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Background: Systemic lupus erythematosus (SLE) is frequently accompanied 
by various complications, with cardiovascular diseases being particularly 
concerning due to their high mortality rate. Although there is clinical evidence 
suggesting a potential correlation between SLE and heart failure (HF), the 
underlying shared mechanism is not fully understood. Therefore, it is imperative 
to explore the potential mechanisms and shared therapeutic targets between 
SLE and HF.

Methods: The SLE and HF datasets were downloaded from the NCBI Gene 
Expression Omnibus database. Differentially expressed genes (DEGs) in both 
SLE and HF were performed using “limma” R package. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genes (KEGG) analyses were conducted 
to analyze the enriched functions and pathways of DEGs in both SLE and HF 
datasets. Protein–Protein Interaction network (PPI) and the molecular complex 
detection (MCODE) plugins in the Cytoscape software were performed to 
identify the shared hub genes between SLE and HF datasets. R package “limma” 
was utilized to validate the expression of hub genes based on SLE (GSE122459) 
and HF (GSE196656) datasets. CIBERSORT algorithm was utilized to analyze 
the immune cell infiltration of SLE and HF samples based on SLE (GSE112087) 
and HF (GSE116250) datasets. A weighted gene co-expression network analysis 
(WGCNA) network was established to further validate the hub genes based on 
HF dataset (GSE116250). Molecular biology techniques were conducted to 
validate the hub genes.

Results: 999 shared DGEs were identified between SLE and HF datasets, which 
were mainly enriched in pathways related to Th17 cell differentiation. 5 shared 
hub genes among the common DGEs between SLE and HF datasets were 
screened and validated, including HSP90AB1, NEDD8, RPLP0, UBB, and UBC. 
Additionally, 5 hub genes were identified in the central part of the MEbrown 
module, showing the strongest correlation with dilated cardiomyopathy. 
HSP90AB1 and UBC were upregulated in failing hearts compared to non-failing 
hearts, while UBB, NEDD8, and RPLP0 did not show significant changes.

Conclusion: HSP90AB1 and UBC are closely related to the co-pathogenesis 
of SLE and HF mediated by immune cell infiltration. They serve as promising 
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molecular markers and potential therapeutic targets for the treatment of SLE 
combined with HF.
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hub gene, therapeutic targets, CIBERSORT, systemic lupus erythematosus, heart 
failure

1 Introduction

Systemic lupus erythematosus (SLE), an intricately systemic 
autoimmune disease with unknown etiology, presents a greater 
heterogeneity and complexity due to the multifactorial interplay among 
various susceptible factors including environment, hormones, and 
genetics (1). The pathogenesis of SLE involves the production of 
autoantibodies that target nuclear components, resulting in a wide range 
of clinical manifestations including skin rashes, arthritis, pleurisy, 
serositis, and lupus nephritis that can vary over time, making SLE a 
challenging disease to cure completely, particularly in young women (2). 
Therefore, investigating the molecular features and mechanisms 
underlying the onset and progression of SLE holds immense importance 
in offering novel approaches for successfully preventing, diagnosing, 
and treating this condition. Heart failure (HF) is a complex chronic 
clinical syndrome characterized by the deterioration of symptoms and 
signs resulting from cardiac dysfunction, as well as a significant cause of 
mortality, morbidity, reduced quality of life, and shortened lifespan (3, 4).

In recent years, the comorbidities of SLE with various other 
complications have been widely reported including metabolic syndrome, 
osteoporosis, lupus encephalopathy, and cardiovascular disease (CVD) 
that encompassed atherosclerosis, HF, and myocardial infarction (MI) 
(5, 6). Notably, atherosclerosis and increased risk of MI have been 
acknowledged for numerous years, but limited evidence exists regarding 
the relationship between SLE and HF (7). A mendelian randomization 
study showed an association between the genetic susceptibility of SLE 
and a higher risk of HF (6). Concomitantly, available data suggested that 
atypical immune responses and chronic inflammation could contribute 
to hastened atherosclerosis and additional cardiovascular risk factors in 
individuals with lupus, which result in 5 folds increased risk of HF 
compared to the general population (7, 8). The risks associated with HF 
in SLE patients include age, obesity, SLE disease activity index, 
hyperuricemia, and excessive use of glucocorticoids (7, 9, 10). The 
pathological mechanisms of HF in SLE patients include myocardial 
dysfunction (11), left ventricular hypertrophy (12), valvular disease (13), 
endocarditis (14), myocarditis (15), and pericarditis (16). Despite 
mounting evidence pointing toward a strong association between SLE 
and HF, these investigations frequently employ clinical approaches (7, 
17), failing to uncover molecular mechanisms occurring at the genetic 
level. Furthermore, researches on the targeted therapy for patients with 
concurrent illnesses remain scarce. Consequently, it is imperative to gain 
deeper insights into the potential mechanisms and shared therapeutic 
targets involved in both SLE and HF.

