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Objectives: This study aimed to develop a deep learning radiomic model using 
multimodal imaging to differentiate benign and malignant breast tumours.

Methods: Multimodality imaging data, including ultrasonography (US), 
mammography (MG), and magnetic resonance imaging (MRI), from 322 patients 
(112 with benign breast tumours and 210 with malignant breast tumours) with 
histopathologically confirmed breast tumours were retrospectively collected 
between December 2018 and May 2023. Based on multimodal imaging, the 
experiment was divided into three parts: traditional radiomics, deep learning 
radiomics, and feature fusion. We tested the performance of seven classifiers, 
namely, SVM, KNN, random forest, extra trees, XGBoost, LightGBM, and LR, 
on different feature models. Through feature fusion using ensemble and 
stacking strategies, we obtained the optimal classification model for benign and 
malignant breast tumours.

Results: In terms of traditional radiomics, the ensemble fusion strategy achieved 
the highest accuracy, AUC, and specificity, with values of 0.892, 0.942 [0.886–
0.996], and 0.956 [0.873–1.000], respectively. The early fusion strategy with 
US, MG, and MRI achieved the highest sensitivity of 0.952 [0.887–1.000]. In 
terms of deep learning radiomics, the stacking fusion strategy achieved the 
highest accuracy, AUC, and sensitivity, with values of 0.937, 0.947 [0.887–
1.000], and 1.000 [0.999–1.000], respectively. The early fusion strategies of 
US+MRI and US+MG achieved the highest specificity of 0.954 [0.867–1.000]. 
In terms of feature fusion, the ensemble and stacking approaches of the late 
fusion strategy achieved the highest accuracy of 0.968. In addition, stacking 
achieved the highest AUC and specificity, which were 0.997 [0.990–1.000] and 
1.000 [0.999–1.000], respectively. The traditional radiomic and depth features 
of US+MG + MR achieved the highest sensitivity of 1.000 [0.999–1.000] under 
the early fusion strategy.

Conclusion: This study demonstrated the potential of integrating deep learning 
and radiomic features with multimodal images. As a single modality, MRI based 
on radiomic features achieved greater accuracy than US or MG. The US and MG 
models achieved higher accuracy with transfer learning than the single-mode or 
radiomic models. The traditional radiomic and depth features of US+MG + MR 
achieved the highest sensitivity under the early fusion strategy, showed 
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higher diagnostic performance, and provided more valuable information for 
differentiation between benign and malignant breast tumours.
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deep learning, radiomics, multimodality imaging, breast tumours, deep learning 
radiomics, MRI, Mammography, Ultrosonography

1 Introduction

Breast cancer is the most prevalent cancer and the second leading 
cause of cancer-related deaths among women in the United States (1). 
In 2023, an estimated 55,720 women were diagnosed with carcinoma 
in situ, whilst 297,790 were diagnosed with invasive carcinoma, and 
43,170 women died from breast cancer (2). Early diagnosis and 
classification are critical for effective treatment. Currently, many 
imaging modalities, such as ultrasonography (US), mammography 
(MG), and magnetic resonance imaging (MRI), are commonly used 
for the classification and diagnosis of breast cancer (3). MG is the 
predominant tool used for breast cancer screening (4–6), showing 
high sensitivity for calcification, but its low specificity is one of its 
limitations. Consequently, a large number of unnecessary biopsies are 
carried out, leading to healthcare resource waste and stress for patients 
(7, 8). These disadvantages have led to increased use of other adjunct 
imaging modalities in clinical practise, including US and MRI (9). US 
can effectively distinguish between cysts and solid masses and is more 
sensitive in dense breasts than MG (10). As an adjunct to MG, US 
provides highly accurate breast mass information and facilitates 
annotations (11, 12), but it often misses certain types of breast masses, 
such as invasive micropapillary carcinoma, ductal carcinoma in situ, 
invasive lobular carcinoma, fat-surrounded isoechoic lesions, 
heterogeneous echoic lesions with heterogeneous backgrounds, 
subareolar lesions, and deep lesions in large breasts. Additionally, 
lesions may be missed due to poor operator skills (12–15). MRI, which 
has high sensitivity, supports multiplanar scanning and 3D 
reconstruction, allowing for better visualisation of breast lesion size, 
shape, and location (16). MRI is valuable for screening high-risk 
individuals, diagnosing occult cases, staging, and assessing the 
response to chemotherapy (17, 18). However, MRI scans are expensive, 
and the examination requires more time than other tests (19).

