 0.85 [0.84–0.86]

S2.2 BG 0.691 0.658↓ 0.92 [0.91–0.93] 0.91 [0.90–0.92]

S2.2 XGB 0.690 0.638↓ 0.93 [0.92–0.93] 0.91 [0.90–0.91]

S2.3 XGB 0.794 0.795↑ 0.97 [0.97–0.97] 0.97 [0.96–0.97]

FIGURE 3

Comparison of calibrated tree-based models in scenario 2.2 and 2.3 using (A) Recall of both classes and (B) F1-score of both classes.
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not sensitive in predicting the minority class, regardless of the 
distribution of classes in the target population. Note that DT also 
yielded a similar pattern (to the XGB and BG classifiers) on both S1.2 
and S2.2, however the scores of the evaluation metrics were not as 
high as those produced by XGB and BG. RF and other non-tree-based 

classifiers yielded a mixture of Sensitivity, AUC, Brier score and Log 
Loss values.

The analysis thus far gave us another conclusion in relation to all 
classifiers on various class distributions of the target population. That 
is that the XGB classifier gave the best performance in terms of 
discriminating between the 2 classes (survival and mortality) with the 
highest AUC scores across all scenarios. In the special case of S2.2, BG 
and XGB had similar AUC scores, where the difference was negligible 
– 0.61%.

3.1.4.1 Log Loss performance
A similar pattern could be seen in the case of Log Loss metrics 

across all scenarios per algorithm. The tree-based algorithms 
generated lower scores on under-sampling sets in comparison to 
non-tree-based models. However, by examining the Log Loss of all 
algorithms per scenario, tree-based algorithms attained lower Log 
Loss scores than the non-tree-based ones under S1.3, S2.2 and S2.3. 
Moreover, XGB gave the lowest Log Loss score among all algorithms 
on S2.2, S1.3, and S2.3.

3.1.4.2 Calibration – reliability curves
Tree-based models achieved better calibration in relation to the 

under-sampling scenarios of S1.2 and S2.2. Non-tree-based classifiers 
seemed to attain better calibration on the over-sampling scenarios 
S1.3 and S2.3.

Based on the aforementioned analyses, Autofeat was utilised to 
remove non-important features for different sampling situations to 
remodel the selected ML models.

3.2 Post dimension reductions

Based on the results prior to utilising Autofeat, RF, XGB, BG and 
LR were selected to perform dimension reduction. Based on Table 2, 

TABLE 5 Weighted average of precision, recall and F1-score for all 
algorithms.

Scenario Model Precision Recall F1-
score

S2.2 DT 0.80 0.80 0.80

S2.3 DT 0.85 0.85 0.85

S2.2 BG 0.85 0.84 0.84

S2.3 BG 0.87 0.86 0.86

S2.2 XGB 0.85 0.84 0.84

S2.3 XGB 0.90 0.90 0.90

S2.2 RF 0.83 0.83 0.83

S2.3 RF 0.86 0.85 0.85

S2.2 KNN 0.87 0.70 0.74

S2.3 KNN 0.83 0.71 0.74

S2.2 LDA 0.78 0.78 0.78

S2.3 LDA 0.84 0.84 0.84

S2.2 SVM 0.76 0.55 0.44

S2.3 SVM 0.79 0.70 0.68

S2.2 NB 0.74 0.72 0.72

S2.3 NB 0.73 0.72 0.72

S2.2 LR 0.79 0.79 0.79

S2.3 LR 0.82 0.82 0.82

FIGURE 4

Recall of non-tree-based models in scenario 1.1, 1.2 and 1.3.
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Autofeat selected only 33% predictors for the under-sampling 
scenarios (S1.2 and S2.2), while the over-sampling scenarios (S1.3 
and S2.3) considered about 60% of the 67 predictors. The classification 
metrics of Precision, Recall and F1-score were most balanced in S2.2 
and S2.3. This pattern coincided with the scores prior to using 
Autofeat. In other scenarios, those scores appeared to fluctuate in the 
range 0.44 to 0.96.