In our study, the application of gene microarray technology 
provided novel insights into the pathogenesis of SLE and 
HF. Bioinformatics analysis (Gene Ontology (GO) analysis, Kyoto 
Encyclopedia of Genes and Genes (KEGG) analysis, etc) aided in our 
comprehension of the genetic factors contributing to SLE and HF 
development and identified shared core genes and pathways implicated 

in both SLE and HF based on the datasets downloaded from Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 
database. Additionally, we investigated the proportion of immune cell 
infiltration and the correlation between shared hub genes and immune 
cell infiltration in the context of SLE and HF, and validated the 
expression and significance of the most crucial hub genes through 
weighted gene co-expression network analysis (WGCNA) and real-
time polymerase chain reaction (RT-PCR). This comprehensive 
investigation served as a pioneering study in identifying common 
biomarkers and therapeutic targets for the comorbidities of SLE and 
HF, offering valuable insights into the genetic etiology and potential 
combination therapy strategies for these conditions.

2 Materials and methods

2.1 Data source

We obtained a high throughput human sequencing data from the 
GEO database. The data were obtained from the accession number 
GSE116250 (HF = 37, control = 14) (18), the accession number 
GSE112087 (SLE = 31, control = 29) (19), the accession number 
GSE122459 (SLE = 20, control = 6) (20), and the accession number 
GSE196656 (HF = 3, control = 3) (21). GSE116250 and GSE112087 
were used as training datasets. GSE122459 and GSE196656 were used 
as external validation datasets.

2.2 Identification of differentially expressed 
genes (DEGs)

The DEGs from GSE116250 and GSE112087 were identified using 
the “limma” R package on normalized count data. The parameters 
|Log2fold change| > 1 and adj. p < 0.05 were used as the screening criteria 
for DEGs in GSE116250. The parameters |Log2fold change| > 2.5 and 
adj. p < 0.05 were used as the screening criteria for DEGs in GSE112087. 
Moreover, the heatmap and volcano plot of DEGs from the databases 
were constructed using “heatmap” and “ggplot2” R packages (22). The 
DEGs were imported to Metascape to perform functional analysis.

2.3 GO and KEGG analysis

To uncover the possible biological roles and underlying 
mechanisms of genes, we employed the R package “clusterProfiler” to 
analyze the enrichment of KEGG terms pertaining to the target genes. 
Significance was determined based on KEGG pathways and GO terms 
encompassing biological processes (BPs), cellular components (CCs), 
and molecular functions (MFs), with an adj. P < 0.05 (5).
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2.4 Immune infiltration analysis

Using the CIBERSORT algorithm, we acquired the proportions of 
22 different immune cell types from samples in both GSE116250 and 
GSE112087. To assess the variations in immune cell levels between 
disease and control samples, we employed the R package “vioplot” (23).

2.5 Correlation analysis between infiltrating 
immune cells and shared hub genes

The R package “CIBERSORT” was employed to perform the 
analysis of immune infiltration. Spearman correlation analysis 
between shared hub genes and infiltrating immune cells was calculated 
using the R package “corrplot.” Lollipop diagrams were utilized to 
visualize the correlations between immune cells and hub genes (24).