Early and precise detection of malignant breast lesions is crucial 
for timely intervention and improvement of patient prognosis. 
Conventional diagnostic methods such as US, MG, and MRI are 
available but have inherent limitations, including indistinct 
boundaries, false-positive results, and potential sampling errors. In 
recent years, deep learning radiomics (DLR) in breast cancer has 
gained attention as a promising field (20, 21). Although deep learning 
(DL) models have achieved considerable progress in the automatic 
segmentation and classification of breast cancer (22, 23), data on how 
they are improving the overall management of breast cancer, starting 
from screening to diagnosis and ultimately to survival, are lacking 
(24). MG, US, and MRI are routinely used during breast cancer 
screening and are commonly used to identify and characterise breast 
lesions and guide biopsy. Several studies have focussed on MG and 
US. Cruz et al. (25) proposed a method consisting of different steps, 
including segmentation and extraction of deep learning features 

performed by a CNN—specifically, DenseNet 201. They analysed deep 
learning and handcrafted features during the fusion stage and then 
applied several classifiers (XGBoost, AdaBoost, and multilayer 
perceptron) based on stochastic measures. Ultimately, they achieved 
strong performance in multimodal imaging studies (US and MG). 
Lamb et al. (26) reported a higher cancer detection rate for patients 
who underwent breast screening by MRI than for patients identified 
as high risk with the traditional risk model using a retrospective 
mammogram-based model of 2,168 women. Natalia et al. (27) tested 
three different clinical imaging modalities (dynamic contrast-
enhanced MRI, full-field digital mammography, and ultrasound) by 
pretraining a CNN and fusing it with deep learning methods for 
radiomic computer-aided diagnosis. They found that compared to 
previous breast cancer methods, computer-aided diagnosis methods 
achieved better performance in distinguishing between malignant and 
benign lesions. However, open questions remain on how to use the DL 
risk assessment model in clinical practise, and few studies have 
focussed on multimodality imaging based on deep learning and 
radiomics with MG, US, and MRI.

The aim of this study was to develop a comprehensive deep 
learning radiomic framework utilising multimodal imaging data, 
including MG, US, and MRI data. By integrating deep learning 
radiomic technology with multimodal imaging, complementary 
information from different imaging modes can be leveraged to fully 
characterise the imaging features of breast tumours, thereby achieving 
a greater differential diagnosis capability for benign and malignant 
tumours than single-mode radiomics, which will ultimately lead to a 
reduction in unnecessary biopsies.

2 Materials and methods

2.1 Patient population

This retrospective study obtained approval from the institutional 
review board of our hospital (Approval No. Y(2404)-030), and the 
requirement for informed consent was waived. This study enrolled 
1,564 female patients who preoperatively underwent multimodality 
(US, MG, and MRI) examinations at our centre between January 2018 
and May 2023. The inclusion criteria were (a) complete imaging and 
clinical data availability, (b) multimodality breast examination 
performed within 4 weeks before breast surgery, and (c) no treatment 
performed before the aforementioned examination. The exclusion 
criteria were as follows: (a) a history of preoperative therapy, including 
radiotherapy or neoadjuvant chemotherapy; (b) poor image tumour 
segmentation due to blurred boundaries; (c) missing US, MG, and 
MRI data; and (d) no available pathological results. Ultimately, 322 
patients (112 with benign breast tumours and 210 with malignant 
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breast tumours). The training cohort included 257 patients (89 with 
benign and 168 with malignant breast tumors) enrolled in the training 
cohort and 65 patients (23 with benign breast tumours and 42 with 
malignant breast tumours) enrolled in the internal testing cohort. The 
enrolment process is shown in Figure 1.

2.2 Image acquisition

Each patient’s multimodality imaging examinations were as 
follows: MG-CC, MRI-T2WI, and US. In all patients, routine digital 
mammography was performed with the Hologic Selenia Dimensions 
system using standard, craniocaudal (CC), and mediolateral (MLO) 
views, and we  analysed the former images. Routine ultrasound, 
including Doppler US, was performed using Philips IU22 and EPIQ7 
instruments with 12–5-MHz transducers. All contrast-enhanced MRI 
examinations were performed on a 3.0 T MR system (Skyra, Siemens 
Healthcare, 3.0 T GE Discovery MR750) in the prone position with no 
breast compression using a dedicated four-channel breast coil and the 
following sequences: T2-weighted imaging (T2WI), dynamic contrast-
enhanced (DCE) imaging, and diffusion-weighted imaging (DWI). 
Within 2 min after intravenous injection of gadolinium contrast agent 
(0.2 mL/kg), the first postcontrast images were acquired, followed by 
five subsequent postcontrast images were acquired. Axial DWI scans 
were acquired with two b-values (0 and 1,000 s/mm2). All patients had 
undergone core biopsy or surgery of the abnormal area. The final 
histopathological results were all recorded.

2.3 Region of interest segmentation

Primary breast tumours were selected for region of interest (ROI) 
segmentation on the largest layer of the tumour. Two radiologists and 
one diagnostic ultrasound physician with extensive experience (reader 

1 with 12 years, reader 2 with 10 years, and reader 3 with 12 years) in 
breast imaging diagnosis manually delineated each ROI along the 
tumour margin from the first to the last layer of the whole tumour 
using ITK-SNAP software (version 3.80). They completed ROI 
segmentation under the supervision of a senior radiologist with 
30 years of experience in breast imaging diagnosis. The radiologists 
were blinded to the histopathological information of the malignant 
breast tumours and benign tumours from the US, MG-CC, and 
MRI-T2W images. We traced abnormal areas in these images and 
attempted to delineate the burr at the edge of each tumour as 
completely as possible. All lesion images were included, as shown in 
Figure 2.