Table 7 provides the details of monitoring the changes in the 
AUC, Brier score and Log Loss. The AUC percentages when using 
XGB were greater than 0.9 on all samples. Noticeably, when testing 
on S2.3, the AUC scores for the XGB classifier remained unchanged, 
while Brier score and Log Loss reduced slightly when compared to 
their values pre-dimension reduction. For BG, the AUC percentage 
also was the same in S2.2, while both Brier score and Log Loss were 
smaller after considering much fewer number of predictors.

3.2.1 Calibration or reliability curve
Figures  7, 8 compare the calibration prior to and post 

dimension reduction of the best models in each scenario. Figure 7 
shows that the XGB and BG classifiers of S2.2 resulted in the most 
aligned calibration curve to the diagonal line, while the reliability 
curve for BG showed that the model over-predicted at low 
probabilities and under-estimated at high probabilities. In fact, the 
calibration curve of XGB classifier in S2.2, post Autofeat, was 
slightly more aligned to the calibration curve than prior to using it. 
This entails that by using fewer features, the predicted probability 
of the XGB classifier may be  more accurate than using larger 
number of predictors.

The MCC showed that post reducing dimensions, were slightly 
smaller across all scenarios and all ML models (Table  4). Similar 
situations can be found with the AUC 95% CI metrics. This confirms 

FIGURE 5

Weight Average of (A) Recall and (B) F1-score, all algorithms in the imbalanced scenarios.
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the fact that removing features using Autofeat did not change the 
prediction accuracy of the selected ML models.

The list of predictors that were used for the 3 main different 
situations, including imbalanced class, under-sampling and over-
sampling techniques are attached as Supplementary material S3.

4 Discussion

The purpose of this study was to use 9 ML algorithms to identify 
the best ML model that can discriminate between the classes and 
provide relatively high accurate predicted probability 

(death = positive, survival = negative). While this study considered a 
number of evaluation metrics, such as Precision, Recall, F1-score, 
Sensitivity, Specificity, AUC, ROC curve, and Calibration curve, Brier 
score and Log-loss values were also considered. Since our study 
would select models with high Sensitivity among those that have 
similar AUC score or Brier scores, this study presented the 
following findings:

 • The key finding of our study, utilising 9 ML methods across 5 
different scenarios, is the successful development of well-
performing ML models using a significantly reduced dataset size 
for the prediction task. Specifically, the original size of the dataset 

FIGURE 6

AUCs for all ML models per scenario.

https://doi.org/10.3389/fmed.2024.1398565
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Nguyen et al. 10.3389/fmed.2024.1398565

Frontiers in Medicine 13 frontiersin.org

was 872,388 (13,218 observations and 67 predictors for the 
training set of S1.1). Following dimension reduction, ML models 
required only about 11% of the total data points to perform 
prediction task effectively in S2.2, with a training size of 4,204 
observations and 22 features. This indicates that the original 
dataset might have contained redundant information. By using 
Autofeat, which is independent of the behaviour of ML models, 
clinically important features were retained.

 • The study used the MIMIC-III data of ICU patients 24 h after 
hospital admission in order to construct and analyse patient 
mortality prediction models. Related analysis results revealed 
that, in general, tree-based classifiers outperformed non-tree-
based ones in terms of model prediction accuracy.

 • Zhu et al. (7) established the fact that the XGB model performed 
the best among all 7 models since it tested on the unseen data and 
produced an AUC of 0.821. In our study, we also concluded that 
the XGB classifier yielded the highest values for the majority of 
the evaluation metrics except for the imbalanced class situation 
in S1.1. Our study also showed that the AUCs obtained from the 
different test sets were all above 0.9.

 • Calibrated XGB and BG models are most aligned to the diagonal 
line on the under-sampling sets in comparison to other sampling 
sets, but have poorer Brier and Log Loss Scores. This suggests 
that if using XGB and BG algorithms, the predicted probabilities 
are likely to be better aligned with the actual probabilities, but 
these models might lack some Precision in terms of distinguishing 
between different classes.

 • The number of feature groups remained the same as prior to 
using Autofeat. Moreover, the features within the demographic 
characteristics and disease severity groups were retained in all 
scenarios in the post dimension reduction models. These 2 
groups, considered to be  important in clinical diagnosis and 
prognosis, were effectively preserved by Autofeat across different 
sampling scenarios. This finding is supported by several studies 
that have utilised these 2 groups of features in clinically predicting 

hospital mortality among mechanically ventilated patients in 
ICUs, such as Jones et  al. (22), Choudhry et  al. (23), Souza-
Dantas et al. (24) and Gadre et al. (25).