2.6 Construction of WGCNA

We employed the R package “WGCNA” to construct the 
WGCNA. Initially, hierarchical clustering was executed on the study 
samples in order to identify any outliers and eliminate the abnormal 
samples. Next, β  = 12 was chosen as the soft power parameter for 
establishing a scale-free network using the pick Soft Threshold function. 
Subsequently, the adjacency matrix was formulated and transformed 
into a topological overlap matrix (TOM), followed by the establishment 
of the gene dendrogram and module color based on the degree of 
dissimilarity. The “WGCNA” package was then utilized to calculate the 
correlations between modules and differentially infiltrating immune 
cells. Modules displaying strong correlation coefficients were regarded 
as potential candidates associated with differentially infiltrating 
immune cells and were selected for further analysis. Once the candidate 
module was chosen, we set the screening criteria for filtering key genes 
in the candidate module as |MM| (|Module membership|) > 0.8 and 
|GS| (|gene significance|) > 0.20 (5, 22).

2.7 Construction of protein–protein 
interaction (PPI) network and screening of 
hub gene

The Interacting Genes Retrieval tools (STRING) database aided 
in constructing the PPI network (25). The PPI network was 
subsequently visualized using the Cytoscape software. Identifying 
significant gene clusters and obtaining hub genes was accomplished 
by utilizing the molecular complex detection (MCODE) plugins 
within the Cytoscape software (26).

2.8 Mice and MI surgery

The male C57BL/6 mice aged 10 weeks were obtained from 
Gempharmatech Co., Ltd. (Nanjing, China). Sham and left anterior 
descending branch (LAD) ligation surgery were performed as described 
in previously published protocols (27). Temporarily anesthetize mice by 
inhaling 2% isoflurane. Make a small skin incision on the left chest, 
expose the heart, and permanently ligate the LAD with 7–0 silk thread. 

The animals undergoing sham surgery underwent the same procedure, 
but without ligating the LAD. All animal experiments were performed 
in accordance with the United  Kingdom Animals (Scientific 
Procedures) Act 1986 and the American Veterinary Medical Association 
(AVMA) Guidelines for the Euthanasia of Animals (2020). Prior to the 
study, the research protocol was reviewed and approved by the Medical 
Ethics Committee of Union Hospital Affiliated to Huazhong University 
of Science and Technology. We affirmed that this study strictly followed 
the ARRIVE guidelines (https://arriveguidelines.org).

2.9 RNA extraction and RT-PCR

The total RNA from left ventricular tissues was extracted using 
TRIzol reagent. Subsequently, reverse transcription into cDNA was 
achieved by utilizing the PrimeScript RT Kit with gDNA Eraser. 
Afterwards, the mRNA levels of the targeted genes were determined via 
quantitative PCR using SYBR1 Premix Ex Taq II and normalized to the 
housekeeping gene 18S that served as an endogenous internal control. 
The sequences of mouse species primers used in our study are as follows:

Heat shock protein 90 alpha family class B member 1 
(HSP90AB1): Forward: 5′-TGGCTGAGGACAAGGAGAACT 
AC-3′; Reverse: 5′-GAGAGGCGGCGTCGGTTAG-3′.

Ribosomal protein lateral stalk subunit P0 (RPLP0): Forward: 
5′-AGCTGCTGCCACCACTGC-3′; Reverse: 5′-TCATCTGATTCC 
TCCGACTCTTCC-3′.

Ubiquitin C (UBC): Forward: 5′-CCACCAAGAAGGTCAAAC 
AGGAAG-3′; Reverse: 5′-TCACACCCAAGAACAAGCACAAG-3′.

Ubiquitin B (UBB): Forward: 5′-ACCTGGTCCTCCGCCTGAG-3′; 
Reverse: 5′- ATGCCCTCTTTATCCTGGATCTTGG-3′.

Neural precursor cell-expressed developmentally downregulated 8 
(NEDD8): Forward: 5′-TGGCATCACATATCCTCTCACTCTC-3′; 
Reverse: 5′- CCCACCAGTAGACACACAAGATTG-3′.

18S: Forward: 5′-ACATCATCCCTGCATCCACT-3′; Reverse: 
5′- GGGAGTTGCTGTTGAAGTCA-3′.