2.4 Feature extraction and selection

A total of 108 radiomic features were extracted using the 
PyRadiomics (3.0.1) open-source Python package. In this study, the 
following features were extracted: first-order statistics (FOSs), shape-
based 2D (S-2D/3D) features, grey-level co-occurrence matrices 
(GLCMs), grey-level run length matrices (GLRLMs), grey-level size 
matrices (GLSZMs), neighbourhood grey tone difference matrices 
(NGTDMs), and grey-level dependence matrices (GLDMs) (28). 
Feature selection and fusion techniques were applied to reduce 
dimensionality and integrate complementary information. The 
Mann–Whitney U-test and Spearman’s rank correlation coefficient 
were used to determine the statistical significance and repeatability of 
the features, respectively. Finally, the least absolute shrinkage and 
selection operator (LASSO) regression model was used to construct 
the feature signature for the entire dataset.

Classification models for single-mode and multimodal fusion 
were established from multimodal imaging (MG-CC, US, and 
MRI-T2WI). The classification model was then constructed using 
different strategies, including support vector machine (SVM), 

FIGURE 1

Flowchart of patient recruitment. A total of 322 patients enrolled in the study (including 112 benign tumors and 210 malignancy tumors), with the 
training set (n = 257) consisting of 89 benign tumors and 168 malignant tumors.
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K-nearest neighbour (KNN), random forest (RF), extremely 
randomised trees (ExtraTree), extreme gradient boosting (XG Boost), 
light gradient boosting machine (LightGBM), and logistic regression 
(LR), and the optimal fusion method was selected. The workflow for 
classification model construction is shown in Figure 3.

For US, MG-CC, and MRI-T2WI multimodality imaging, in 
terms of deep learning, we used a pretrained ResNet-50 model to 
perform transfer learning tasks on rectangular ROI images acquired 
from the three imaging modes, as shown in Figure  4 (Step  1). 
Specifically, the convolution layer parameters of the ResNet-50 model 
were fixed, and the output of the fully connected layer was 2. During 

the model training stage, the optimal parameter settings (batch 
size = 32, learning rate = 0.001, epochs = 200, and optimiser = sgd) 
were obtained through hyperparameter fine-tuning. Next, we input 
the images from the three imaging modes into their respective optimal 
models and derived the deep feature values of the average pooling 
layer. Since the size of the feature map of the pooling layer was fixed, 
the number of dimensions of the deep feature values for all the modes 
was 2048. For feature selection, the PCA algorithm was used to reduce 
the dimension of the depth feature value. The classification model was 
then established using different strategies, as shown in Figure  4 
(Step  2). For model interpretability, Grad-CAM was utilised to 

FIGURE 2

Raw images, hand-crafted masks, and cropped ROIs of three modal images. (A) Ultrasound, (B) T2-weighted magnetic resonance imaging, and 
(C) mammography (MG) craniocaudal view.

FIGURE 3

Workflow of conventional radiomics from multimodal data. We extracted conventional radiomic features from US, MR, and MG-CC images. Feature 
selection and fusion techniques were applied to reduce dimensionality and integrate complementary information. The classification model was 
constructed using seven machine learning algorithms.
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visualise and explain the validity of the multimodal models, as shown 
in Figure 4 (Step 3).

2.5 Feature fusion

The fusion workflow of deep features and conventional radiomic 
features from multimodal data were below: The feature fusion methods 
were divided into early fusion and late fusion (ensemble and stacking) 
approaches. For early fusion, features from different modalities were 
concatenated before modelling to create an integrated feature 
representation as input to the classifier. For the ensemble approach, 
accuracy-weighted average integration based on softmax normalisation 
weighting was used. For the stacking approach, separate models were 
first built on each modality, and then their outputs were combined via 
the ensemble method. Stacking involved using a machine learning model 
to fuse the results from the training and testing sets and using another 
machine learning algorithm for classification, as shown in Figure 5.

2.6 Evaluation indicators

The model performance evaluation adopted four evaluation metrics, 
namely accuracy, sensitivity, specificity, and AUC value. Accuracy refers 
to the proportion of correctly classified samples to the total number of 
samples. Sensitivity represents the proportion of correctly classified 
positive samples to the actual number of positive samples. Specificity 
represents the proportion of correctly classified negative samples to the 
actual number of negative samples. The AUC is the area under the ROC 
curve, and the ROC curve is the curve obtained by plotting the True 
Positive Rate on the Y-axis and the False Positive Rate on the X-axis. The 
value of AUC ranges from 0.5 to 1, and the higher the AUC, the better the 
performance of the classifier. TP is the number of true-positive results, FP 
is the number of false-positive results, TN is the number of true-negative 
results, and FN is the number of false-negative results.
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FIGURE 4