 • The results of the 3 tree-based and 1 non-tree-based models 
showed that the reduced models can achieve similar accuracy 
metrics as those using a much larger number of predictors. In 
fact, the AUCs remain as high as 0.90 across 4 scenarios (S1.2, 
S1.3, S2.2, and S2.3) for the tree-based models. The full model 
used 67 predictors, while the reduced model for the imbalanced 
case used 29 predictors, 22 for the under-sampling scenarios 
and 40 for the over-sampling scenarios. These results 
demonstrated the rapid development of ML algorithms and 
that they can provide significant assistance to physicians when 
making clinical decisions. This finding coincided with those by 
Chiu et al. (26).

 • Non-tree-based calibrated models resulted in mixed performance 
on both prediction and prediction reliability under different 
scenarios. The LR model yielded a relatively high Sensitivity and 
AUCs scores (> 0.8) prior to and post dimension reduction 
in S1.3.

 • In the case of under-sampling scenarios (S1.2 and S2.2), the 
Recall and F1 scores for the mortality group were higher than for 
the survival group, while in the case of over-sampling scenarios 
(S2.3 and S1.3), the Recall and F1 scores for the survival group 
were higher than. These scores were replicated in all models, 
except SVM. This finding entails that regardless of different 
distributions of a target population, if the purpose is to achieve 
high Recall scores for the minority, an under-sampling method 
should be preferred.

Note that we are aware that LR does not usually require any 
extra post-training calibration as the probabilities it produces are 
already well-calibrated. Conversely, RF classifiers seldom return 
values close to 0 or 1 because they generate average responses from 
multiple inner models – the only way of achieving boundary values 

TABLE 6 BG and XGB model in 2 scenarios.

Scenario Model Sensitivity Specificity AUC Brier score Log Loss

S1.2 BG 0.890 0.790 0.920 0.053 0.200

S2.2 BG 0.890 0.799 0.921 0.054 0.208

S1.2 XGB 0.884 0.805 0.926 0.050 0.193

S2.2 XGB 0.884 0.803 0.927 0.053 0.205

TABLE 7 Changes in metrics post dimension reduction.

Scenario Model Precision Recall F1-
score

Sensitivity Specificity AUC Brier 
score

Log 
Loss

S1.1 RF 0.846↓ 0.743↓ 0.774↓ 0.473↓ 0.968↓ 0.911↓ 0.024↑ 0.117↑

S1.2 BG 0.880↓ 0.799↓ 0.821↓ 0.850↓ 0.789↓ 0.906↓ 0.054↑ 0.208↑

S1.2 XGB 0.879↓ 0.799↓ 0.821↓ 0.850↓ 0.789↓ 0.909↓ 0.054↑ 0.206↑

S2.2 BG 0.830↓ 0.829↓ 0.829↓ 0.850↓ 0.808↑ 0.908↓ 0.054↑ 0.212↑

S2.2 XGB 0.820↓ 0.819↓ 0.818↓ 0.850↓ 0.787↓ 0.908↓ 0.056↓ 0.216↓

S2.3 XGB 0.899 0.896 0.896↑ 0.855↑ 0.937↓ 0.967↓ 0.017 0.094↑

S1.3 XGB 0.880↑ 0.883 0.881↑ 0.602↑ 0.937↓ 0.904↓ 0.017 0.095↑

S1.3 LR 0.850↓ 0.629↑ 0.677↑ 0.868↓ 0.583↑ 0.823↓ 0.067↓ 0.263↓
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FIGURE 7

Calibration curve. Scenario 1.1, (A) RF model prior to dimension reduction and (B) RF model post dimension reduction. Scenario 2.2, (C) BG model 
prior to dimension reduction, (D) BG model post dimension reduction, (E) XGB model prior to dimension reduction, and (F) XGB model post dimension 
reduction. Scenario 2.3, (G) XGB model prior to dimension reduction and (H) XGB model post dimension reduction.
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FIGURE 8