2.10 Statistical analysis

Bioinformatics statistical analysis was performed using R software 
v4.3.1 (http://www.r-project.org/). The expression of the hub genes was 
analyzed using the “Wilcox. Test,” adj. p < 0.05 was considered statistically 
significant. Molecular biology experimental data were presented as the 
mean ± standard error of the mean (SEM) of at least 3 independent 
experiments. Differences between the two groups were evaluated using 
the unpaired Student’s two-tailed t-test. Normal distribution of the data 
was analyzed using a Shapiro Wilk test. All data were analyzed using 
GraphPad Prism 8.3 (GraphPad Software, San Diego, CA). *p < 0.05; 
**p < 0.01; ns. indicates no significance between the 2 indicated groups.

3 Results

3.1 Data processing and quality control

Human training datasets (HF dataset GSE116250 and SLE dataset 
GSE116250) and human validation datasets (HF dataset GSE122459 
and SLE dataset GSE196656) were retrieved and downloaded from the 
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GEO database. The quality control of training datasets was performed 
through Principal Component Analysis (PCA) clustering analysis. It 
was observed that all samples from the HF and SLE datasets were well 
separated, suggesting high data quality (Supplemental Figure S1).

3.2 Identification of DEGs in SLE and HF 
datasets

In order to identify significant genes in the HF dataset, we applied 
a screening criterion of |log2FC| > 1 and adj. p < 0.05. Similarly, for the 
SLE dataset, we used a screening criterion of |log2FC| > 2.5 and adj. 
p < 0.05. Volcano maps were subsequently created for the HF and SLE 
datasets. The HF dataset showed 1,538 upregulated genes and 2,510 
downregulated genes, while the SLE dataset showed 5,606 upregulated 
genes and 1,981 downregulated genes (Figures 1A,B). Venn diagrams 

showed a total of 894 overlapping upregulated genes and 105 overlapping 
downregulated genes between the HF and SLE datasets (Figures 1C,D).

3.3 The function enrichment analysis of HF 
and SLE datasets

To investigate the functions and pathways associated with DEGs 
in SLE and HF datasets, functional enrichment analysis was performed 
using GO analysis. The results revealed that the DEGs in HF dataset 
were mainly enriched in pathways related to metabolism of RNA, 
cellular responses to stress, protein catabolic process, translation, and 
positive regulation of protein catabolic process (Figure 2A). Similarly, 
the DEGs in SLE dataset were prominently enriched in pathways 
related to metabolism of RNA, cellular responses to stress, regulation 
of protein stability, cellular macromolecule catabolic process, protein 

FIGURE 1

Identification of DEGs in both HF and SLE datasets. (A) Volcano map showing the DEGs in HF dataset. (B) Volcano map showing the DEGs in SLE 
dataset. (C) Venn plot showing the upregulated DEGs in HF and SLE datasets. (D) Venn plot showing the downregulated DEGs in HF and SLE datasets.
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localization to organelle, and mitochondrial organization (Figure 2B). 
Furthermore, GO analysis of the common DEGs between HE and SLE 
datasets were predominantly enriched in pathways related to 
metabolism of RNA, cellular responses to stress, peptide metabolic 
process, cellular macromolecule catabolic process, positive regulation 
of catabolic process, and vesicle-mediated transport (Figure  3A). 
Concomitantly, KEGG analysis of the common DGEs between 
HE and SLE datasets were predominantly enriched in pathway related 
to Th17 cell differentiation, supporting the notion that immune 
system disorders might serve as a shared pathogenic factor for both 
HF and SLE (Figure 3B).

3.4 Screening of the hub genes between 
HF and SLE datasets

The common 999 DEGs between HF and SLE datasets were 
imported into the STRING database to construct a PPI network. 
Afterwords, the top 10 common DGEs with the highest ranking 
were identified based on 5 algorithms (Degree, DMNC, 
Eccentricity, Radiance, and Stress) from MCODE plugins in the 

Cytoscape software (Supplementary Table S1). Moreover, the 5 
overlapping hub genes including NEDD8, UBC, HSP90AB1, UBB, 
and RPLP0, were identified using Venn plots (Figure  4A) and 
displayed in the PPI network (Figure  4B). Additionally, the 
co-expressed genes associated with 5 shared hub genes were further 
analyzed using GeneMANIA (28), among which the most 
significant genes with the highest ranking associated with these 
hub genes were adhesion regulating molecule 1 (ADRM1), 
proteasome 26S subunit, non-ATPase 4 (PSMD4), ubiquitin-
conjugating enzyme E2M (UBE2M), mitochondrial ribosomal 
protein L7/L12 (MRPL12), and S-phase Kinase-Associated Protein 
1 (SKP1) (Figure 4C).