Workflow of transfer learning from multimodal data (Step 1 and Step 2) and visualisation of the CNN decision process (Step 3). For US, MG-CC, and 
MRI-T2WI images, we employed transfer learning using a pretrained ResNet-50 model. After model training, deep features were extracted from the 
average pooling layer and reduced in dimensionality with PCA. A classification model was then constructed using two different late-fusion strategies. 
For model interpretability, Grad-CAM was utilised to visualise and explain the validity of the CNN models.
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3 Results

3.1 Clinical characteristics

In this study, 322 female patients with a mean age of 
50.48 ± 11.57 years were enrolled. The patients were divided into a 
training set (257 patients) and a test set (65 patients). A total of 112 

benign breast tumours and 210 malignant breast tumours were included. 
The clinicopathological data and corresponding multimodal imaging 
data resulted in 6440 data points. No significant difference in clinical 
features was noted amongst the cohorts (p > 0.05), as shown in Table 1.

3.2 Radiomic model for multimodal 
imaging

A total of 108 groups of feature values from US, MRI-T2WI, and 
MG-CC rectangular ROI images were extracted. After feature selection, 
we retained 42 sets of feature values for the training of the machine 
learning model. As shown in Figure 3, the experiments were divided into 
a single-mode radiomic model, a prefusion model (two-mode image 
fusion model and three-mode image fusion model), and an ensemble 
fusion modal method. For both single-mode features and multimode 

FIGURE 5

Fusion workflow of deep features and conventional radiomic features from multimodal data. The feature fusion methods were divided into early fusion 
and late fusion (ensemble and stacking) approaches. In early fusion, features from different modalities were concatenated before modelling to create 
an integrated feature representation as input to the classifier. In late fusion, separate models were built on each modality first, and then, their outputs 
were combined via ensemble or stacking techniques to produce final predictions.
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fusion features, seven classifiers were tested in the experiment, and 
finally, the optimal classification model was obtained. For the generation 
of classification models, 20% of the images were randomly selected for 
testing, and the other 80% were selected for training. Notably, when 
training the first classification model, we set up random seeds to fix the 
instances of the training set and the test set. The established training set 
and test set ensured the consistency of training and testing of all 
classification models and thus the fairness of model evaluation.

The combined modalities integrating multimodal imaging 
(MG-CC, US, and MRI) showed good validity and stability. 
We described the diagnostic indices of the different modalities for all 
patients in the primary cohort and validation cohorts. Table 2 and 
Figure  6A show the evaluation performance of the optimal 
classification model under different traditional image radiomic feature 
sets. With respect to the conventional radiomic features, for the single-
modal images, MRI-T2WI achieved the best accuracy (80.0%) and an 
AUC of 0.785 [0.674–0.915]. US had the best sensitivity of 90.4% 
[81.5–99.3%]. MG-CC had the best specificity of 82.6% [67.1–98.0%] 
(lines 1 to 3). Amongst the two multimodal methods, US+MRI had 
the highest AUC of 0.858 [0.763–0.952] and a specificity of 78.2% 
[61.4–95.1%] (lines 4 to 6). For the three-mode imaging method, the 
highest accuracy was 84.3%, the AUC was 0.812, the sensitivity was 
95.2% [88.7–100.0%], and the specificity was 63.6% (line 7). The 
ensemble fusion modal method performed the best, with an accuracy 

of 89.2%, an AUC of 0.942 [0.886–0.996], a sensitivity of 85.7%, and a 
specificity of 95.6% [87.3–100.0%] (line 8).

3.3 Deep learning models for multimodal 
imaging

In summary, we used the pretrained ResNet-50 model to extract 
2048 sets of feature values from US, MRI-T2WI, and MG-CC 
rectangular ROI images, as shown in Figure 4 (Step 1). The difference 
was that feature selection with PCA was used for dimension reduction. 
The experiment reduced the eigenvalue of each mode to 32 
dimensions. In terms of the model, we  generated single-mode, 
multimode, prefusion, and postfusion classification models, as shown 
in Figure 4 (Step 2). Similarly, seven classification models were tested 
to determine the optimal classifier. In addition, the experimental setup 
was also consistent with that described above.

The performance of the deep features from the transfer learning 
model, when combined with multimodal imaging, outperformed that of 
the single-mode models, as shown in Table 3 and Figure 6B. For the 
single-mode images, US achieved the best accuracy and sensitivity of 78.1 
and 88.0%, respectively [78.3–97.8%]. MRI had the best AUC and 
specificity (0.830 [0.723–0.935] and 81.8 [65.7–97.9%], respectively) (lines 
1–3). For the two multimodal imaging methods, the accuracies were 85.9, 

TABLE 1 Characteristics of breast tumours in this study.