Calibration curve. Scenario 1.2, (A) BG model prior to dimension reduction, (B) BG model post dimension reduction, (C) XGB model prior to dimension 
reduction and (D) XGB model post dimension reduction. Scenario 1.3, (E) LR model prior to dimension reduction, (F) LR model post dimension 
reduction, (G) XGB model prior to dimension reduction, and (H) XGB model post dimension reduction.
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(0 or 1) in this case is if all the models return values close to 0 or 1 
– a rare event from the probabilistic standpoint. Therefore, 
assessing a calibrated RF classifier might not be helpful. In this 
study, we assessed and evaluated all calibrated models to compare 
the performance. The results of this study became the foundation 
of our next investigation, which is to focus on the usage of the 
compact ML models to predict the outcome of mechanically 
ventilated patients of 7 days and 28 days.

5 Limitations

This study built prediction models solely focused on 
mechanically ventilated patients. Therefore, the models are only 
applicable to ICU patients who require mechanical ventilation. This 
issue of lack of generalisability is a common problem when 
constructing prediction models by using ML methods and dynamic 
EHR data (26).

Another issue concerns the single-central nature of the 
MIMIC-III database. Since the data were collected in Boston, MA, 
United States, the medical practices for ICU patients, healthcare 
policies, and demographic characteristics might be different from 
other locations. Future studies focusing on validating the models 
using data of mechanically ventilated patients in other countries 
can result in a more robust utilisation of those models and facilitate 
their application in broader healthcare settings. Additionally, the 
ICD-9 codes used for identifying patients’ medical history were 
assigned post-hospital discharge based on a review of clinical 
notes. Consequently, it might not be valid to assume that a patient 
was coded with a pre-existing condition upon admission, or the 
condition developed during their ICU stay. This ambiguity 
introduces a potential confounding factor in mortality prediction, 
particularly when considering laboratory result variables and vital 
sign variables. The inclusion of pre-existing conditions in the 
models may distort the association between these variables and 
mortality risk, as chronic conditions may influence the predictive 
power of acute physiological markers.

Our study did not investigate cases where the prevalence of the 
minority group was less than 2%. This ratio might worsen the 
performance of the models.

6 Conclusion

In this study, in addition to building the best ML models to predict 
the mortality outcomes of mechanically ventilated patients, 
we automated the process of feature engineering and yield models that 
used only 1/3 of the predictors, while maintaining similar accuracy as 
that achieved by models that used 67 predictors. This finding acts as 
the evidence of possible building and deploying compact ML models 
in reality with high accuracy, and less cost to monitor input data and 
computational resources. However, the accuracy probability of those 
models was either over- or under-estimated the mortality outcome. 
Therefore, a follow-up studies are required to improve the 
probability accuracy.

One benefit to mechanically ventilated patients and their support 
networks, when hospitals implement such ML applications, is the 
facilitation of collaborative decision-making between patients’ 

relatives or patients themselves and clinicians. In critical moments, 
these individuals can use ML applications to make informed decisions, 
potentially preventing unnecessary admissions and mitigating 
healthcare expenses for the patients.

Holistically, our research findings demonstrated that ML 
applications in healthcare can enhance decision support systems and 
operate in a timely manner. As a result, the clinical operations can 
be optimised in terms of finance, resources and potentially, human 
lives. Van Wyk et  al.’s cost–benefit analysis (27) focusing on 
automated data extraction and the utilisation of ML concluded that 
powerful ML algorithms, along with automated data acquisition, can 
offer immense societal benefits. Despite such benefits, challenges 
associated with ML applications, such as bias and privacy concerns, 
cannot be overlooked.
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Glossary

AUC Area Under the Curve

BG Bagging

DFS Deep Feature Synthesis

DT Decision Tree

ICU Intensive Care Unit

KNN K-Nearest Neighbour

LDA Linear Discriminant Analysis

LR Logistic Regression

MCC Matthew Correlation Coefficients

ML Machine Learning

NB Naïve Bayes

RF Random Forest

ROC Receiver Operating Characteristic

S1.1 Scenario 1.1

S1.2 Scenario 1.2

S1.3 Scenario 1.3

S2.2 Scenario 2.2

S2.3 Scenario 2.3

SMOTe Synthetic Minority Over-sampling Technique

SVM Support Vector Machine

XGB eXtreme Gradient Boosting
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