3.5 Validation of the shared hub genes in 
HF and SLE datasets

In the subsequent analysis, we validated the expression levels of 
the 5 shared hub genes in patients with lupus and patients with HF 
using the human SLE dataset (GSE122459) and the human HF dataset 
(GSE196656) respectively. The results from the violin plots indicated 

FIGURE 2

GO analysis for DEGs in both HF and SLE datasets. (A) GO analysis for the DEGs in HF dataset. (B) GO analysis for the DEGs in SLE dataset.
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an increase in the expression of 5 hub genes in both patients with HF 
(Figure 5A) and patients with lupus (Figure 5B) in comparison to 
those in normal individuals, suggesting that these 5 hub genes may 
be co-pathogenic hub genes for both HF and SLE patients.

3.6 Immune cell infiltration in samples of 
the HF and SLE datasets

The release of pro-inflammatory cytokines and infiltration of 
immune cells are characteristic features of HF (29, 30). Similarly, SLE 
is also characterized by the infiltration of various immune cells (31, 
32). Therefore, we  used CIBERSORT algorithm to investigate the 
extent of immune cell infiltration in these two distinct conditions 
based on HF dataset (GSE116250) and SLE dataset (GSE112087). The 

HF datasets showed a significant increase in monocytes and a decrease 
in dendritic cells in HF patients compared to those in control group 
(Figure 6), which was consistent with the findings in the SLE dataset 
regarding dendritic cells. Additionally, the SLE dataset revealed an 
increase in plasma cells and CD4+ naive cells, as well as a decrease in 
monocytes and NK cells (Figure  7). These findings suggested a 
potential shared pathogenesis based on immune cell infiltration 
between HF and SLE, particularly dendritic cells infiltration.

3.7 Correlation between the shared hub 
genes and immune cell infiltration

The similarity in immune cell composition constitutes solely one 
facet of the mutual pathogenesis shared by both HF and SLE. It 

FIGURE 3

GO and KEGG analysis for the common DEGs between HF and SLE dataset. (A) GO analysis for the common DEGs between HF and SLE dataset. 
(B) KEGG analysis for the common DEGs between HF and SLE dataset.
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remains imperative to confirm whether these 5 shared hub genes are 
involved in immune infiltration, identify the specific immune cells 
they are associated with, and determine their common characteristics. 
Consequently, we performed the Spearman correlation analysis to 
examine the correlation between these 5 shared hub genes and 
immune cell infiltration based on HF and SLE datasets. The results 
showed that HSP90AB1 and UBB were negatively correlated with 
monocytes and positively correlated with dendritic cells (Figures 8A,B), 
while NEDD8, RPLP0, and UBC showed a negative correlation with 
dendritic cells and a positive correlation with monocytes in the HF 
dataset (Figures  8C–E). On the other hand, HSP90AB1, NEDD8, 
RPLP0, and UBC were found to be positively correlated with both 
monocytes and dendritic cells (Figures 9A–C). While UBB showed a 
positive correlation with monocytes and a negative correlation with 

dendritic cells in the SLE dataset (Figures 9D,E). In general, a stable 
and positive correlation existed between hub genes (NEDD8, RPLP0, 
and UBC) and monocytes, as well as between HSP90AB1 and 
dendritic cells in the HF and SLE datasets.