Characteristics Training (n = 257) Testing (n = 65) Values p

Menstrual status 89 (34.6%) 23 (35.4%) χ2 = 3.078 0.079

Age (years) 50.31 ± 11.57 51.08 ± 10.72 t = 0.486 0.627

Diameter (mm) 19.94 ± 11.27 22.78 ± 10.01 t = 1.476 0.141

CA-153 19.76 ± 8.97 20.52 ± 10.27 t = 0.593 0.554

BI-RADS category χ2 = 6.080 0.108

1–3 57 (22.2%) 24 (36.9%) – –

4(4a,4b,4c) 138 (53.7%) 28 (43.1%) – –

5 44 (17.1%) 8 (12.3%) – –

6 18 (7.0%) 5 (7.7%)

Pathology χ2 = 0.087 0.768

Benign 89 (34.6%) 23 (35.4%) – –

Malignant 168 (65.4%) 42 (64.6%) – –

TABLE 2 Results of radiomic classification utilising conventional features.

Methods Accuracy AUC Sensitivity Specificity Classifier

US 0.784 0.707 [0.555–0.858] 0.904 [0.815–0.993] 0.565 [0.362–0.767] SVM

MR 0.800 0.795 [0.674–0.915] 0.857 [0.751–0.962] 0.695 [0.507–0.883] SVM

MG 0.753 0.748 [0.612–0.883] 0.714 [0.577–0.850] 0.826 [0.671–0.980] XGBoost

US+MR 0.815 0.858 [0.763–0.952] 0.833 [0.720–0.946] 0.782 [0.614–0.951] SVM

US+MG 0.692 0.718 [0.578–0.857] 0.642 [0.497–0.787] 0.782 [0.614–0.951] LightGBM

MR + MG 0.815 0.746 [0.603–0.889] 0.881 [0.783–0.978] 0.727 [0.507–0.883] XGBoost

US+MR + MG 0.843 0.812 [0.693–0.929] 0.952 [0.887–1.000] 0.636 [0.435–0.837] XGBoost

Ensemble 0.892 0.942 [0.886–0.996] 0.857 [0.751–0.962] 0.956 [0.873–1.000] SVM + LightGBM#

# denotes the classifiers (SVM + LightGBM), and [] represents the 95% confidence intervals (CI).
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87.5, and 86.1%; the AUCs were 0.922, 0.906, and 0.909; the sensitivities 
were 80.9, 83.3, and 90.4%; and the specificities were 95.4, 95.4, and 
78.2%, respectively. US+MR and US+MG had the same specificity of 
95.4% [86.7–100.0%] (lines 4–6). For the three multimodal imaging 
methods, the highest accuracy was 90.6%, the AUC was 0.937 [0.877–
0.996], the sensitivity was 92.8% [85.0–100.0%], and the specificity was 
86.3% (line 7). Overall, the postfusion model’s performance was better 
than that of the multimodal models. The ensemble model had an accuracy 
of 90.6%, an AUC of 0.927, a sensitivity of 100.0%, and a specificity of 
72.7% (line 8). The stacking model performed best, with an accuracy of 
93.7%, an AUC of 0.947 [0.877–1.000], a sensitivity of 100.0% [99.9–
100.0%], and a specificity of 81.8% (line 9).

3.4 Deep learning radiomic models for 
multimodality imaging

The classification model with both conventional image 
radiomic features and deep learning features showed robust 

performance. We  tried to integrate the conventional image 
radiomic features and deep learning features from multimodal 
imaging of breast tumours and further improve the performance 
of the classification model.

The deep learning feature values of US, MRI-T2WI, and 
MG-CC were spliced in the same dimension. Figure 5 shows the 
specific process of feature fusion. In traditional image radiomics, 
after the three sets of eigenvalues are spliced in the same 
dimension, the number of dimensions is reduced to 108 according 
to PCA. After the two types of features were generated, 
we  repeated the above operation, first splicing and then 
PCA dimension reduction. Finally, we obtained 108-dimensional 
features containing 51 sets of deep feature values and 57 
sets of traditional image radiomic feature values. The 108 
sets of features represented a valid feature set for each patient 
and formed the basis for our classification model. The experiment 
implemented three fusion methods—early fusion, ensemble, 
and stacking—for the classification model. Research has 
shown that the radiomic and deep features of these multimodal 

FIGURE 6

Comparison of ROC curves under different classifiers with different sources of features. (A) Conventional radiomic features; (B) deep features from 
transfer learning.

TABLE 3 Results of transfer learning classification utilising deep features.

Methods Accuracy AUC Sensitivity Specificity Classifier

US 0.781 0.780 [0.655–0.903] 0.880 [0.783–0.978] 0.619 [0.385–0.796] RF

MRI 0.719 0.830 [0.723–0.935] 0.667 [0.524–0.809] 0.818 [0.657–0.979] ExtraTrees

MG 0.734 0.735 [0.611–0.859] 0.738 [0.605–0.871] 0.761 [0.541–0.913] KNN

US+MR 0.859 0.922 [0.852–0.991] 0.809 [0.690–0.928] 0.954 [0.867–1.000] XGBoost

US+MG 0.875 0.906 [0.811–1.000] 0.833 [0.720–0.946] 0.954 [0.867–1.000] SVM

MR + MG 0.861 0.909 [0.828–0.989] 0.904 [0.815–0.993] 0.782 [0.614–0.951] SVM

US+MR + MG 0.906 0.937 [0.877–0.996] 0.928 [0.850–1.000] 0.863 [0.720–1.000] XGBoost

Ensemble 0.906 0.927 [0.861–0.992] 1.000 [0.999–1.000] 0.727 [0.541–0.913] SVM+KNN+LightGBM#

Stacking 0.937 0.947 [0.887–1.000] 1.000 [0.999–1.000] 0.818 [0.657–0.979] XGBoost

# denotes the classifiers (SVM + KNN + LightGBM).
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images play a decisive role in the final performance of the model 
(Figure 6).

Table 4 shows the performance evaluation indices of the three 
fusion models. We  noted that the SVM classifier used in the 
stacking model achieved the best overall performance, yielding 
the highest accuracy, AUC, and specificity of 0.968, 0.997 [0.990–
1.000], and 1.000 [0.999–1.000], respectively (Figure 7).

3.5 Comparison with different classification 
models

By setting random seeds, we fixed the training sets and test 
sets of cases for the deep learning radiomic model (stacking). 

This study compared benign and malignant breast tumour 
classification models based on VGG19 (29), GoogLeNet (30), 
ResNet-101 (31), and Inception-v3 (32). Specifically, the same 
training set was used for model migration training and fixed 
convolution layer and modified fully connected layer parameters 
(the fully connected layer parameter was set to 2). After the 
model was generated, the same test set was used for the 
performance evaluation. Table 4 shows the classification results 
of the deep learning radiomic models and existing deep learning 
models. The experiments showed that the deep learning image 
model, which combined traditional imaging radiomic and deep 
learning features, was superior to the model based on deep 
learning in the classification of benign and malignant breast 
tumours, as shown Figure 8.

TABLE 4 Feature fusion results of conventional radiomic features and deep features from transfer learning.

Methods Accuracy AUC Sensitivity Specificity classifier

Rad + DF 0.953 0.986 [0.966–1.000] 1.000 [0.999–1.000] 0.863 [0.720–1.000] SVM

Ensemble 0.968 0.994 [0.982–1.000] 0.976 [0.930–1.000] 0.954 [0.867–1.000] SVM+XGBoost+LightGBM#

Stacking 0.968 0.997 [0.990–1.000] 0.952 [0.887–1.000] 1.000 [0.999–1.000] SVM

VGG-19 (29) 0.846 0.867 [0.775–0.959] 0.938 [0.850–1.000] 0.695 [0.507–0.883] Softmax

GoogLeNet (30) 0.828 0.807 [0.678–0.935] 0.928 [0.863–0.952] 0.636 [0.435–0.837] Softmax

ResNet-101 (31) 0.796 0.770 [0.640–0.899] 0.952 [0.827–0.987] 0.500 [0.291–0.708] Softmax

Inception-v3 (32) 0.875 0.892 [0.803–0.980] 0.952 [0.887–1.000] 0.727 [0.541–0.913] Softmax

In addition, we compared against existing deep learning classification models. Rad+DF represents fused radiomic and deep features. # represents the classifiers (SVM + XGBoost + 
LightGBM).

FIGURE 7

Radiomic and deep features of multimodal images role in the final performance of the model.
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FIGURE 8

Evaluation of classification models. (A) ROC curves under different classifiers. (B, C) Optimal classification model evaluation, namely, stacking, including 
confusion matrix and decision curve analysis (DCA).

4 Discussion

Breast cancer shows profound disease heterogeneity, metastasis, 
and therapeutic resistance and is a leading cause of cancer-related 
mortality in women. The accuracy and sensitivity of diagnostic tools 
for differentiating breast tumours need to be  further improved, 
although several diagnostic methods have been developed. Compared 
to a traditional radiomic model and deep learning feature model, the 
deep learning radiomic model showed better performance in the 
classification of benign and malignant breast tumours (33). In our 
study, we compared a traditional radiomic model, a deep learning 
model, and a deep learning radiomic model for multimodal imaging. 
The experimental results showed that the deep learning radiomic 
fusion model of multimodal imaging exhibited an outstanding 
performance in distinguishing between benign and malignant breast 
tumours and achieved the best classification performance. 
We obtained an AUC of 0.937 with the multimodal model with deep 
features and transfer learning. With the support of multimodality 
imaging, the model integrating traditional imaging radiomic and deep 

learning eigenvalues could more accurately capture key information 
from the tumour images. Therefore, this model improved the accuracy 
and robustness of classification.

Hu et  al. (34) developed a computer-aided diagnosis method 
based on dynamic contrast-enhanced (DCE) and T2-weighted MR 
sequences. The study classified lesions as benign or malignant using 
support vector machine (SVM) classifiers, and the area under the 
curve (AUC) of the multiparametric schemes was 0.86 for classifier 
fusion. The best result was obtained with the feature fusion method. 
Compared with the prefusion, postfusion added more features into 
analysed information, so it got the best performance of all the modals.