3.8 Validation of the shared hub genes by 
WGCNA

To further verify the significance of hub genes in HF and SLE 
datasets, we initially created a gene co-expression network using the R 
package “WGCNA” based on the expression levels of genes in the 
GSE116250 dataset. Afterwards, cluster analysis was conducted for all 
the samples within the dataset except for the outlier sample dilated 

FIGURE 4

Identification of hub genes. (A) Venn plot showing 5 overlapping hub genes based on 5 algorithms. (B) PPI network visualizing the hub genes. (C) The 
co-expressed genes of 5 hub genes.
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cardiomyopathy (DCM) 28 (Supplemental Figure S2). Additionally, a 
scale-first network with β = 12 as the soft threshold power was 
successfully established (Figure 10A). Next, the average linkage and 
Spearman correlation coefficients were calculated to construct a 
hierarchical clustering tree in which each leaf represented a specific 
gene and each branch represented a specific module that encompassed 
all genes exhibiting comparable expression levels (Figure 10B). Finally, 
we consolidated the functionally equivalent modules into a single large 
module, resulting in a total of 5 modules, among which the MEbrown 
module showed the highest correlation with HF (Figures  10C,D). 
Therefore, eigengenes within the MEbrown module were selected for 
the scatter map and imported into Cytoscape software to construct a 
protein interaction map (Figure 10E). Additionally, 5 shared hub genes 

were found to be located in the central part of this module, further 
confirming their significant role in the pathogenesis of HF (Figure 10F).

3.9 Validation of the shared hub genes by 
RT-PCR

Considering the limited sample size of the validation dataset 
(GSE196656), a HF model was constructed by subjecting 10-week-old 
C57BL/6 wild type mice to MI surgery for 3 weeks to further validate the 
expression of hub genes in failing hearts in comparison to that in 
non-failing hearts. RT-PCR analysis confirmed a high expression level of 
HSP90AB1 and UBC in the hearts of MI mice compared to that in sham 

FIGURE 5

Validation of hub genes in both HF and SLE datasets. (A) 5 hub genes validated in the HF dataset (GSE196656). (B) 5 hub genes validated in the SLE 
dataset (GSE122459). *P < 0.05; **P < 0.01.
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mice (Figures 11A,E), while the expression of UBB, RPLP0, and NEDD8 
showed no obvious change between the two groups (Figures 11B–D).

4 Discussion

SLE is an autoimmune condition that exhibits both CVD and 
non-CVD complications. The association between SLE and CVD, 
such as accelerated atherosclerosis and increased risk of MI that 
contribute to heightened risks of HF in this population, is well-
established (12, 16, 33). However, limited research has been conducted 

to verify the specific link between SLE and HF. Moreover, due to 
advancements in therapies in recent decades, the overall survival rate 
of SLE patients has improved. However, their mortality rate induced 
by HF has remained largely constant (8). Therefore, it is imperative to 
carry out rigorous investigations that focus on the exact mechanism 
of interaction between SLE and HF to optimize HF outcomes in 
SLE patients.

This study aimed to explore the genetic and molecular 
resemblances between SLE and HF. The objective was accomplished 
by carrying out a thorough bioinformatics analysis to detect the 
common hub genes and underlying mechanisms shared by SLE and 

FIGURE 6

Immune cell infiltration analysis for HF dataset. (A) The proportion of 22 immune cells in HF samples. (B) The immune cell infiltration in HF samples. 
*P < 0.05; **P < 0.01.
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HF. Our analytical approach began by comparing the DEGs between 
SLE and HF using the human HF dataset (GSE116250) and the 
human SLE dataset (GSE112087). We then performed a function 
enrichment analysis on the DEGs in HF and SLE datasets respectively, 
as well as on the common DEGs shared by HF and SLE datasets. 
Furthermore, we utilized 5 algorithms from the Cytoscape plugins 
(MCODE) to identify 5 hub genes (HSP90AB1, NEDD8, RPLP0, 

UBB, and UBC) among the 999 common DEGs and further validated 
the expression of 5 hub genes in both SLE and HF samples using the 
human SLE (GSE122459) dataset and the human HF (GSE196656) 
dataset. Additionally, we conducted an investigation into the immune 
cell infiltration in both SLE and HF samples, while also examining 
the correlation between the shared 5 hub genes and immune cell 
infiltration using CIBERSORT algorithm. Notably, we discovered 

FIGURE 7

Immune cell infiltration analysis for SLE dataset. (A) The proportion of 22 immune cells in SLE samples. (B) The immune cell infiltration in SLE samples. 
*P < 0.05; ***P < 0.001; ****P < 0.0001.
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that these 5 hub genes were strongly linked to immune-related 
monocytes and dendritic cells in both SLE and HF. Furthermore, 
we  identified the MEbrown module that displayed the strongest 
association with the DCM phenotype by WGCNA, and validated that 
the hub genes were within the core position of MEbrown module. 
Additionally, we validated the increased expression of HSP90AB1 
and UBC in the mice failing hearts compared to non-failing hearts 
by RT-PCR.