Huang et  al. (35) constructed a deep learning radiopathomic 
model based on preoperative US images and haematoxylin and eosin 
(H&E)-stained biopsy slide feature fusion. The deep learning 
radiopathomic model yielded high performance, with an AUC of 
0.929, outperforming the deep learning radiomic model based only 
on US images and the deep learning pathomic model based only on 
WSIs. Their study achieved good diagnostic efficacy, which was 
superior to that of the MG and MRI modalities alone, whilst our study 
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focussed on US, MG, and MRI multimodal and obtained better 
performance than single-modal or two-fused modals. We  also 
obtained a high AUC of 0.937, similar to that reported by Huang using 
H&E staining. Therefore, in the future with the mulitmodal image 
DLR, we may achieve a non-invasive means of examination, aimed at 
reducing the need for breast mass biopsy.

Based on the performance of the three models, both the deep 
radiomic model and the feature fusion model outperform the 
traditional radiomic models in classifying benign and malignant breast 
tumours. We attribute this to the incorporation of deep feature values 
into the traditional radiomic features. To assess the efficacy of the deep 
feature values, the final convolutional layer of the ResNet-50 model was 
visualised using the Grad-CAM method, as depicted in Figure  4 
(Step  3). The visualisation reveals that the deep feature values 
contributing to the decision-making are distributed within and around 
the tumour. We observed that the highlighted areas on the heatmap 
align with those observed by clinicians, underscoring the significance 
of integrating deep feature values into traditional radiomic features.

The excellent performance of the deep learning radiomic model 
provides important technical support and guidance for the early 
diagnosis and treatment of breast tumours. The advantage of deep 
learning radiomic modalities in breast tumour classification could 
not only be reflected in the classification performance but also in 
the full use of multimodal imaging. The fusion of multimodal 
imaging could provide more comprehensive and multidimensional 
information for the model such that the model had more diagnostic 
value and clinical application prospects. Therefore, we believe that 
the deep learning radiomic imaging model has the best performance 
in distinguishing benign and malignant breast tumours and plays 
an important role in the field of medical imaging.

Previous studies have also explored the use of radiomic models 
and DLR nomograms with promising results. For example, Gao et al. 
achieved an AUC of 0.82 with a radiomic model using combined 
craniocaudal + lateral oblique MG features (36). Zhang et al. (37) 
developed an ultrasound-based DLR nomogram that showed 
excellent performance in predicting axillary lymph node load. The 
AUCs of the training and test sets were 0.900 and 0.821, respectively. 
In our study, in the field of traditional radiomic models, the integrated 
features in the ensemble model showed better overall performance 
than the single-mode models. The advantage of this multimodal 
fusion was not only the integration of information from different 
imaging modes but also the exquisite design of the ensemble model. 
The ensemble model seamlessly integrated information from various 
imaging modes, making full use of the advantages of each mode, thus 
improving the overall classification performance. Classifiers such as 
SVM and LightGBM were selected not only because of their 
applicability in processing multimodal data but also based on their 
performance and stability in different situations. Through this clever 
combination, ensemble models were able to maintain high accuracy 
whilst maintaining modal robustness and generalisability. In the 
forecasting process, the ensemble model adopted the weighted voting 
strategy, which synthesised the opinions of various classifiers, 
effectively reducing the error rate and improving the reliability of the 
classification results. In summary, the application of the ensemble 
model to the traditional radiomic model showed its unique 
advantages in integrating multimodal information and improving 
classification performance.

Chen et al. (38) used deep learning features from DWI-ADC 
imaging and DCE-MRI to predict axillary lymph node metastasis 

with high accuracy (AUC = 0.80 and 0.71) in training and testing 
cohorts, respectively. In our study, amongst the deep learning 
models, the model with amalgamated deep learning features 
demonstrated superior performance compared to the single-mode 
models. The fusion strategy of the stacking method significantly 
enhanced the performance and robustness of the model compared 
to the single-mode deep learning feature model, rendering it more 
competitive in practical applications. Integrating predicted 
probabilities into feature sets through the stacking model enhanced 
new stacking relationships and data labelling, providing a novel 
idea for further optimisation of deep feature models (39, 40). Unlike 
traditional radiomics, we also used a stacking-based deep learning 
feature model, which enhanced the classification performance, 
particularly the stacking model and XGBoost classifier, amongst the 
various classifiers. The unique advantage of the stacking model is 
its ability to effectively fuse deep learning features from each mode 
and achieve more precise classification using efficient classifiers 
such as XGBoost. Kwon et al. (41) compared the performance of 
every meta-learner model with a stacking ensemble approach as a 
supporting tool for breast cancer classification. The study showed 
that using specific models as a meta-learner resulted in better 
performance than that of single classifiers. Mohammed et al. (42) 
took the output of the submodels (base-learners) as input and then 
merged the input predictions to determine the final prediction, 
which was better than that of each of the base-classifiers. In this 
study, we achieved high accuracy and perfect specificity (100%) 
with the stacking deep learning model, which may benefit from our 
multimodal images.

Currently, differentiating malignant breast tumours from 
benign breast tumours is very important for guiding future clinical 
treatment and avoiding unnecessary biopsies. Although several 
diagnostic methods have been developed (34, 43, 44), the accuracy 
and sensitivity of those tools for differentiating breast tumours 
need to be  further improved. Patterns of breast calcifications 
visible on mammograms may be useful for differentiating between 
benign and malignant lesions. A radiomic feature analysis revealed 
several statistically significant correlations of the tumour and near 
and far regions in mammograms with intensity-based histogram 
features, edge frequency features, and Fourier-based power-law 
beta features (45). Yamamoto et  al. studied 353 patients and 
identified 21 MRI features, finding that they correlated with 71% 
of the gene expression profiles of breast cancer (46). Cai et  al. 
created a deep learning (DL)-based CNN capable of discriminating 
amongst benign and malignant microcalcifications of radiological 
features of the breast (47). Two model datasets are commonly used 
by several authors in the state of the art (48–50). Our study 
analyzed multimodal imaging (MG, US and MRI) of breast tumor 
with deep learning model. And we got good diagnostic efficacy, 
which was superior to single model image (MG, US or MRI) and 
two models of fused image (MG+MRI, MG+US or US+MRI). 
Therefore, the deep learning radiomic method has a certain value 
in the differential diagnosis of breast tumours, and multimodal 
image data can complement each other. We  also found that 
multimodality methods had a strong advantage when the 
maximum diameter was less than 1 cm compared to using one or 
two model images alone.

In the present study, we also detected a noticeable difference in 
multimodality imaging between DLR and BI-RADS categories 3 
and 4, whilst this difference was not detected for BI-RADS 
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categories 5 and 6. The BI-RADS category sometimes varied 
amongst the model images. MRI images were much more common 
than US and MG images in our study, especially for BI-RADS 4 
and 5. Multimodality imaging provides the best evaluation of the 
exact BI-RADS category, so multimodality imaging is 
recommended for diagnosis or surgical consultation for patients in 
the BI-RADS category 4 or 5. Witowski et  al. studied 13,463 
patients with breast carcinoma and developed a CNN model based 
on T1-weighted MR images to generate a three-dimensional (3D) 
mask of the breast area, achieving the highest sensitivity for 
BI-RADS 5 (92.5%) and a low value for BI-RADS 3 (33.3%), 
indicating that BI-RADS 3 represents an uncertain category not 
only for radiologists but also for DL approaches. This approach 
also prevents biopsies from yielding benign results in up to 20% of 
all patients with BI-RADS category 4 lesions (51). Both of the 
above results showed that the DLR model could serve as a helpful 
tool in the reporting system to increase the specificity of cancer 
screening. We still need to further developped broadly accessible, 
reliable, and accurate multimodality imagings with DLR tools. In 
this way breast tumor could be detected earlily and get more 
measures for prevention.

Our study has several limitations: (1) the classification 
proposed in this study focussed only on the differentiation of 
benign or malignant breast tumours; thus, it did not accurately 
distinguish pathological subtypes, which is a topic for future 
research. (2) In the present study, we utilised only the CC view in 
the MG and T2 MR images, whilst other piesces of information, 
such as lateral oblique images from MG and T1-weighted imaging 
(T1WI), diffusion-weighted imaging (DWI), apparent diffusion 
coefficient (ADC) images, and DCE-MRI sequences, were not fully 
analysed. Exploring these additional data may provide more 
insights into DLR applications. (3) This was a retrospective analysis 
with a relatively small sample size. For our future study, we plan to 
use a multicentre external validation dataset and prospective 
validation to further confirm these findings. (4) Manual 
segmentation of ROIs on each image slice increases the workload. 
Further studies should focus on developing deep learning-based 
segmentation methods for automatic lesion segmentation via 
multimodal imaging.

5 Conclusion

In this study, we demonstrated the potential of integrating deep 
learning and radiomic features with multimodal images. As a single 
modality, MRI based on radiomic features achieved greater accuracy 
than US or MG. The US and MG models achieved higher accuracy 
with transfer learning than the single-mode or radiomic models. Our 
findings may contribute to the growing body of research on the use of 
DLR in breast cancer diagnosis and classification with MG, US, and 
MRI. The traditional radiomic and depth features of US+MG + MR 
achieved the highest sensitivity under the early fusion strategy, 
exhibited higher diagnostic performance, and provided more valuable 
information for differentiation between benign and malignant breast 
tumours. By incorporating multimodal images and DLR analysis, 
we demonstrated the potential for improved accuracy and clinical 
relevance in distinguishing breast mass characteristics. In future 
investigations and validation, we plan to employ the designed fusion 
approach to other medical images, for example, PET/CT or PET/MRI.
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