HSP90AB1 is a member of the large family of HSPs that function 
as molecular chaperone, which binds to client proteins including 
kinases, ubiquitin ligases, and transcription factors, to support 
proper protein folding and maintain protein stability, especially after 
exposure to various kinds of cellular stress (34). Numerous 
bioinformatics studies suggest that HSP90AB1 serves as a potential 
biomarker of end-stage DCM induced HF (35). Additionally, 
HSP90AB1 interacts with transforming growth factor-β receptor on 

FIGURE 8

Spearman correlation analysis between the hub genes and immune cell infiltration in HF dataset. The correlation between (A) HSP90AB1, (B) UBB, 
(C) RPLP0, (D) NEDD8, (E) UBC and immune cell infiltration in HF dataset.
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the plasma membrane surface of cardiac fibroblast, facilitating 
pressure overload-induced cardiac remodeling and HF (36). 
Concomitantly, HSP90AB1 is reported to be a PANoptosis-related 
gene that contributes to immune dysfunction in SLE (34). Copy 
number variations of HSP90AB1 are associated with a high risk of 
SLE, making it an ideal diagnostic biomarker for SLE (37). Our 
research reveals that HSP90AB1 levels are elevated in both HF and 
SLE. Additionally, the association between HSP90AB1 and HF is 
validated through both WGCNA and RT-PCR, suggesting 

HSP90AB1 as a potential link between HF and SLE and proposing a 
theoretical immunotherapeutic target for patients with 
both conditions.

NEDD8 exhibits extensive expression in various tissues and cell 
types, with the highest levels in cardiac and skeletal muscle tissues. 
The homology of NEDD8 is 100% among rats, mice, and humans, 
highlighting its conserved function within eukaryotic cells (38). 
Similar to ubiquitination, the post-translational modification 
mediated by NEDD8 is known as neddylation that plays a crucial role 

FIGURE 9

Spearman correlation analysis between the hub genes and immune cell infiltration in SLE dataset. The correlation between (A) UBB, (B) NEDD8, 
(C) RPLP0, (D) HSP90AB1, (E) UBB and immune cell infiltration in SLE dataset.
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FIGURE 10

Validation of hub genes through WGCNA. (A) Determination of soft threshold power for GSE116250 dataset. (B) Origin and merged modules displaying 
under the clustering tree for GSE116250 dataset. (C) Heatmap showing the correlation between module eigengenes and the occurrence of HF. 
(D) Heatmap showing the correlation between module eigengenes and the occurrence of HF. (E) Scatter plot of the eigengenes in MEbrown module. 
(F) Protein interaction map showing the location of hub genes within the MEbrown module.
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in maintaining cardiac homeostasis and preserving the structural and 
functional integrity of the heart (39). Additionally, NEDD8-mediated 
neddylation plays a crucial role in sustaining the homeostasis of T cells 
and facilitating the advancement of SLE. The inhibition of neddylation 

can trigger the programmed cell death of T cells in patients with SLE, 
thereby markedly enhancing the course of SLE progression (40). Our 
study demonstrates that there is an increase in NEDD8 levels in both 
HF and SLE. Moreover, while WGCNA confirms the close link 

FIGURE 11

Validation of hub genes through RT-PCR. The mRNA levels of HSP90AB1 (A), NEDD8 (B), RPLP0 (C), UBB (D), and UBC (E) between non-failing and 
failing hearts. *P < 0.05; **P < 0.01; ns. indicates no significance between the 2 indicated groups.
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between NEDD8 and HF, RT-PCR does not provide supporting 
evidence. Hence, the role of NEDD8 as a contributing factor to both 
HF and SLE remains inconclusive.

RPLP0, a ribosomal protein, encodes the large P0 subunit that 
constitutes a crucial part of the 60S subunit (41). RPLP0 shows stable 
expression levels across different heart cavities and disease conditions, 
making it an optical reference gene in gene expression analysis (42, 
43). RPLP0 is upregulated in maladaptive remodeling of the right 
ventricle and regulates the progression of maladaptive hypertrophic 
response through facilitating ribosomal protein synthesis (44). 
Meanwhile, the levels of anti RPLP0 antibodies are elevated in patients 
with SLE compared to the healthy control group, contributing to the 
development of lupus lesions associated with SLE (45). Our study 
reveals an elevation in RPLP0 levels in both HF and SLE. Although 
WGCNA validates the association between RPLP0 and HF, RT-PCR 
results do not demonstrate a rise in RPLP0 expression in HF samples. 
Consequently, the involvement of RPLP0 as a potential factor in both 
HF and SLE remains inconclusive.

UBB, a highly conserved protein, encodes ubiquitin, which plays 
a critical role in directing cellular proteins toward degradation by the 
26S proteasome (46). UBB is elevated in the heart of rats under 
unloading, pressure overloading, and hypoxic conditions, serving as 
a potential target to reverse pathologic processes during cardiac 
remodeling (47). Additionally, UBB functions as an oncogene linked 
to HF by promoting the proliferation of cardiomyocytes (48). 
Nevertheless, the research on UBB in SLE is limited at present, which 
makes our research on the diagnostic and therapeutic value of UBB in 
SLE and HF meaningful. Our research shows that UBB levels are 
elevated in both HF and SLE. Although WGCNA verifies the strong 
association between UBB and HF, RT-PCR fails to validate this 
connection. Therefore, the involvement of UBB in the development of 
both HF and SLE is still uncertain.

UBC encodes a precursor polyubiquitin protein and plays a vital 
role in maintaining the protein homeostasis (49). Analysis of the PPI 
network indicates that UBC may have a crucial involvement in 
promoting cardiac inflammation and fibrosis during the cardiac injury 
induced by angiotensin II (50). However, reports on UBC in SLE 
remain scarce. Our study shows that levels of UBC are increased in 
both SLE and HF. Moreover, the correlation between UBC and HF is 
confirmed using both RT-PCR and WGCNA, indicating UBC as a 
co-pathogenic gene for both SLE and HF, and proposing potential 
therapeutic approaches for individuals with concurrent conditions.

Previous studies have demonstrated the significant role of immune 
cell infiltration in the progression of both SLE and HF (29, 32, 51). 
Furthermore, HSP90AB1 shows increased expression in HF mice and 
serves as the hub gene and immunotherapy targets in HF, which is 
essential in the oxidative stress and immune infiltration of HF (52). The 
meta-analysis findings show all gene pathways focused on the UBC 
gene are linked to immune response and inflammation (53). In this 
study, we investigated the composition of immune cell infiltration in 
SLE and HF, which enhanced our understanding of its role in both 
conditions. Our analysis reveals a reduction in the presence of dendritic 
cells, which could potentially contribute to the pathogenesis and 
progression of SLE in combination with HF and should be a focus of 
further research. In addition, our analysis showed a consistent 
correlation between UBC and monocytes, as well as between HSP90AB1 
and dendritic cells in the both the HF and SLE datasets, indicating that 

HSP90AB1 and UBC were possibly involved in the shared pathogenesis 
of HF and SLE through regulating immune cell infiltration.

There are still some limitations in our study that need to 
be addressed. Firstly, the validation dataset (GSE196656) we utilized 
had a limited sample size. In order to enhance the validity of our 
findings, it would be beneficial to obtain larger datasets pertaining to 
HF and additional datasets pertaining to the comorbidity between 
SLE and HF. Secondly, further investigation is required to determine 
the precise mechanisms behind the association between immune cell 
infiltration and shared hub genes. Consequently, it is imperative to 
further verify our results through both in vivo and in vitro experiments.

5 Conclusion

Our study not only presents a unique approach for identifying the 
shared hub genes (HSP90AB1 and UBC) in peripheral blood from 
patients with SLE and left ventricular tissue from patients with HF, 
respectively, but also offers theoretical strategies and new insights into 
the shared pathogenic mechanisms and potential combination 
therapies for individuals with both SLE and HF.
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